
R

XtremeDSP for Virtex-4
FPGAs

User Guide

UG073 (v2.7) May 15, 2008

XtremeDSP for Virtex-4 FPGAs www.xilinx.com UG073 (v2.7) May 15, 2008

Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© 2004–2008 Xilinx, Inc. All rights reserved.

XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks
are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

R

Date Version Revision

08/02/04 1.0 Initial Xilinx release. Printed Handbook version.

09/09/04 1.1 Added chapters.

02/04/05 1.2 Added clarification on the LEGACY_MODE attribute in “DSP48 Slice Attributes,” page
18. Revised Figure 1-3 and Figure 3-7.

10/04/05 2.0 Added Chapter 7, “Multirate Filters Using the DSP48.” Also added links to reference
design files and revised figures.

10/18/05 2.0.1 Typographical edits.

12/19/05 2.1 Updated PCOUT-to-PCIN information in Chapter 1, “XtremeDSP Design
Considerations,” updated Chapter 2, “DSP48 Slice Math Functions” ZIP file, and
updated reference design file names in Chapter 3, “MACC FIR Filters.”

07/05/06 2.2 Updated “VHDL and Verilog Instantiation Templates” section; added link. Fixed links to
reference designs.

11/29/06 2.3 Added column information to Table 1-1.

01/08/07 2.4 Updated the reference design file for Chapter 7, “Multirate Filters Using the DSP48.”

06/08/07 2.5 Removed duplicate Verilog code implementation information in Chapter 2: “Square
Root” section.

10/31/07 2.6 Updated Figure 1-13. Updated the reference design files for chapters 3, 4, and 5.

05/15/08 2.7 Added “Performance” section to Chapter 1, “XtremeDSP Design Considerations.”

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 3
UG073 (v2.7) May 15, 2008

Revision History . 2

Preface: About This Guide
Guide Contents . 7
Additional Resources . 7
Conventions . 8

Typographical . 8
Online Document . 9

Chapter 1: XtremeDSP Design Considerations
Introduction . 12
Architecture Highlights . 12
Performance . 13
Number of DSP48 Slices Per Virtex-4 Device . 13

DSP48 Slice Primitive . 14
DSP48 Slice Attributes . 16

VHDL and Verilog Instantiation Templates . 17
DSP48 Tile and Interconnect . 17
Simplified DSP48 Slice Operation . 19
Timing Model . 20
A, B, C, and P Port Logic. 23

OPMODE, SUBTRACT, and CARRYINSEL Port Logic . 25
Two’s Complement Multiplier . 26
X, Y, and Z Multiplexer . 27
Three-Input Adder/Subtracter . 28
Carry Input Logic . 30

Symmetric Rounding Supported by Carry Logic . 32
Forming Larger Multipliers . 33
FIR Filters. 34

Basic FIR Filters . 34
Multichannel FIR Filters . 35
Creating FIR Filters . 35

Adder Cascade vs. Adder Tree . 36
DSP48 Slice Functional Use Models . 39

Single Slice, Multi-Cycle, Functional Use Models . 39
Single Slice, 35 x 18 Multiplier Use Model . 40
Single Slice, 35 x 35 Multiplier Use Model . 40

Fully Pipelined Functional Use Models . 43
Fully Pipelined, 35 x 18 Multiplier Use Model . 44
Fully Pipelined, 35 x 35 Multiplier Use Model . 45
Fully Pipelined, Complex, 18 x 18 Multiplier Use Model . 46
Fully Pipelined, Complex, 18 x 18 MACC Use Model . 48
Fully Pipelined, Complex, 35 x 18 Multiplier Usage Model . 51

Table of Contents

http://www.xilinx.com

4 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

R

Miscellaneous Functional Use Models . 53
Dynamic, 18-Bit Circular Barrel Shifter Use Model . 53

Chapter 2: DSP48 Slice Math Functions
Overview . 55
Basic Math Functions . 56

Add/Subtract . 56
Accumulate . 57
Multiply Accumulate (MACC) . 57
Multiplexer . 58
Barrel Shifter . 58
Counter . 58
Multiply . 58
Divide . 59

Dividing with Subtraction . 59
Dividing with Multiplication . 60

Square Root . 62
Square Root of the Sum of Squares . 64

Reference Design Files . 64
Conclusion. 64

Chapter 3: MACC FIR Filters
Overview . 65
Single-Multiplier MACC FIR Filter. 65

Bit Growth . 67
Generic Saturation Level. 67
Coefficient Specific Saturation Level. 67

Control Logic . 67
Embedding the Control Logic into the Block RAM . 69
Rounding . 71
Rounding without an Extra Cycle . 72
Using Distributed RAM for Data and Coefficient Buffers . 72
Performance . 74

Symmetric MACC FIR Filter . 74
Dual-Multiplier MACC FIR Filter . 75
Reference Design Files . 76
Conclusion. 76

Chapter 4: Parallel FIR Filters
Overview . 77
Parallel FIR Filters . 77
Transposed FIR Filter . 80

Advantages and Disadvantages . 81
Resource Utilization . 81

Systolic FIR Filter . 82
Advantages and Disadvantages . 83
Resource Utilization . 83

Symmetric Systolic FIR Filter. 83

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 5
UG073 (v2.7) May 15, 2008

R

Resource Utilization . 84
Rounding . 84
Performance . 86
Reference Design File . 86
Conclusion. 87

Chapter 5: Semi-Parallel FIR Filters
Overview . 89
Semi-Parallel FIR Filter Structure. 89
Four-Multiplier, Distributed-RAM-Based, Semi-Parallel FIR Filter. 91

Data Memory Buffers . 93
Coefficient Memory . 94
Control Logic and Address Sequencing . 94
Resource Utilization . 96

Three-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter 97
Other Semi-Parallel FIR Filter Structures . 98

Semi-Parallel, Transposed, Four-Multiplier FIR Filter . 99
Advantages and Disadvantages . 100
Rounding . 101
Performance . 102

Reference Design Files . 102
Conclusion. 103

Chapter 6: Multichannel FIR Filters
Multichannel FIR Implementation Overview . 105

Top Level . 105
DSP48 Tile . 106

Combining Separate Input Streams into an Interleaved Stream 107
Coefficient RAM . 108
Control Logic . 108
Implementation Results . 109

Reference Design Files . 109
Conclusion. 109

Chapter 7: Multirate Filters Using the DSP48
Introduction . 111

Nyquist Theorem . 112
Interpolation and Decimation . 112
Spectral Imaging . 113
Aliasing . 114

Interpolation Using the DSP48 Slice . 115
Block Diagram . 115

Decimation Using the DSP48 Slice . 117
Block Diagram . 118
Implementation Results . 120

Reference Design Files . 120
Conclusion. 121

http://www.xilinx.com

6 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

R

References . 121

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 7
UG073 (v2.7) May 15, 2008

R

Preface

About This Guide

This user guide is a detailed functional description of the Virtex®-4 FPGA XtremeDSP™
technology.

Guide Contents
This user guide contains the following chapters:

• Chapter 1, “XtremeDSP Design Considerations,” introduces the DSP48 slice, its
elements, and its applications.

• Chapter 2, “DSP48 Slice Math Functions,” defines some math functions that can be
implemented using the DSP48 slice.

• Chapter 3, “MACC FIR Filters,” describes how to implement several multiply-
accumulate FIR filters using the DSP48 slice.

• Chapter 4, “Parallel FIR Filters,” describes how to implement several parallel FIR
filters using the DSP48 slice.

• Chapter 5, “Semi-Parallel FIR Filters,” describes how to implement several semi-
parallel FIR filters using the DSP48 slice.

• Chapter 6, “Multichannel FIR Filters,”illustrates the use of the advanced Virtex-4 DSP
features when implementing a widely used DSP function known as multichannel FIR
filtering.

• Chapter 7, “Multirate Filters Using the DSP48,” describes how to conduct multirate
filtering, including interpolation and decimation implementation.

Additional Resources
For additional information, go to http://support.xilinx.com. The following table lists
some of the resources you can access from this website. You can also directly access these
resources using the provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to
verification and debugging

http://support.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser Database of Xilinx solution records

http://support.xilinx.com/xlnx/xil_ans_browser.jsp

http://www.xilinx.com
http://support.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://www.support.xilinx.com/xlnx/xil_ans_browser.jsp

8 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Preface: About This Guide
R

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Application Notes Descriptions of device-specific design techniques and approaches

http://support.xilinx.com/apps/appsweb.htm

Data Sheets Device-specific information on Xilinx device characteristics, including
readback, boundary scan, configuration, length count, and debugging

http://support.xilinx.com/xlnx/xweb/xil_publications_index.jsp

Problem Solvers Interactive tools that allow you to troubleshoot your design issues

http://support.xilinx.com/support/troubleshoot/psolvers.htm

Tech Tips Latest news, design tips, and patch information for the Xilinx design
environment

http://www.support.xilinx.com/xlnx/xil_tt_home.jsp

Resource Description/URL

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands that you
enter in a syntactical statement

ngdbuild design_name

Helvetica bold

Commands that you select from
a menu

File → Open

Keyboard shortcuts Ctrl+C

Italic font

Variables in a syntax statement
for which you must supply
values

ngdbuild design_name

References to other manuals
See the Development System
Reference Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol, the
two nets are not connected.

Square brackets []

An optional entry or parameter.
However, in bus specifications,
such as bus[7:0], they are
required.

ngdbuild [option_name]
design_name

Braces { }
A list of items from which you
must choose one or more lowpwr ={on|off}

http://support.xilinx.com/apps/appsweb.htm
http://support.xilinx.com/xlnx/xweb/xil_publications_index.jsp
http://www.support.xilinx.com/support/troubleshoot/psolvers.htm
http://www.support.xilinx.com/xlnx/xil_tt_home.jsp
http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 9
UG073 (v2.7) May 15, 2008

Conventions
R

Online Document
The following conventions are used in this document:

Vertical bar |
Separates items in a list of
choices

lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . .
Repetitive material that has
been omitted

allow block block_name
loc1 loc2 ... locn;

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text
Cross-reference link to a
location in the current
document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Red text
Cross-reference link to a
location in another document

See Figure 2-5 in the Virtex-4
User Guide.

Blue, underlined text Hyperlink to a website (URL)
Go to http://www.xilinx.com
for the latest speed files.

http://www.xilinx.com
http://www.xilinx.com

10 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Preface: About This Guide
R

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 11
UG073 (v2.7) May 15, 2008

R

Chapter 1

XtremeDSP Design Considerations

This chapter provides technical details for the XtremeDSP™ Digital Signal Processing
(DSP) element, the DSP48 slice.

The DSP48 slice is a new element in the Xilinx development model referred to as
Application Specific Modular Blocks (ASMBL™) architecture. The purpose of this model is
to deliver off-the-shelf programmable devices with the best mix of logic, memory, I/O,
processors, clock management, and digital signal processing. ASMBL is an efficient FPGA
development model for delivering off-the-shelf, flexible solutions ideally suited to
different application domains.

Each XtremeDSP tile contains two DSP48 slices to form the basis of a versatile coarse-grain
DSP architecture. Many DSP designs follow a multiply with addition. In Virtex®-4 devices,
these elements are supported in dedicated circuits.

The DSP48 slices support many independent functions, including multiplier, multiplier-
accumulator (MACC), multiplier followed by an adder, three-input adder, barrel shifter,
wide bus multiplexers, magnitude comparator, or wide counter. The architecture also
supports connecting multiple DSP48 slices to form wide math functions, DSP filters, and
complex arithmetic without the use of general FPGA fabric.

The DSP48 slices available in all Virtex-4 family members support new DSP algorithms
and higher levels of DSP integration than previously available in FPGAs. Minimal use of
general FPGA fabric leads to low power, very high performance, and efficient silicon
utilization.

This chapter contains the following sections:

• “Introduction”

• “Architecture Highlights”

• “Number of DSP48 Slices Per Virtex-4 Device”

• “DSP48 Tile and Interconnect”

• “Simplified DSP48 Slice Operation”

• “Timing Model”

• “A, B, C, and P Port Logic”

• “Symmetric Rounding Supported by Carry Logic”

• “Forming Larger Multipliers”

• “FIR Filters”

• “Adder Cascade vs. Adder Tree”

• “DSP48 Slice Functional Use Models”

http://www.xilinx.com

12 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

Introduction
The DSP48 slices facilitate higher levels of DSP integration than previously possible in
FPGAs. Many DSP algorithms are supported with minimal use of the general-purpose
FPGA fabric, resulting in low power, high performance, and efficient device utilization.

At first look, the DSP48 slice is an 18 x 18 bit two’s complement multiplier followed by a
48-bit sign-extended adder/subtracter/accumulator, a function that is widely used in
digital signal processing (DSP).

A second look reveals many subtle features that enhance the usefulness, versatility, and
speed of this arithmetic building block.

Programmable pipelining of input operands, intermediate products, and accumulator
outputs enhances throughput. The 48-bit internal bus allows for practically unlimited
aggregation of DSP slices.

One of the most important features is the ability to cascade a result from one XtremeDSP
Slice to the next without the use of general fabric routing. This path provides high-
performance and low-power post addition for many DSP filter functions of any tap length.

For multi-precision arithmetic this path supports a right-wire-shift. Thus, a partial product
from one XtremeDSP Slice can be right-justified and added to the next partial product
computed in an adjacent such slice. Using this technique, the XtremeDSP Slices can be
configured to support any size operands.

Another key feature for filter composition is the ability to cascade an input stream from
slice to slice.

The C input port allows the formation of many 3-input mathematical functions, such as
3-input addition and 2-input multiplication with a single addition. One subset of this
function is the very valuable support of rounding a multiplication away from zero.

Architecture Highlights
The Virtex-4 DSP slices are organized as vertical DSP columns. Within the DSP column,
two vertical DSP slices are combined with extra logic and routing to form a DSP tile. The
DSP tile is four CLBs tall.

Each DSP48 slice has a two-input multiplier followed by multiplexers and a three-input
adder/subtracter. The multiplier accepts two 18-bit, two's complement operands
producing a 36-bit, two's complement result. The result is sign extended to 48 bits and can
optionally be fed to the adder/subtracter. The adder/subtracter accepts three 48-bit, two's
complement operands, and produces a 48-bit two's complement result.

Higher level DSP functions are supported by cascading individual DSP48 slices in a DSP48
column. One input (cascade B input bus) and the DSP48 slice output (cascade P output
bus) provide the cascade capability. For example, a Finite Impulse Response (FIR) filter
design can use the cascading input to arrange a series of input data sample and the
cascading output to arrange a series of partial output results. For details on this technique,
refer to the section titled “Adder Cascade vs. Adder Tree,” page 36.

Architecture highlights of the DSP48 slices are:

• 18-bit x 18-bit, two's-complement multiplier with a full-precision 36-bit result, sign
extended to 48 bits

• Three-input, flexible 48-bit adder/subtracter with optional registered accumulation
feedback

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 13
UG073 (v2.7) May 15, 2008

Performance
R

• Dynamic user-controlled operating modes to adapt DSP48 slice functions from clock
cycle to clock cycle

• Cascading 18-bit B bus, supporting input sample propagation

• Cascading 48-bit P bus, supporting output propagation of partial results

• Multi-precision multiplier and arithmetic support with 17-bit operand right shift to
align wide multiplier partial products (parallel or sequential multiplication)

• Symmetric intelligent rounding support for greater computational accuracy

• Performance enhancing pipeline options for control and data signals are selectable by
configuration bits

• Input port C typically used for multiply-add operation, large three-operand addition,
or flexible rounding mode

• Separate reset and clock enable for control and data registers

• I/O registers, ensuring maximum clock performance and highest possible sample
rates with no area cost

• OPMODE multiplexers

A number of software tools support the DSP48 slice. The Xilinx ISE software supports
DSP48 slice instantiations. The Architecture Wizard is a GUI for creating instantiation
VHDL and/or Verilog code. It also helps generate code for designs using a single DSP48
slice (e.g., Multiplier, Adder, Multiply-Accumulate or MACC, and Dynamic Control
modes). Using the Architecture Wizard, CORE Generator™ tool, or System Generator, a
designer can quickly generate math or other functions using Virtex-4 DSP48 slices.

Performance
To achieve maximum performance when using the DSP48 slice, the design needs to be
fully pipelined. For multiplier-based designs, the DSP48 slice requires a three-stage
pipeline. For non-multiplier-based designs, the DSP48 slice requires a two-stage pipeline.
For information about how pipeline stages affect performance, refer to the timing numbers
in the XtremeDSP Switching Characteristics section of DS302, Virtex-4 Data Sheet: DC and
Switching Characteristics.

Number of DSP48 Slices Per Virtex-4 Device
Table 1-1 shows the number of DSP48 slices for each device in the Virtex-4 families. The
Virtex-4 SX family offers the highest ratio of DSP48 slices to logic, making it ideal for
math-intensive applications.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf

14 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

DSP48 Slice Primitive
Figure 1-1 shows the DSP48 slice primitive.

Table 1-2 lists the available ports in the DSP48 slice primitive.

Table 1-1: Number of DSP48 Slices per Family Member

Device DSP48 Columns Device DSP48 Columns Device DSP48 Columns

XC4VLX15 32 1 XC4VSX25 128 4 XC4VFX12 32 1

XC4VLX25 48 1 XC4VSX35 192 4 XC4VFX20 32 1

XC4VLX40 64 1 XC4VSX55 512 8 XC4VFX40 48 1

XC4VLX60 64 1 XC4VFX60 128 2

XC4VLX80 80 1 XC4VFX100 160 2

XC4VLX100 96 1 XC4VFX140 192 2

XC4VLX160 96 1

XC4VLX200 96 1

X-Ref Target - Figure 1-1

Figure 1-1: DSP48 Slice Primitive

A[17:0]

B[17:0]

C[47:0]

OPMODE[6:0]

SUBTRACT

CARRYIN

CARRYINSEL[1:0]

BCIN[17:0]

PCIN[47:0]

CLK

CEA

BCOUT[17:0]

P[47:0]

PCOUT[47:0]
18

18

48

7

2

18

48

18

48

48

CEB

CEC

CEP

CECTRL

CECINSUB

RSTA

RSTB

RSTC

RSTP

RSTCTRL

RSTCARRYIN

CEM

RSTM

CECARRYIN

ug073_c1_01_060304

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 15
UG073 (v2.7) May 15, 2008

Number of DSP48 Slices Per Virtex-4 Device
R

Table 1-2: DSP48 Slice Port List and Definitions

Signal Name Direction Size Function

A I 18 The multiplier's A input. This signal can also be used as the adder's Most
Significant Word (MSW) input.

B I 18 The multiplier's B input. This signal can also be used as the adder's Least
Significant Word (LSW) input.

C I 48 The adder's C input.

OPMODE I 7 Controls the input to the X, Y, and Z multiplexers in the DSP48 slices
(see OPMODE, Table 1-7).

SUBTRACT I 1 0 = add, 1 = subtract.

CARRYIN I 1 The carry input to the carry select logic.

CARRYINSEL I 2 Selects carry source (see CARRYINSEL, Table 1-8).

CEA I 1 Clock enable: 0 = hold, 1 = enable AREG.

CEB I 1 Clock enable: 0 = hold, 1 = enable BREG.

CEC I 1 Clock enable: 0 = hold, 1 = enable CREG.

CEM I 1 Clock enable: 0 = hold, 1 = enable MREG.

CEP I 1 Clock enable: 0 = hold, 1 = enable PREG.

CECTRL I 1 Clock enable: 0 = hold, 1 = enable OPMODEREG, CARRYINSELREG.

CECINSUB I 1 Clock enable: 0 = hold, 1 = enable SUBTRACTREG and general interconnect
carry input.

CECARRYIN I 1 Clock enable: 0 = hold, 1 = enable (carry input from internal paths).

RSTA I 1 Reset: 0 = no reset, 1 = reset AREG.

RSTB I 1 Reset: 0 = no reset, 1 = reset BREG.

RSTC I 1 Reset: 0 = no reset, 1 = reset CREG.

RSTM I 1 Reset: 0 = no reset, 1 = reset MREG.

RSTP I 1 Reset: 0 = no reset, 1 = reset PREG.

RSTCTRL I 1 Reset: 0 = no reset, 1 = reset SUBTRACTREG, OPMODEREG,
CARRYINSELREG.

RSTCARRYIN I 1 Reset: 0 = no reset, 1 = reset (carry input from general interconnect and
internal paths).

CLK I 1 The DSP48 clock.

BCIN I 18 The multiplier's cascaded B input. This signal can also be used as the adder's
LSW input.

PCIN I 48 Cascaded adder's Z input from the previous DSP slice.

BCOUT O 18 The B cascade output.

PCOUT O 48 The P cascade output.

P O 48 The product output.

http://www.xilinx.com

16 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

DSP48 Slice Attributes
The synthesis attributes for the DSP48 slice are described in detail throughout this section.
With the exception of the B_INPUT and LEGACY_MODE attributes, all other attributes
call out pipeline registers in the control and datapaths. The value of the attribute sets the
number of pipeline registers.

The attribute settings are as follows:

• The AREG and BREG attributes can take a value of 0, 1, or 2. The values define the
number of pipeline registers in the A and B input paths. See the “A, B, C, and P Port
Logic” section for more information.

• The CREG, MREG, and PREG attributes can take a value of 0 or 1. The value defines
the number of pipeline registers at the output of the multiplier (MREG) (shown in
Figure 1-11) and at the output of the adder (PREG) (shown in Figure 1-9). The CREG
attribute is used to select the pipeline register at the C input (shown in Figure 1-8).

• The CARRYINREG, CARRYINSELREG, OPMODEREG, and SUBTRACTREG
attributes take a value of 0 if no pipelining register is on these paths, and they take a
value of 1 if there is one pipeline register in their path. The CARRYINSELREG,
OPMODEREG, and SUBTRACTREG paths are shown in Figure 1-10, and the
CARRYINREG path is shown in Figure 1-12.

• The B_INPUT attribute defines whether the input to the B port is routed from the
parallel input (attribute: DIRECT) or the cascaded input from the previous slice
(attribute: CASCADE).

• The LEGACY_MODE attribute serves two purposes. The first purpose is similar in
nature to the MREG attribute. It defines whether or not the multiplier is flow through
in nature (i.e., LEGACY_MODE value equal to MULT18x18) or contains a single
pipeline register in the middle of the multiplier (i.e., LEGACY_MODE value equal to
MULT18x18S is the same as MREG value equal to one.) While this is redundant to the
MREG attribute, it was deemed useful for customers used to the Virtex-II and
Virtex-II Pro multipliers because the DSP48 setup and hold timing most closely
matches those of the Virtex-II and Virtex-II Pro MULT18x18S when the MREG is used.
Any disagreement between the MREG attribute and LEGACY_MODE attribute
settings are flagged as a software Design Rule Check (DRC) error. The second purpose
for the attribute is to convey to the timing tools whether the A and B port through the
combinatorial multiplier path (slower timing) or faster X multiplexer bypass path for
A:B should be used in the timing calculations. Because the OPMODE can change
dynamically, the timing tools cannot determine this without an attribute.
To summarize the timing tools behavior:

♦ If (attribute: NONE), then timing analysis/simulation bypasses the multiplier for
the highest performance. The lowest power dissipation is achieved by setting
MREG to one while CEM input is grounded.

♦ If (attribute: MULT18x18), then timing analysis/simulation uses the
combinatorial path through the multiplier. In this case, MREG must be set to zero
or a DRC error occurs.

♦ If (attribute: MULT18x18S), then timing analysis/simulation uses a pipelined
multiplier. In this case MREG must be set to one or a DRC error occurs.

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 17
UG073 (v2.7) May 15, 2008

DSP48 Tile and Interconnect
R

VHDL and Verilog Instantiation Templates

The VHDL and Verilog instantiation templates for the DSP48 slice can be found in the
Virtex-4 Libraries Guide for HDL Designs:

http://toolbox.xilinx.com/docsan/xilinx8/books/docs/v4ldl/v4ldl.pdf

DSP48 Tile and Interconnect
Two DSP48 slices, a shared 48-bit C bus, and dedicated interconnect form a DSP48 tile. The
DSP48 tiles stack vertically in a DSP48 column. The height of a DSP48 tile is the same as
four CLBs and also matches the height of one block RAM. This “regularity” enhances the
routing of wide datapaths. Smaller Virtex-4 family members have one DSP48 column,
while the larger Virtex-4 family members have two, four, or eight DSP48 columns.

As shown in Figure 1-2, the multipliers and block RAM share interconnect resources in the
Virtex-II and Virtex-II Pro architectures. Virtex-4 devices, however, have independent
routing for the DSP48 tiles and block RAM, effectively doubling the available data
bandwidth between the elements.
X-Ref Target - Figure 1-2

Figure 1-3 shows two DSP48 slices and their associated datapaths stacked vertically in a
DSP48 column. The inputs to the shaded multiplexers are selected by configuration control
signals. These attributes are set in the HDL source code or by the User Constraint File
(UCF).

Figure 1-2: DSP48 Interconnect and Relative Dedicated Element Sizes

Multiplier Block RAM

Block RAM
DSP48
Slice

DSP48
Slice

Virtex-4 Devices

Virtex-II and Virtex-II Pro Devices

ug073_c1_02_081905

In
te

rc
on

ne
ct

In
te

rc
on

ne
ct

In
te

rc
on

ne
ct

http://www.xilinx.com
http://toolbox.xilinx.com/docsan/xilinx8/books/docs/v4ldl/v4ldl.pdf

18 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

X-Ref Target - Figure 1-3

Notes:
1. The 18-bit A bus and B bus are concatenated, with the A bus being the most significant.
2. The X,Y, and Z multiplexers are 48-bit designs. Selecting any of the 36-bit inputs provides a

48-bit sign-extended output.
3. The multiplier outputs two 36-bit partial products, sign extended to 48 bits. The partial products

feed the X and Y multiplexers. When OPMODE selects the multiplier, both X and Y multiplexers
are utilized and the adder/subtracter combines the partial products into a valid multiplier
result.

4. The multiply-accumulate path for P is through the Z multiplexer. The P feedback through the X
multiplexer enables accumulation of P cascade when the multiplier is not used.

5. The Right Wire Shift by 17 bits path truncates the lower 17 bits, and sign extends the upper 17 bits.
6. The gray-colored multiplexers are programmed at configuration time.
7. The shared C register supports multiply-add, wide addition, or rounding.
8. Enabling SUBTRACT implements Z – (X+Y+CIN) at the output of the adder/subtracter.

Figure 1-3: A DSP48 Tile Consisting of Two DSP48 Slices

Zero

Note 2

A

B

PCINBCIN

P
18

18

18

18

48 48

48

48

36

48

48

48

X

BCOUT PCOUT

Z

72

Note 1

18

18
36

36

48

48

Note 3

Note 4

Notes 4, 5

Wire Shift Right by 17 bits

±

×

Zero

Note 2

C

A

B

PCINBCIN

P
18

18

48

1848

18

48 48

48

48

36

48

48

48

Y

X

BCOUT PCOUT

Z

72

Note 1

18

18
36

36

48

48

Note 3

Note 4

Notes 4, 5

Note 5

Note 5

Wire Shift Right by 17 bits

ug073_c1_03_020405

±

×
Y

SUBTRACT
 Note 8

CIN

SUBTRACT
 Note 8

CIN

Note 7

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 19
UG073 (v2.7) May 15, 2008

Simplified DSP48 Slice Operation
R

Simplified DSP48 Slice Operation
The math portion of the DSP48 slice consists of an 18-bit x 18-bit, two’s complement
multiplier followed by three 48-bit datapath multiplexers (with outputs X, Y, and Z)
followed by a three-input, 48-bit adder/subtracter.

The data and control inputs to the DSP48 slice feed the arithmetic portions directly or are
optionally registered one or two times to assist the construction of different, highly
pipelined, DSP application solutions. The data inputs A and B can be registered once or
twice. The other data inputs and the control inputs can be registered once. Full speed
operation is 500 MHz when using the pipeline registers. More detailed timing information
is available in the Timing Section.

In its most basic form, the output of the adder/subtracter is a function of its inputs. The
inputs are driven by the upstream multiplexers, carry select logic, and multiplier array.
Equation 1-1 summarizes the combination of X, Y, Z, and CIN by the adder/subtracter. The
CIN, X multiplexer output, and Y multiplexer output are always added together. This
combined result can be selectively added to or subtracted from the Z multiplexer output.

Adder Out = (Z ± (X + Y + CIN)) Equation 1-1

Equation 1-2 describes a typical use where A and B are multiplied, and the result is added
to or subtracted from the C register. More detailed operations based on control and data
inputs are described in later sections. Selecting the multiplier function consumes both X
and Y multiplexer outputs to feed the adder. The two 36-bit partial products from the
multiplier are sign extended to 48 bits before being sent to the adder/subtracter.

Adder Out = C ± (A × B + CIN) Equation 1-2

Figure 1-4 shows the DSP48 slice in a very simplified form. The seven OPMODE bits
control the selection of the 48-bit datapaths of the three multiplexers feeding each of the
three inputs to the adder/subtracter. In all cases, the 36-bit input data to the multiplexers is
sign extended, forming 48-bit input datapaths to the adder/subtracter. Based on 36-bit
operands and a 48-bit accumulator output, the number of “guard bits” (i.e., bits available
to guard against overflow) is 12. Therefore, the number of multiply accumulations possible
before overflow occurs is 4096. Combinations of OPMODE, SUBTRACT, CARRYINSEL,
and CIN control the function of the adder/subtracter.

http://www.xilinx.com

20 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

X-Ref Target - Figure 1-4

Timing Model
Table 1-3 lists the XtremeDSP switching characteristics.

Figure 1-4: Simplified DSP48 Slice Model

±

×

A:B
P

Zero

B

PCIN

PY

X

Z

A

C

P

OPMODE
Controls
Behavior

OPMODE, CARRYINSEL, CIN,
and SUBTRACT Control Behavior

UG073_c1_04_070904

Table 1-3: XtremeDSP Switching Characteristics

Symbol Description Function
Control
Signal

Setup and Hold of CE Pins

TDSPCCK_CE/TDSPCKC_CE Setup/Hold of all CE inputs of the DSP48 slice Clock
Enable

CE

TDSPCCK_RST/TDSPCKC_RST Setup/Hold of all RST inputs of the DSP48 slice Reset RST

Setup and Hold Times of Data/Control Pins

TDSPDCK_{AA, BB, CC}/
TDSPCKD_{AA, BB, CC}

Setup/Hold of {A, B, C} input to {A, B, C} register Data In A, B, C

TDSPDCK_{AM, BM}/
TDSPCKD_{AM, BM}

Setup/Hold of {A, B} input to M register Data In A, B

TDSPDCK_{AP, BP}_L/
TDSPCKD_{AP, BP}_L

Setup/Hold of {A, B} input to P register
(LEGACY_MODE = MULT18X18)

Data In A, B

TDSPDCK_{AP_NL, BP_NL, CP}/
TDSPCKD_{AP_NL, BP_NL, CP}

Setup/Hold of {A, B, C} input to P register
(LEGACY_MODE = NONE for A and B)

Data In A, B, C

TDSPDCK_{CRYINC, CRYINSC, OPO, SUBS}/
TDSPCKD_{CRYINC, CRYINSC, OPO, SUBS}

Setup/Hold of {CARRYIN, CARRYINSEL, OPMODE,
SUBTRACT} input to {CARRYIN, CARRYINSEL,
OPMODE, SUBTRACT} register

Control In Various

TDSPDCK_{CRYINP, CRYINSP, OPP, SUBPPCINP}/
TDSPCKD_{CRYINP, CRYINSP, OPP, SUBP, PCINP}

Setup/Hold of {CARRYIN, CARRYINSEL, OPMODE,
SUBTRACT, PCIN} input to P register

Control In Various

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 21
UG073 (v2.7) May 15, 2008

Timing Model
R

The timing diagram in Figure 1-5 uses OPMODE equal to 0x05 with all pipeline registers
turned on. For other applications, the clock latencies and the parameter names must be
adjusted.

Clock to Out

TDSPCKO_PP Clock to out from P register to P output Data Out P Output

TDSPCKO_{PA, PB}_L Clock to out from {A, B} register to P output
(LEGACY_MODE = MULT18X18)

Data Out P Output

TDSPCKO_{PA_NL, PB_NL, PC} Clock to out from {A, B, C} register to P output
(LEGACY_MODE = NONE for A and B)

Data Out P Output

TDSPCKO_{PM, PCRYIN, PCRYINS, POP, PSUB} Clock to out from {M, CARRYIN, CARRYINSEL,
OPMODE, SUBTRACT} register to P output

Data Out P Output

TDSPCKO_PCOUTP Clock to out from P register to PCOUT output Data Out P Output

TDSPCKO_{PCOUTA, PCOUTB}_L Clock to out from {A, B} register to PCOUT output
(LEGACY_MODE = MULT18X18)

Data Out P Output

TDSPCKO_{PCOUTA_NL, PCOUTB_NL, PCOUTC} Clock to out from {A, B, C} register to PCOUT output
(LEGACY_MODE = NONE for A and B)

Data Out P Output

TDSPCKO_{PCOUTM, PCOUTCRYIN,

PCOUTCRYINS, PCOUTOP, PCOUTSUB}

Clock to out from {M, CARRYIN, CARRYINSEL,
OPMODE, SUBTRACT} register to PCOUT output

Data Out P Output

Combinatorial

TDSPDO_{AP, BP}_L {A, B} input to P output
(LEGACY_MODE = MULT18X18)

Data In
to Out

A, B to P

TDSPDO_{AP_NL, BP_NL, CP} {A, B, C} input to P output
(LEGACY_MODE = NONE for A and B)

Data In
to Out

A, B, C to
P

TDSPDO_{CRYINP, CRYINSP, OPMODEP,

SUBTRACTP, PCINP}

{CARRYIN, CARRYINSEL, OPMODE, SUBTRACT,
PCIN} input to P output

Control to
Data Out

Various

TDSPDO_{APCOUT, BPCOUT}_L {A, B} input to PCOUT output
(LEGACY_MODE = MULT18X18)

Data In
to PC Out

A, B to
PC Out

TDSPDO_{APCOUT_NL, BPCOUT_NL, CPCOUT} {A, B, C} input to PCOUT output
(LEGACY_MODE = NONE for A and B)

Data In
to PC Out

A, B, C to
PC Out

TDSPDO_{CRYINPCOUT, CRYINSPCOUT,

OPMODEPCOUT, SUBTRACTPCOUT, PCINPCOUT}

{CARRYIN, CARRYINSEL, OPMODE, SUBTRACT,
PCIN} input to PCOUT output

Control to
PC Out

Various

Sequential

TDSPCKCK_{AP, BP}_L From {A, B} register to P register
(LEGACY_MODE = MULT18X18)

Register
to register

–

TDSPCKCK_{AP_NL, BP_NL, CP, PP} From {A, B, C, P} register to P register
(LEGACY_MODE = NONE for A and B)

Register
to register

–

TDSPCKCK_{CRYINP, CRYINSP, OPMODEP,

SUBTRACTP}

From {CARRYIN, CARRYINSEL, OPMODE,
SUBTRACT} register to P register

Register
to register

–

TDSPCKCK__{AM, BM} From {A, B} register to M register Register
to register

–

Table 1-3: XtremeDSP Switching Characteristics (Continued)

Symbol Description Function
Control
Signal

http://www.xilinx.com

22 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

X-Ref Target - Figure 1-5

The following events occur in Figure 1-5:

1. At time TDSPCCK_CE before CLK event 1, CE becomes valid High to allow all DSP
registers to sample incoming data.

2. At time TDSPDCK_{AA,BB,CC} before CLK event 1, data inputs A, B, C have remained
stable for sampling into the DSP slice.

3. At time TDSPCKO_PP after CLK event 4, the P output switches into the results of the
data captured at CLK event 1. This occurs three clock cycles after CLK event 1.

4. At time TDSPCCK_RST before CLK event 5, the RST signal becomes valid High to allow
a synchronous reset at CLK event 5.

5. At time TDSPCKO_PP after CLK event 5, the output P becomes a logic 0.

Figure 1-5: XtremeDSP Timing Diagram

CLK

CE

RST

A Don't Care

CLK Event 1 CLK Event 4 CLK Event 5

Data A1 Data A2 Data A3 Data A4

Don't Care Data B1 Data B2 Data B3 Data B4

Don't Care Data C1 Data C2 Data C3 Data C4

0

B

C

P

TDSPDCK_CC

TDSPCKO_CC TDSPCKO_CC

UG073_c1_5_082205

TDSPCCK_RST

TDSPCCK_CE

TDSPDCK_AA

TDSPDCK_BB

Result 1Don't Care

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 23
UG073 (v2.7) May 15, 2008

A, B, C, and P Port Logic
R

A, B, C, and P Port Logic
The DSP48 slice input and output data ports support many common DSP and math
algorithms. The DSP48 slice has two direct 18-bit input data ports labeled A and B. Two
DSP48 slices within a DSP48 tile share a direct 48-bit input data port labeled C. Each DSP48
slice has one direct 48-bit output port labeled P, a cascaded input datapath (B cascade), and
a cascaded output datapath (P cascade), providing a cascaded input and output stream
between adjacent DSP48 slices. The B cascade is selected via the B_INPUT attribute. The
cascade is a dedicated resource that is always connected to the adjacent DSP48 and can be
dynamically selected via the Z MUX (OPMODE 6:4).

Applications benefiting from this feature include FIR filters, complex multiplication,
multi-precision multiplication, complex MACs, adder cascade, and adder tree (the final
summation of several multiplier outputs) support.

The 18-bit A and B port can supply input data to the 18-bit x 18-bit, two's complement
multiplier. When concatenated, A and B can bypass the multiplier and feed the X
multiplexer input. The 48-bit C port is used as a general input to the Y and Z multiplexer to
perform multiply, add, subtract, three-input add/subtract functions, or rounding.

Multiplexers controlled by configuration bits select flow-through paths, optional registers,
or cascaded inputs. The data port registers allow users to typically trade off increased clock
frequency (i.e., higher performance) vs. data latency. Also, a configuration controlled
pipeline register between the multiplier and adder/subtracter is known as the M register.
The registers have independent clock enables and resets, described in Table 1-2 and shown
in Figure 1-1.

The configuration bit enables the C register to select between two potentially different
clock domains, shown in Figure 1-8. The selection of the clock multiplexer is not set by user
attributes. If the C register is used, the DSP48 slices packed in the same DSP48 tile must
either be in the same clock domain or meet multicycle clock constraints.

The shared C input within the DSP tile can be used by the two slices within a tile in any one
of the following modes:

1. Neither DSP48 slice uses the C port.
The C inputs in both slices are unconnected or are connected to GND, 0 in the HDL
code. The place and route software maps the two slices in one tile.

2. Both DSP48 slices use the same C port inputs.
The C inputs in both slices are connected to C in the HDL code. The place and route
software maps the two slices in one tile.

3. Only one DSP48 slice is actually using the C port.
There are some very specific rules when only one DSP48 slice uses the C port. The
purpose of these new rules (effective ISE software, v7.1.03i) is to make sure there is
"agreement" among the implementation tools, the simulation tools, and the customers’
desired results.

For the Static Cases below, the MAP software ensures that there are no mismatches
between hardware and software. For the dynamic opmode situation, the Dynamic Cases
listed below, the user is required to modify source code to ensure that there are no
mismatches between hardware and software. If the new rules are not followed for
Dynamic Cases, MAP will issue an INFO message, asking for more information to
determine if the C port is not being used. The message recommends that the following
flags be set to ensure that the desired unused C port is trimmed appropriately so that it can
be merged with another DSP48 slice: C=GND, CREG=0, CEC=1, and RSTC=1

http://www.xilinx.com

24 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

Here are the cases where the C port tied to GND can be trimmed and merged with a
different DSP Slice using the C port.

Static Cases: OPMODE[6:2] are static, or OPMODE[6,4:2] are static with OPMODE[5]
dynamic.

The merge can occur if the OPMODE[6:2] bits do not select the C port on either Z
multiplexer or Y multiplexer (i.e., OPMODE[6:4] does not equal “011” or OPMODE[3:2]
does not equal “11”).

Dynamic Cases: In all other cases where OPMODE[6:2] bits are dynamic or partially
dynamic, the user also needs to set CREG=0, RSTC=1, and CEC=1, in addition to setting C
bus to GND. This set of conditions conveys to the MAP software that the C port is not used,
and it is possible merge this DSP48 slice with another DSP48 slice.

The A, B, C, and P port logics are shown in Figure 1-6, Figure 1-7, Figure 1-8, and
Figure 1-9, respectively.

X-Ref Target - Figure 1-7

X-Ref Target - Figure 1-6

Figure 1-6: A Input Logic

Figure 1-7: B Input Logic

RST

EN

D Q

A

18

18

18

18

18

RST

EN

D Q

RSTA

CEA

A Input to
Multiplier

UG073_c1_06_082205

B Input to
Multiplier

RST

EN

D Q

18

B

18

18

18

18

18

RST

EN

D Q

RSTB

CEB

BCIN

UG073_c1_07_082205

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 25
UG073 (v2.7) May 15, 2008

A, B, C, and P Port Logic
R

X-Ref Target - Figure 1-8

X-Ref Target - Figure 1-9

OPMODE, SUBTRACT, and CARRYINSEL Port Logic
The OPMODE, SUBTRACT, and CARRYINSEL port logic supports flowthrough or
registered input control signals. Similar to the datapaths, multiplexers controlled by
configuration bits select flowthrough or optional registers. The control port registers allow
users to trade off increased clock frequency (i.e., higher performance) vs. data latency.

The registers have independent clock enables and resets, described in Table 1-2 and shown
in Figure 1-1. The OPMODE, SUBTRACT, and CARRYINSEL registers are reset by
RSTCTRL. The SUBTRACT register has a separate enable labeled CECINSUB from
OPMODE and CARRYINSEL. This enable signal is also used to enable the carry input
from the general interconnect described in the “Carry Input Logic” subsection.

Figure 1-8: C Input Logic

Figure 1-9: P Output Logic

RST

EN

D Q

CLK_0
48

48

48

RSTC

CEC

CLK_1

C

To Both DSP48 Slices

UG073_c1_08_082205

RST

EN

D Q
48

48

48

RSTP

CEP

P

DSP48 Slice Output

UG073_c1_09_082205

http://www.xilinx.com

26 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

Figure 1-10 shows the OPMODE, SUBTRACT, and CARRYINSEL port logic.

Two’s Complement Multiplier
The two's complement multiplier inside the DSP48 slice accepts two 18-bit x 18-bit, two's
complement inputs and produces a 36-bit, two's complement result. Cascading of
multipliers to achieve larger products is supported with a 17-bit right-shifted cascaded bus
input to the adder/subtracter to right justify partial products by the correct number of bits.
MACC functions can also right justify intermediate results for multi-precision. The
multiplier can emulate unsigned math by setting the MSB of an 18-bit operand to zero.

The output of the multiplier consists of two 36-bit partial products. The 36-bit partial
products are sign extended to 48 bits prior to being input to the adder/subtracter. Selecting
the output of the multiplier consumes both X and Y multiplexers whereby the
adder/subtracter combines the partial products to form the final result.

Figure 1-11 shows an optional pipeline register (MREG) for the output of the multiplier.
Using the register provides increased performance with a single clock cycle of increased
latency. The gray multiplexer indicates “selected at configuration time by configuration
bits.”

X-Ref Target - Figure 1-10

Figure 1-10: OPMODE, SUBTRACT, and CARRYINSEL Port Logic

To the X, Y, Z Multiplexers and
Carry Input Select Logic

To Adder/Subtracter

CARRYINSEL

RST

EN

D Q

7

SUBTRACT

OPMODE

RST

EN

D Q

2

CECTRL

RSTCTRL

7

2

RST

EN

D Q

CECINSUB

To Carry Input Select Logic

ug073_c1_10_082205

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 27
UG073 (v2.7) May 15, 2008

A, B, C, and P Port Logic
R

X-Ref Target - Figure 1-11

X, Y, and Z Multiplexer
The OPMODE inputs provide a way for the design to change its functionality from clock
cycle to clock cycle (e.g., when altering the initial or final state of the DSP48 relative to the
middle part of a given calculation). The OPMODE bits can be optionally registered under
the control of the configuration memory cells (as denoted by the gray MUX symbol in
Figure 1-10).

Table 1-4, Table 1-5, and Table 1-6 list the possible values of OPMODE and the resulting
function at the outputs of the three multiplexers (X, Y, and Z multiplexers). The
multiplexer outputs supply three operands to the following adder/subtracter. Not all
possible combinations for the multiplexer select bits are allowed. Some are marked in the
tables as “illegal selection” and give undefined results. If the multiplier output is selected,
then both the X and Y multiplexers are consumed, supplying the multiplier output to the
adder/subtracter.

Figure 1-11: Two’s Complement Multiplier Followed by Optional MREG

72

36

36A

B

Partial Product 1

Partial Product 2
Optional
MREG ug073_c1_11_082205

×

Table 1-4: OPMODE Control Bits Select X, Y, and Z Multiplexer Outputs

OPMODE Binary
X Multiplexer Output Fed to Add/Subtract

Z Y X

 XXX XX 00 ZERO (Default)

 XXX 01 01 Multiplier Output (Partial Product 1)

 XXX XX 10 P

 XXX XX 11 A concatenate B

Table 1-5: OPMODE Control Bits Select X, Y, and Z Multiplexer Outputs

OPMODE Binary
Y Multiplexer Output Fed to Add/Subtract

Z Y X

 XXX 00 XX ZERO (Default)

 XXX 01 01 Multiplier Output (Partial Product 2)

 XXX 10 XX Illegal selection

 XXX 11 XX C

http://www.xilinx.com

28 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

There are seven possible non-zero operands for the three-input adder as selected by the
three multiplexers, and the 36-bit operands are sign extended to 48 bits at the multiplexer
outputs:

1. Multiplier output, supplied as two 36-bit partial products

2. Multiplier bypass bus consisting of A concatenated with B

3. C bus, 48 bits, shared by two slices

4. Cascaded P bus, 48 bits, from a neighbor DSP48 slice

5. Registered P bus output, 48 bits, for accumulator functions

6. Cascaded P bus, 48 bits, right shifted by 17 bits from a neighbor DSP48 slice

7. Registered P bus output, 48 bits, right shifted by 17 bits, for accumulator functions

Three-Input Adder/Subtracter
The adder/subtracter output is a function of control and data inputs. OPMODE, as shown
in the previous section, selects the inputs to the X, Y, Z multiplexer directed to the
associated three adder/subtracter inputs. It also describes how selecting the multiplier
output consumes both X and Y multiplexers.

As with the input multiplexers, the OPMODE bits specify a portion of this function.
Table 1-7 shows OPMODE combinations and the resulting functions. The symbol ± in the
table means either add or subtract and is specified by the state of the SUBTRACT control
signal (SUBTRACT = 1 is defined as “subtraction”). The outputs of the X and Y
multiplexer and CIN are always added together. This result is then added to or subtracted
from the output of the Z multiplexer.

Table 1-6: OPMODE Control Bits Select X, Y, and Z Multiplexer Outputs

OPMODE Binary
Z Multiplexer Output Fed to Add/Subtract

Z Y X

 000 XX XX ZERO (Default)

 001 XX XX PCIN

 010 XX XX P

 011 XX XX C

 100 XX XX Illegal selection

 101 XX XX Shift (PCIN)

 110 XX XX Shift (P)

 111 XX XX Illegal selection

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 29
UG073 (v2.7) May 15, 2008

A, B, C, and P Port Logic
R

Table 1-7: OPMODE Control Bits Adder/Subtracter Function

Hex
OPMODE

Binary
OPMODE

XYZ Multiplexer Outputs and Adder/Subtracter Output

[6:0] Z Y X Z Y X Adder/Subtracter Output

0x00 000 00 00 0 0 0 ±CIN

0x02 000 00 10 0 0 P ±(P + CIN)

0x03 000 00 11 0 0 A:B ±(A:B + CIN)

0x05 000 01 01 0 Note 1 ±(A × B + CIN)

0x0c 000 11 00 0 C 0 ±(C + CIN)

0x0e 000 11 10 0 C P ±(C + P + CIN)

0x0f 000 11 11 0 C A:B ±(A:B + C + CIN)

0x10 001 00 00 PCIN 0 0 PCIN ± CIN

0x12 001 00 10 PCIN 0 P PCIN ± (P + CIN)

0x13 001 00 11 PCIN 0 A:B PCIN ± (A:B + CIN)

0x15 001 01 01 PCIN Note 1 PCIN ± (A × B + CIN)

0x1c 001 11 00 PCIN C 0 PCIN ± (C + CIN)

0x1e 001 11 10 PCIN C P PCIN ± (C + P + CIN)

0x1f 001 11 11 PCIN C A:B PCIN ± (A:B + C + CIN)

0x20 010 00 00 P 0 0 P ± CIN

0x22 010 00 10 P 0 P P ± (P + CIN)

0x23 010 00 11 P 0 A:B P ± (A:B + CIN)

0x25 010 01 01 P Note 1 P ± (A × B + CIN)

0x2c 010 11 00 P C 0 P ± (C + CIN)

0x2e 010 11 10 P C P P ± (C + P + CIN)

0x2f 010 11 11 P C A:B P ± (A:B + C + CIN)

0x30 011 00 00 C 0 0 C ± CIN

0x32 011 00 10 C 0 P C ± (P + CIN)

0x33 011 00 11 C 0 A:B C ± (A:B + CIN)

0x35 011 01 01 C Note 1 C ± (A × B + CIN)

0x3c 011 11 00 C C 0 C ± (C + CIN)

0x3e 011 11 10 C C P C ± (C + P + CIN)

0x3f 011 11 11 C C A:B C ± (A:B + C + CIN)

0x50 101 00 00 Shift (PCIN) 0 0 Shift(PCIN) ± CIN

0x52 101 00 10 Shift (PCIN) 0 P Shift(PCIN) ± (P + CIN)

http://www.xilinx.com

30 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

Carry Input Logic
The carry input logic result is a function of the OPMODE control bits and CARRYINSEL.
The inputs to the carry input logic appear in Figure 1-12. Carry inputs used to form results
for adders and subtracters are always in the critical path. High performance is achieved by
implementing this logic in the diffused silicon. The possible carry inputs to the carry logic
are “gathered” prior to the outputs of the X, Y, and Z multiplexers. In a sense, the X, Y, and
Z multiplexer function is duplicated for the carry inputs to the carry logic. Both OPMODE
and CARRYINSEL must be in the correct state to ensure the correct carry input (CIN) is
selected.

0x53 101 00 11 Shift (PCIN) 0 A:B Shift(PCIN) ± (A:B + CIN)

0x55 101 01 01 Shift (PCIN) Note 1 Shift(PCIN) ± (A × B + CIN)

0x5c 101 11 00 Shift (PCIN) C 0 Shift(PCIN) ± (C + CIN)

0x5e 101 11 10 Shift (PCIN) C P Shift(PCIN) ± (C + P + CIN)

0x5f 101 11 11 Shift (PCIN) C A:B Shift(PCIN) ± (A:B + C + CIN)(2)

0x60 110 00 00 Shift (P) 0 0 Shift(P) ± CIN

0x62 110 00 10 Shift (P) 0 P Shift(P) ± (P + CIN)

0x63 110 00 11 Shift (P) 0 A:B Shift(P) ± (A:B + CIN)(2)

0x65 110 01 01 Shift (P) Note 1 Shift(P) ± (A × B + CIN)

0x6c 110 11 00 Shift (P) C 0 Shift(P) ± (C + CIN)

0x6e 110 11 10 Shift (P) C P Shift(P) ± (C + P + CIN)

0x6f 110 11 11 Shift (P) C A:B Shift(P) ± (A:B + C + CIN)

Notes:
1. When the multiplier output is selected, both X and Y multiplexers are used to feed the multiplier partial products to the adder input.
2. The colon symbol in the table represents concatenation.

Table 1-7: OPMODE Control Bits Adder/Subtracter Function (Continued)

Hex
OPMODE

Binary
OPMODE

XYZ Multiplexer Outputs and Adder/Subtracter Output

[6:0] Z Y X Z Y X Adder/Subtracter Output

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 31
UG073 (v2.7) May 15, 2008

A, B, C, and P Port Logic
R

X-Ref Target - Figure 1-12

Figure 1-12 shows four inputs, selected by the 2-bit CARRYINSEL control with the
OPMODE bits providing additional control. The first input CARRYIN (CARRYINSEL is
equal to binary 00) is driven from general logic. This option allows implementation of a
carry function based on user logic. It can be optionally registered to match the pipeline
delay of the MREG when used. This register delay is controlled by configuration. The next
input (CARRYINSEL is equal to binary 01) is the inverted MSB of either the output P or the
cascaded output, PCIN (from an adjacent DSP48 slice). The final selection between P or
PCIN is dictated by OPMODE[4] and OPMODE[6]. The third input (CARRYINSEL is
equal to binary 10) is the inverted MSB of A, for rounding A concatenated with B values,
or A[17] XNOR B[17] for rounding multiplier outputs. Again, the state of OPMODE
determines the final selection. The fourth and final input is merely a registered version of
the third input to adjust the carry input delay when using the multiplier output register
(MREG).

Table 1-8 lists the possible values of the two carry input select bits (CARRYINSEL), the
operation mode bus (OPMODE), and the resulting carry inputs or sources.

Figure 1-12: Carry Input Logic Feeding the Adder/Subtracter

RST

D Q

RSTCARRYIN

Carry Input (CIN) to
Adder/Subtracter

EN

Carry Input from General Fabric
(To Cause Counter Increment, etc.)

CECINSUB

~P[47]

~PCIN[47]

Round a Previous
P Result

OPMODE

Round a Previous
PCIN Result

RST

EN

D Q

~A[17]

A[17] XNOR B[17]

OPMODE

Round an External
Value Input via A:B

Round the Output
of the Multiplier

CECARRYIN

RSTCARRYIN

00

01

10

11

CARRYINSEL

2

Similar Function as X, Y, Z Data MUX

UG073_c1_12_082205

CARRYIN

http://www.xilinx.com

32 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

Symmetric Rounding Supported by Carry Logic
Arithmetic rounding is a process where a result is quantized in an “intelligent” manner.
The bit position placement where rounding occurs is up to the designer and is determined
solely by a constant loaded in the C register. While the binary point placement and bit
position where rounding occurs are independent of each other, the following information
assumes that the designer’s goal is to round off the fractional bits.

One form of rounding is simple truncation or dropping undesired LSBs from a large result
to obtain a reduced number of result bits. The problem with truncation happens after the
bits are dropped and the new reduced result is biased in the wrong direction. For example,
if a number has the decimal value 2.8 and the fractional part of the number is truncated,
then the result is two. In this example, the original number is closer to 3 than to 2, and a
rounded result of 3 is more desirable than the simple truncated result of 2.

Another method of quantization is known as symmetric rounding, accomplishing the
more desirable effect of quantizing numbers to keep them from becoming biased in the
wrong direction. For example, the number 2.8 rounds to 3.0 and the number 2.2 rounds to
2.0. Negative numbers, such as –2.8 and –2.2, round to –3.0 and –2.0 respectively. The
midpoint number 2.5 rounds to 3.0 and –2.5 rounds to –3.

Another way to describe this type of quantization (for fractional rounding) is to round to
the nearest integer and at the midpoint round away from zero. For positive numbers, this
effect is achieved by adding 0.1000… binary and truncating the fraction of the result. For
negative numbers, this effect is achieved by adding 0.0111… and truncating the fraction
of the result.

The implementation of the symmetric rounding in the DSP48 slice allows the user to load
a single constant. If the design calls for eight bits (out of 48 total bits) to be rounded, then
load 0x00000000007F into the C register. The number of bits to be rounded off is one
more than the number of ones present in the C register. Table 1-9 has examples for
rounding off the fractional bits from a value (binary point placement and rounded bits
placement coincide).

Table 1-8: OPMODE and CARRYINSEL Control Carry Source

CARRYINSEL[1:0] OPMODE Carry Source Comments

00 XXX XX XX CARRYIN General fabric carry source (registered or
not)

01 Z MUX output = P or Shift(P) ~P[47] Rounding P or Shift(P)

01 Z MUX output = PCIN or
Shift(PCIN)

~PCIN[47] Rounding the cascaded PCIN or
Shift(PCIN) from adjacent slice

10 X and Y MUX output =
multiplier partial products

A[17] xnor B[17] Rounding multiplier
(MREG pipeline register disabled)

11 X and Y MUX output =
multiplier partial products

A[17] xnor B[17] Rounding multiplier
(MREG pipeline register enabled)

10 X MUX output = A:B ~A[17] Rounding A:B (not pipelined)

11 X MUX output = A:B ~A[17] Rounding A:B (pipelined)

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 33
UG073 (v2.7) May 15, 2008

Forming Larger Multipliers
R

Forming Larger Multipliers
Figure 1-13 illustrates the formation of a 35 x 35-bit multiplication from smaller 18 x 18-bit
multipliers. The notation “0,B[16:0]” denotes B has a leading zero followed by 17 bits,
forming a positive two's complement number.

When separating two's complement numbers into two parts, only the most-significant part
carries the original sign. The least-significant part must have a forced zero in the sign
position meaning they are positive operands. While it seems logical to separate a positive
number into the sum of two positive numbers, it can be counter intuitive to separate a
negative number into a negative most-significant part and a positive least-significant part.
However, after separation, the most-significant part becomes “more negative” by the
amount the least-significant part becomes “more positive.” The 36-bit input operands
include a forced zero sign bit in the least-significant part. So the valid number of bits in the
input operands is only 35-bits.

Table 1-9: Symmetric Rounding Examples

Multiplier
Output

(Decimal)

Multiplier
Output
(Binary)

C Value
Internally

Generated CIN
Multiplier Plus C

Plus CIN

After
Truncation

(Binary)

After
Truncation
(Decimal)

 2.4375 0010.0111 0000.0111 1 0010.1111 0010 2

 2.5 0010.1000 0000.0111 1 0011.0000 0011 3

 2.5625 0010.1001 0000.0111 1 0011.0001 0011 3

 –2.4375 1101.1001 0000.0111 0 1110.0000 1110 -2

–2.5 1101.1000 0000.0111 0 1101.1111 1101 -3

–2.5625 1101.0111 0000.0111 0 1101.1110 1101 -3

X-Ref Target - Figure 1-13

Figure 1-13: 35x35-Bit Multiplication from 18x18-Bit Multipliers

 AU = A[34:17]

Sign Extend 36 Bits of '0'

17-Bit Offset

34-Bit Offset

P[16:0]

ug073_c1_13_092407

x BU = B[34:17]

 AL = 0,A[16:0]

 BL = 0,B[16:0]

BL * AL = 34 bits
[33:17] [16:0]

 BL * AU = 35 bits

 BU * AL = 35 bits Sign Extend 18 Bits

Sign Extend 18 Bits

 BU * AU = 36 bits

P[33:17] P[51:34] P[69:52]

[35:18] [17:0]

[34:17] [16:0]

[34:17] [16:0]

http://www.xilinx.com

34 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

The DSP48 slices with 18 x 18 multipliers and post adder can now be used to implement
the sum of the four partial products shown in Figure 1-13. The lessor significant partial
products must be right-shifted by 17 bit positions before being summed with the next
most-significant partial products. This is accomplished with a built in wire shift applied to
PCIN supplied as one selectable Z multiplexer input. The entire process of multiplication,
shifting, and addition using adder cascade to form the 70-bit result can remain in the
dedicated silicon of the DSP48 slice, resulting in maximum performance with minimal
power consumption.

FIR Filters

Basic FIR Filters
FIR filters are used extensively in video broadcasting and wireless communications. DSP
filter applications include, but are not limited to, the following:

• Wireless Communications

• Image Processing

• Video Filtering

• Multimedia Applications

• Portable Electrocardiogram (ECG) Displays

• Global Positioning Systems (GPS)

Equation 1-3 shows the basic equation for a single-channel FIR filter.

Equation 1-3

The terms in the equation can be described as input samples, output samples, and
coefficients. Imagine x as a continuous stream of input samples and y as a resulting stream
(i.e., a filtered stream) of output samples. The n and k in the equation correspond to a
particular instant in time, so to compute the output sample y(n) at time n, a group of input
samples at N different points in time, or x(n), x(n-1), x(n-2), … x(n-N+1) is required. The
group of N input samples are multiplied by N coefficients and summed together to form
the final result y.

The main components used to implement a digital filter algorithm include adders,
multipliers, storage, and delay elements. The DSP48 slice includes all of the above
elements, making it ideal to implement digital filter functions. All of the input samples
from the set of n samples are present at the input of each DSP48 slice. Each slice multiplies
the samples with the corresponding coefficients within the DSP48 slice. The outputs of the
multipliers are combined in the cascaded adders.

In Figure 1-14, the sample delay logic is denoted by Z-1, where the –1 represents a single
clock delay. The delayed input samples are supplied to one input of the multiplier. The
coefficients (denoted by h0 to h(N-1)) are supplied to the other input of the multiplier
through individual ROMs, RAMs, registers, or constants. Y(n) is merely the summation of
a set of input samples, and in time, multiplied by their respective coefficients.

y n() h k()x n k–()

k 0=

k N 1–=

∑=

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 35
UG073 (v2.7) May 15, 2008

FIR Filters
R

X-Ref Target - Figure 1-14

Multichannel FIR Filters
Multichannel filters are used to filter multiple data streams of input signals. The channels
can either use the same set of coefficients or different coefficients.

A common example of a multichannel filter is a radio receiver’s digital down converter.
Equation 1-4 shows the equation, and Figure 1-15 shows the block diagram. A digitized
baseband signal is applied to a matched low-pass filter M(z) to reduce the data rate from
the input sample rate to the bit rate. The resulting in-phase and quadrature components
are each processed by the same filter and, therefore, could be processed by a single,
multichannel filter running at twice the sample rate.

x(n) = xI(n) + jxQ(n) Equation 1-4

X-Ref Target - Figure 1-15

Some video applications use multi-channel implementations for multiple components of a
video stream. Typical video components are red, green, and blue (RGB) or luma, chroma
red, and chroma blue (YCrCb). The different video components can have the same
coefficient sets or different coefficient sets for each channel by simply changing the
coefficient ROM structure.

Creating FIR Filters
Referring to Figure 1-4, Table 1-4, Table 1-5, and Table 1-6, an inner product MACC
operation starts by loading the first operand into the P register. The output of the
multiplier is passed through the X and Y multiplexer, added to zero, and loaded into the P

Figure 1-14: Conventional Tapped Delay Line FIR Filter

UG073_c1_14_082205

Z-1 Z-1 Z-1
Z-1 Z-1x(n)

y(n)

h(0) h(1) h(2) h(3) h(4) h(N-1) ××××××

+ + + + +

Figure 1-15: Software-Defined Radio Digital Down Converter

UG073_c1_15_082205

v(n)

xl(n)

xQ(n)

I

QM(z)

M(z)

Direct Digital Synthesizer
(DDS)

×

×

http://www.xilinx.com

36 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

register. Note the load operation OPMODE with value 0000101 selects zero to be output
on the Z multiplexer supplying one of the adder inputs. A previous MACC inner product
can exit via the P bus during this clock cycle.

In subsequent clock cycles, the MACC operation requires the X and Y multiplexers to
supply the multiplier output and the Z multiplexer to supply the output of the P register to
the adder. The OPMODE for this operation is 0100101.

Refer to Chapter 3, “MACC FIR Filters,” for detailed information on using DSP48 slices to
create MACC FIR filters.

To create a simple multiply-add processing element using the DSP48 slice shown in
Figure 1-4, the X and Y multiplexers are set to multiply and the cascaded input from
another DSP48 output (PCIN) is selected as the Z MUX input to the arithmetic unit. For a
normal multiply-add operation, the OPMODE value is set to 0010101.

Refer to Chapter 4, “Parallel FIR Filters,” for detailed information on using DSP48 slices to
create Parallel FIR filters.

Adder Cascade vs. Adder Tree
In typical direct form FIR filters, an input stream of samples is presented to one data input
of separate multipliers where coefficients supply the other input to the multipliers. An
adder tree follows the multipliers where the outputs from many multipliers are combined
(see Figure 1-16).

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 37
UG073 (v2.7) May 15, 2008

Adder Cascade vs. Adder Tree
R

X-Ref Target - Figure 1-16

One difficulty of the adder tree concept is defining the size. Filters come in various lengths
and consume a variable number of adders, forming an adder tree. Placing a fixed number
of adder tree components in silicon displaces other elements or requires a larger FPGA,
thereby increasing the cost of the design. In addition, the adder tree structure with a fixed
number of additions forces the designer to use logic resources when the fixed number of
additions is exceeded. Using logic resources dramatically reduces performance and
increases power consumption. The key to maximizing performance and lowering power
for DSP math is to remain inside the DSP48 column consisting entirely of dedicated silicon.

The Virtex-4 solution accomplishes the post-addition process while guaranteeing no
wasted silicon resources. It involves computing the additive result incrementally utilizing

Figure 1-16: FIR Filter Adder Tree Using DSP48 Slices

48

48

y(n-6)

18

18
48

48

×

+

+18

18

18

18

18

18

h0(n)

X(n)

h1(n)

48

48

18

18
48

48

×

+×18

18

×

18

18

18

18

h2(n)

X(n)

h3(n)

h4(n)

X(n-2)

X(n-4)

h5(n)

h6(n)

h7(n)

+

+

Z-2

Z-2

Z-2

×

×

×

× +

The final stages of the post
addition in logic are the
performance bottleneck that
consume more power.

ug073_c1_16_082205

+

http://www.xilinx.com

38 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

a cascaded approach, illustrated in Figure 1-17. The cascaded approach in Figure 1-17 is a
systolic version of a direct form FIR with a latency of 10 clocks, versus an adder tree latency
of 6 clocks.

To ensure correct operation, the input sample delay and the coefficients must be balanced
with the cascaded adder. The adaptive coefficients are staggered in time (wave
coefficients).

X-Ref Target - Figure 1-17

Figure 1-17: Systolic FIR with Adder Cascade

Slice 7

No Wire Shift

Slice 8

Slice 6

Slice 5

48

48

48

18

18
48

48

48

48

×

× +

×

18

18

18

18

×18

18

48
Y(n–10)

h0(n)

X(n)

h1(n-1)

Slice 3

No Wire Shift

Slice 4

Slice 2

Slice 1

Zero

48

48

48

18

18
48

48

48

48

×

×

×

18

18

18

18

×18

18

h2(n-2)

h3(n-3)

h4(n-4)

h5(n-5)

h6(n-6)

h7(n-7)

No Wire Shift

No Wire Shift

No Wire Shift

No Wire Shift

48

No Wire Shift

The post adders are
contained wholly in
dedicated silicon for
highest performance
and lowest power.

+

+

+

+

+

+

+

Sign Extended from 36 Bits to 48 Bits ug073_c1_17_082205

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 39
UG073 (v2.7) May 15, 2008

DSP48 Slice Functional Use Models
R

DSP48 Slice Functional Use Models
The use models in this section explain how the DSP48 slices are used in various DSP
applications. Starting with simple multiplication and then growing in complexity, DSP48
slices can be connected in a variety of ways, trading performance and slice utilization. The
tables and use models illustrate a sampling of different connections.

In some designs, full performance is desired, and several slices with pipelined registers are
used. In designs with lower sample rates, a single slice is used with multiple clock cycles
creating partial results to be combined at the very end of the computation. Performance
choices (i.e., using multiple clock cycles) can produce efficient slice counts. In either case,
the use of pipeline registers allows the DSP48 slice to run at a very fast, full performance
clock rate.

Block diagrams showing the basic connections are also included. The “VHDL and Verilog
Instantiation Templates” section shows how to instantiate and connect the DSP48 slice. In
many cases, starting or ending states are different than the middle states of operation.

Single Slice, Multi-Cycle, Functional Use Models
Table 1-10 lists and summarizes four single slice use models. These examples use the high
speed of the DSP48 slice to accomplish a complicated multi-cycle function by changing the
OPMODE bits from cycle to cycle. Table entries name the function with suggestions for
DSP48 slice function during different clock cycles. Further details are in the following
subsections. DSP48 designs support extra pipeline stages to increase overall performance,
however, the function remains the same with increased clock-cycle latency.

Table 1-10: Single Slice DSP48 Implementation

Single Slice
Mode

Slice
Number

Cycle
Inputs

Function and OPMODE[6:0] Output
A B C

35 x 18
Multiply

1 1 0,A[16:0] B[17:0] X Multiply 0x05 P[16:0]

2 A[34:17] B[17:0] X 17-Bit Shift Feedback
Multiply Add

0x65 P[52:17]

35 x 35
Multiply

1 1 0,A[16:0] 0,B[16:0] X Multiply 0x05 P[16:0]

2 A[34:17] 0,B[16:0] X 17-Bit Shift Feedback
Multiply Add

0x65

3 0,A[16:0] B[34:17] X Multiply-Accumulate 0x25 P[33:17]

4 A[34:17] B[34:17] X 17-Bit Shift Feedback
Multiply Add

0x65 P[69:34]

Complex
Multiply

1 1 ARe[17:0] BRe[17:0] X Multiply 0x05

2 AIm[17:0] BIm[17:0] X Multiply-Accumulate 0x25 P (Real)

3 ARe[17:0] BIm[17:0] X Multiply 0x05

4 AIm[17:0] BRe[17:0] X Multiply-Accumulate 0x25 P (Imaginary)

http://www.xilinx.com

40 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

Single Slice, 35 x 18 Multiplier Use Model

The first entry in Table 1-10 indicates how the signed 35 x 18 multiply is designed using a
single DSP48 slice. The 35-bit A and 18-bit B operands are assumed to be signed, two's
complement numbers with results also expressed as a signed, two's complement, 53-bit
output. Operand A can only be 35 bits because when separating an operand into two 18-bit
parts, the least-significant part must have the MSB forced to zero, thereby reducing the
available operand bits from 36 to 35.

The multiply function uses one slice (labeled slice 0 in Table 1-10) and computes the final
result in two clocks. The 36-bit, least-significant partial product output formed during the
first clock cycle is computed by multiplying the least-significant 17 bits of Operand A,
which are forced positive (sign bit = 0), with the 18 bits of Operand B (including the
original sign).

0,A[16:0] x B[17:0]

The first product is loaded into the output register on this cycle. The lower 17 bits of the
first partial product are the lower 17 bits of the final result. During the second clock cycle,
the first partial product is shifted right by 17 bits, leaving the remaining bits to be fed back
and added to the next partial product. This partial product is formed by multiplying the
signed 18-bit Operand B with the signed upper 18 bits of Operand A. The lower 36 bits of
the second partial product are the upper 36 bits of the final result.

A[34:17] x B[17:0]

Figure 1-18 shows the function during both clock cycles for a single DSP48 slice used as a
35-bit x 18-bit, signed, two's complement multiplier. Increased performance is obtained by
using the pipeline registers before and after the multiplier, however, the clock latency is
increased.
X-Ref Target - Figure 1-18

Single Slice, 35 x 35 Multiplier Use Model

The next entry in Table 1-10 indicates how the signed 35 x 35 multiply is designed using a
single DSP48 slice. The 35-bit A and B operands are assumed to be signed two's
complement numbers with results expressed as a signed two's complement, 70-bit output.
Operands can only be 35 bits because when separating an operand into two 18-bit parts,
the least-significant 18-bit part must have the MSB forced to zero, thereby reducing the

Figure 1-18: Single Slice, 35 x 18-bit Multiplier

0,A[16:0]

PREG = 0,A[16:0] × B[17:0]

B[17:0]

Sign Extended from 36 Bits to 48 Bits

A[34:17]

B[17:0]

A[34:17] × B[17:0]

Right “Wire Shift” by 17 Bits

Clock Cycle 2 P = Right Shifted PREG + (A[34:0] × B[17:0])

P[52:17]

P[16:0]

Zero

48
18

18

48
18

18
48

Clock Cycle 1

48

48

0,A[16:0] × B[17:0]

ug073_c1_18_082205

48

×

×

+

+

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 41
UG073 (v2.7) May 15, 2008

DSP48 Slice Functional Use Models
R

available operand bits from 36 to 35. The flow is similar to the 35 x 18 multiply, but instead
of two partial products, there are four: a lower partial product, two middle partial
products, and an upper partial product.

The multiply function uses one slice (labeled slice 1 in Table 1-10) and computes the final
result in four clocks. The 36-bit lower partial product formed during the first clock cycle is
computed by multiplying the least-significant 17 bits of Operand A, which are forced
positive (sign bit = 0), with the least-significant 17 bits of Operand B, also forced positive.

0,A[16:0] x 0,B[16:0]

The first product is loaded into the output register on this cycle. All 36-bit products from
the multiplier are sign extended to 48 bits. During the second and third clock cycles, the
two middle products are computed. In clock cycle two, the first or lower partial product in
the P register is shifted right by 17 bits and fed back to the adder/subtracter. The output of
the multiplier is the first middle product, expressed as:

A[34:17] x 0,B[16:0]

The adder/subtracter is set to add and the two partial products are added.

In the third clock cycle, the previous result is fed back to the adder/subtracter; however, it
is not right shifted because its bits align with the next computed middle product,
expressed as:

B[34:17] x 0,A[16:0]

The adder/subtracter is again set to add, and the P register receives the sum of the three
partial products.

Finally, in the fourth clock cycle, the accumulated sum of partial products is again shifted
right by 17 bits and sign extended, leaving the remaining bits to be fed back and added to
the next partial product. The upper partial product is formed by multiplying the signed
upper 18 bits of B with the signed upper 18 bits of A.

A[34:17] x B[34:17]

The 70-bit result is output sequentially in 17-bit, 17-bit, and 36-bit segments as shown in
Figure 1-19.

Figure 1-19 shows the function during all four clock cycles for a single DSP48 slice used as
a 35-bit x 35-bit, signed, two's complement multiplier. Increased performance can be
obtained by using the pipeline registers before and after the multiplier; however, the clock
latency is increased.

http://www.xilinx.com

42 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

X-Ref Target - Figure 1-19

Figure 1-19: Single Slice, 35 x 35-bit Multiplier

0,A[16:0]

PREG = 0,A[16:0] x 0,B[16:0]

0,B[16:0]

A[34:17]

0,B[16:0]

A[34:17] x 0,B[16:0] PREG = Right Shifted PREG + (A[34:17] x 0,B[16:0])

Sign Extended from 36 Bits to 48 Bits

0,A[16:0]

B[34:17]

0,A[16:0] x B[34:17]

A[34:17]

B[34:17]

A[34:17] x B[34:17]

Right “Wire Shift” by 17 Bits

Clock Cycle 4

PREG = PREG + (0,A[16:0] x B[34:17])

P = Right Shifted PREG + (A[34:0] x B[34:17])

P[69:34]

P[33:17]

P[16:0]

Zero

48

18

18

48

18

18
48

48

48

48

18

18
48

48

18

18 48

Clock Cycle 3

Clock Cycle 2

Clock Cycle 1

48

0,A[16:0] x 0,B[16:0]

ug073_c1_19_090105

× +

× +

× +

× +

Right “Wire Shift” by 17 Bits

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 43
UG073 (v2.7) May 15, 2008

DSP48 Slice Functional Use Models
R

Fully Pipelined Functional Use Models
Table 1-11 summarizes six fully pipelined functional use models. The table lists the
functions implemented along with the OPMODE settings. More details are provided in the
following subsections. The designs are fully pipelined and run at the maximum DSP48
slice clock rate.

Table 1-11: Fully Pipelined DSP48 Implementations

Multiple Slice
Mode

Slice
Inputs

Function and OPMODE[6:0] Output
A B C

35 x 18
Multiply

Figure 1-20

1 0,A[16:0] B[17:0] X Multiply 0x05 P[16:0]

2 A[34:17] B[17:0] X 17-Bit Shifted Feedback
Multiply Add

0x65 P[52:17]

35 x 35
Multiply

Figure 1-21

1 0,A[16:0] 0,B[16:0] X Multiply 0x05 P[16:0]

2 A[34:17] 0,B[16:0] X 17-Bit Shifted Feedback
Multiply Add

0x65

3 0,A[16:0] B[34:17] X Multiply Accumulate 0x25 P[33:17]

4 A[34:17] B[34:17] X 17-Bit Shifted Feedback
Multiply Add

0x65 P[69:34]

18 x 18
Complex
Multiply

Figure 1-22

1 ARe[17:0] BRe[17:0] X Multiply 0x05

2 AIm[17:0] BIm[17:0] X Multiply Accumulate 0x25 P (Real)

3 ARe[17:0] BIm[17:0] X Multiply 0x05

4 AIm[17:0] BRe[17:0] X Multiply Accumulate 0x25 P (Imaginary)

18 x 18
Complex
MACC

Figure 1-23

1 ARe[17:0] BRe[17:0] X Multiply 0x05

2 AIm[17:0] BIm[17:0] X Multiply Accumulate 0x25 P (Real)

3 ARe[17:0] BIm[17:0] X Multiply 0x05

4 AIm[17:0] BRe[17:0] X Multiply Accumulate 0x25 P (Imaginary)

35 x 18
Complex
Multiply
Real Part

Figure 1-26

1 ARe[17:0] BRe[17:0] X Multiply 0x05

2 AIm[17:0] BIm[17:0] X Multiply Accumulate 0x25 P (Real)

3 ARe[17:0] BIm[17:0] X Multiply 0x05

4 AIm[17:0] BRe[17:0] X Multiply Accumulate 0x25 P (Imaginary)

35 x 18
Complex
Multiply

Imaginary
Part

Figure 1-27

1 ARe[17:0] BRe[17:0] X Multiply 0x05

2 AIm[17:0] BIm[17:0] X Multiply Accumulate 0x25 P (Real)

3 ARe[17:0] BIm[17:0] X Multiply 0x05

4 AIm[17:0] BRe[17:0] X Multiply Accumulate 0x25 P (Imaginary)

http://www.xilinx.com

44 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

Table 1-12 summarizes utilization of more complex digital filters possible using the DSP48.
The small n in the Silicon Utilization column indicates the number of DSP48 filter taps. The
construction and operation of complex filters is discussed in Chapter 3, “MACC FIR
Filters,” Chapter 4, “Parallel FIR Filters,” and Chapter 5, “Semi-Parallel FIR Filters.”

Fully Pipelined, 35 x 18 Multiplier Use Model

The previous use models (see “Single Slice, Multi-Cycle, Functional Use Models,” page 39)
show how performance and power consumption can be traded for a very small
implementation (i.e., single slice). However, many DSP solutions require very high sample
rates. When sample rates approach the maximum inherent clock rate for the math elements
in the FPGA, it becomes necessary to design using parallel, fully pipelined math elements.

With fully pipelined designs, inputs can be presented and an output computed every
single clock cycle. In addition, the DSP48 slice circuits and interconnect are very carefully
matched, ensuring no path becomes the timing bottleneck. Keeping math implementations
mostly inside the DSP48 maximizes performance and minimizes power consumption. Of
course, pipelining does have increased clock latency, but this is usually not a problem in
DPS algorithms.

In the single slice versions of this algorithm, partial products are computed sequentially
and summed in the adder. For the fully pipelined version of the algorithm, the same partial
products are computed in parallel and summed in the last slice, producing a result and
consuming new input operands every clock cycle.

The single slice version of the 35 x 18 multiply uses two clock cycles. In each clock cycle the
slice is presented with different operands, and switching the OPMODE bits modifies the
behavior. The fully pipelined versions connect separate slices with fixed behavior.

In the 35 x 18-bit multiply block diagram (Figure 1-20), the most-significant input data part
for the 35-bit A is delayed with an extra input register in the second slice. This allows the
cascading B input to be available to the second slice multiply at the same time as the most-
significant data part for A. An extra pipeline register is used for the B cascade path, and the
most significant bits of the A inputs in the second slice. These registers are used to match
the output of the second slice with the partial product result of the first slice.

Table 1-12: Composite Digital Filters

Digital Filter Silicon Utilization OPMODE

Multichannel FIR n DSP slices, n RAM Static

Direct Form FIR n DSP slices Static

Transposed Form FIR n DSP slices Static

Systolic Form FIR n DSP slices Static

Polyphase Interpolator n DSP slices, n RAM Static

Polyphase Decimator n DSP slices, n RAM Dynamic

CIC Decimation/Interpolation Filters 1 DSP slice per stage Static

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 45
UG073 (v2.7) May 15, 2008

DSP48 Slice Functional Use Models
R

X-Ref Target - Figure 1-20

Fully Pipelined, 35 x 35 Multiplier Use Model

Similar to the 35 x 18-bit example, this fully pipelined design can present inputs every
clock cycle. An output is also computed every single clock cycle. Once again, no particular
path becomes the timing bottleneck. The single slice version of the 35 x 35-bit multiply
uses four clock cycles. In each clock cycle, the slice is presented with different operands
and switching the OPMODE bits modifies the behavior. The fully pipelined version
connects separate slices with fixed behavior.

In the single slice versions of this algorithm, partial products are computed sequentially
and summed in the adder. For the fully pipelined version of the algorithm, the same partial
products are computed in parallel and summed in the last slice, producing a result and
consuming new input operands every clock cycle.

As in the 35 x 18-bit example, there are additional register stages placed in the input paths
to delay input data until the needed cascading results arrive. In Figure 1-21, the block
diagram for the fully pipelined, 35 x 35 multiply shows where additional input register
stages are placed. The 35 x 35-bit multiplier has additional output registers outside of the
slice to align the output data. The notation Z-3 is in the external register to signify that the
data must be delayed by three clock cycles. If the delay is only one cycle, then registers are
typically used. When the delay is larger than one, an SRL16 followed by the associated
CLB flip-flop achieves maximum design performance.

Figure 1-20: Fully Pipelined, 35 x 18 Multiplier

PREG1[16:0] = 0,A[16:0] × B[17:0]

PREG2 = right shifted PREG1+ (A[34:17] × B[17:0])

0,A[16:0]

B[17:0]

A[34:17]

A[34:17] × B[17:0]

Right “Wire Shift” by 17 Bits

Sign Extended from 36 Bits to 48 Bits

0,A[16:0] × B[17:0]

Slice 2

Slice 1

Zero

48

48

48

18

18

18

18

48

48
P[16:0]

P[52:17]

UG073_c1_20_082205

× +

× +

http://www.xilinx.com

46 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

X-Ref Target - Figure 1-21

Fully Pipelined, Complex, 18 x 18 Multiplier Use Model

Complex multiplication used in many DSP applications combines operands having both
real and imaginary parts into results with real and imaginary parts. Two operands A and B,
each having real and imaginary parts, are combined as shown in the following equations:

(A_real × B_real) – (A_imaginary × B_imaginary) = P_real

(A_real × B_imaginary) + (A_imaginary × B_real) = P_imaginary

The real and imaginary results use the same slice configuration with the exception of the
adder/subtracter. The adder/subtracter performs subtraction for the real result and
addition for the imaginary result.

Figure 1-22 shows several DSP48 slices used as a complex, 18-bit x 18-bit multiplier.

Figure 1-21: Fully Pipelined, 35 x 35 Multiplier

0,A[16:0]

PREG1 = 0,A[16:0] × 0,B[16:0]
0,B[16:0]

A[34:17]

A[34:17] × 0,B[16:0]

PREG2 = Right Shifted PREG1 + (A[34:17] × 0,B[16:0])

0,A[16:0]

B[34:17]

0,A[16:0] × B[34:17]

A[34:17]

A[34:17] × B[34:17]

PREG3 = PREG2 + (0,A[16:0] × B[34:17])

PREG4 = Right Shifted PREG3 + (A[34:0] × B[34:17])

Sign Extended from 36 Bits to 48 Bits

0,A[16:0] × 0,B[16:0]

Right “Wire Shift” by 17 Bits

Right “Wire Shift” by 17 Bits

Slice 3

Slice 4

Slice 2

Slice 1

Zero

48

48

48

18

18
48

48

48

48

18

18

18

18

18

18

Z-3

Z-3

48

48

48

48

P[69:34]

P[33:17]

P[16:0]

ug073_c1_21_082205

× +

× +

× +

× +

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 47
UG073 (v2.7) May 15, 2008

DSP48 Slice Functional Use Models
R

X-Ref Target - Figure 1-22

Note: The real and the imaginary computations are functionally similar using different input data.
The real output subtracts the multiplied terms, and the imaginary output adds the multiplied terms.

Figure 1-22: Pipelined, Complex, 18 x 18 Multiply

The two input registers to the left align operands with
the first output register below and avoid fabric.
The benefit is increased performance and lower power.

A_imag

A_real

B_real

B_imag

A_imag

A_real

B_real

B_imag

Slice 3

Slice 4

Slice 2

Slice 1

Sign Extended from 36 Bits to 48 Bits

Zero

48

48

48

18

18
48

48

48

18

18

18

18

18

18

48

48
P_real

P_imag

UG073_c1_22_082205

× +

× +

× +

× _

http://www.xilinx.com

48 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

Fully Pipelined, Complex, 18 x 18 MACC Use Model

The differences between complex multiply and complex MACC implementations using
several DSP48 slices is illustrated in the next set of equations. As shown, the addition and
subtraction of the terms only occur after the desired number of MACC operations.

For N Cycles:

Slice 1 = (A_real × B_imaginary) accumulation
Slice 2 = (A_imaginary × B_real) accumulation
Slice 3 = (A_real × B_real) accumulation
Slice 4 = (A_imaginary × B_imaginary) accumulation

Last Cycle:

Slice 1 + Slice 2 = P_imaginary
Slice 3 – Slice 4 = P_real

During the last cycle, the input data must stall while the final terms are added. To avoid
having to stall the data, instead of using the complex multiply implementation shown in
Figure 1-23 and Figure 1-24, use the complex multiply implementation shown in
Figure 1-25.
X-Ref Target - Figure 1-23

Figure 1-23: Fully Pipelined, Complex, 18 x 18 MACC (N Cycles)

48

48

18

18
48

48
18

18

18

18

18

18

48

48

48

48

A_imag

P_real

A_real

B_real

B_imag

A_imag

P_imag

A_real

B_real

B_imag

Slice 3

Slice 4

Slice 2

Slice 1

Sign Extended from 36 Bits to 48 Bits ug073_c1_23_082205

× +

× +

× +

× +

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 49
UG073 (v2.7) May 15, 2008

DSP48 Slice Functional Use Models
R

In Figure 1-24, the N+1 cycle adds the accumulated products, and the input data stalls one
cycle.
X-Ref Target - Figure 1-24

Figure 1-24: Fully Pipelined, Complex, 18 x 18 MACC (Last or N+1 Cycle)

A_real

B_real

A_real

B_imag

Slice 3

Slice 4

Slice 2

Slice 1

Sign Extended from 36 Bits to 48 Bits

Zero

48

48

48

48

48

18

18

18

18

48

48

48

Zero

P_imag

P_real

ug073_c1_24_082205

+

+

+

+

×

×

http://www.xilinx.com

50 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

An additional slice used for the accumulation is shown in Figure 1-25. The extra slice
prevents the input data from stalling on the last cycle. The capability of accumulating the
P cascade through the X MUX feedback eliminates the pipeline stall.
X-Ref Target - Figure 1-25

Figure 1-25: Fully Pipelined, Complex, 18 x 18 MACC with Extra Slice

Zero

48

48

48

18

18
48

48

18

18

18

18

48

48

18

18

48

48

Zero

48

A_imag

A_real

B_real

B_imag

A_imag

A_real

B_real

B_imag

Slice 4

Slice 5

Slice 2

Slice 1

P_imag

P_realSlice 6

Slice 3

Sign Extended from 36 Bits to 48 Bits

Sign Extended from 36 Bits to 48 Bits ug073_c1_25_082205

+

×

×

×

×

+

+

+

+

_

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 51
UG073 (v2.7) May 15, 2008

DSP48 Slice Functional Use Models
R

Fully Pipelined, Complex, 35 x 18 Multiplier Usage Model

Many complex multiply algorithms require higher precision in one of the operands. The
equations for combining the real and imaginary parts in complex multiplication are the
same, but the larger operands must be separated into two parts and combined using
partial product techniques. The real and imaginary results use the same slice configuration
with the exception of the adder/subtracter. The adder/subtracter performs subtraction for
the real result and addition for the imaginary result. The following equations describe the
math used to form the real and imaginary parts for the fully pipelined, complex,
35-bit x 18-bit multiplication.

(A_real × B_real) – (A_imaginary × B_imaginary) = P_real

(A_real × B_imaginary) + (A_imaginary × B_real) = P_imaginary

Figure 1-26 shows the real part of a fully pipelined, complex, 35-bit x 18-bit multiplier.
X-Ref Target - Figure 1-26

Figure 1-26: Real Part of a Pipelined, Complex, 35 x 18 Multiply

0,A_imag[16:0]

PREG1 = –(0,A_imag[16:0] × B_imag[17:0])
B_imag[17:0]

0,A_real[16:0]

B_real[17:0]

0,A_real[16:0] × B_real[17:0]

PREG2 = PREG1 + (0,A_real[16:0] × B_real[17:0])

A_real[34:17]

A_real[34:17] × B_real[17:0]

A_imag[34:17]

B_imag[17:0]

A_imag[34:17] × B_imag[17:0]

PREG3 = Right Shifted PREG2 + (A_real[34:17] × B_real[17:0])

PREG4 = PREG3 – (A_imag[34:17] × B_imag[17:0])

Sign Extended from 36 Bits to 48 Bits

0,A_imag[16:0] × B_imag[17:0]

48

Slice 3

Slice 4

Slice 2

Slice 1

Zero

48

48

18

18
48

48

48

48

Z –3

Z –2

Z –3

18

18

18

18

18

18

48

48

P[16:0]

P[52:17]

Right “Wire Shift” by 17 Bits

ug073_c1_26_082205

× _

× _

× +

× +

http://www.xilinx.com

52 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

Figure 1-27 shows the imaginary part of a fully pipelined, complex, 35-bit x 18-bit
multiplier.

X-Ref Target - Figure 1-27

Figure 1-27: Imaginary Part of a Pipelined, Complex, 35 x 18 Multiply

0,A_imag[16:0]

PREG1 = (0,A_imag[16:0] × B_real[17:0])
B_real[17:0]

0,A_real[16:0]

B_imag[17:0]

0,A_real[16:0] × B_imag[17:0]

PREG2 = PREG1+ 0,(A_real[16:0] × B_imag[17:0])

A_real[34:17]

A_real[34:17] × B_imag[17:0]

A_imag[34:17]

B_real[17:0]

A_imag[34:17] × B_real[17:0]

PREG3 = right shifted PREG2 + (A_real[34:17] × B_imag[17:0])

PREG4 = PREG3 + (A_imag[34:17] × B_real[17:0])

Sign Extended from 36 Bits to 48 Bits

0,A_imag[16:0] × B_real[17:0]

48

Slice 3

Slice 4

Slice 2

Slice 1

Zero

48

48

18

18
48

48

48

48

18

18

18

18

18

48

48

P[16:0]

P[52:17]

Right “Wire Shift” by 17 Bits18

ug073_c1_27_082205

Z –3

Z –3

Z –2

× +

× +

× +

× +

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 53
UG073 (v2.7) May 15, 2008

DSP48 Slice Functional Use Models
R

Miscellaneous Functional Use Models
Table 1-13 summarizes a few common functional use models.

Dynamic, 18-Bit Circular Barrel Shifter Use Model
The barrel shift function is useful when trying to quickly realign data. Using two DSP48
slices, an 18-bit circular barrel shifter can be implemented. This implementation shifts 18
bits of data left by the number of bit positions represented by n. The bits shifted out of the
most-significant part reappear in the lower significant part of the answer, completing the
circular shift. The equations in Figure 1-28 describe the value carried out of the first slice,
what this value looks like after shifting right 17 bits, and finally what is visible as a result.

Table 1-13: Miscellaneous Functional Use Models

Miscellaneous Silicon Utilization OPMODE

18-bit Barrel Shifter 2 DSP slices Static

48-bit Add Subtract 2 DSP slices Static

36-bit Add Subtract Cascade n DSP slices Static

n word MUX, 48-bit words 2n DSP slices Dynamic

n word MUX, 36-bit words n DSP slices Dynamic

48-bit Counter 1 DSP slice Static

Magnitude Compare 1 DSP slice, logic Static

Equal to Zero Compare 1 DSP slice, logic Static

24 2-input ANDs 1 DSP slice Static

24 2-input XORs 1 DSP slice Static

Up to 48-bit AND 1 DSP slice Static

X-Ref Target - Figure 1-28

Figure 1-28: Circular Barrel Shifter Equations

Slice 1, P Carry Out

Slice 2, P Carry In
after 17 Bit Right Shift

Slice 2, P Result

PCOUT[000..., A[17:1], ...000]

A[000..., A[17:17 – N – 1]]

A[000..., A[17 – N:0], A[17:17 – N – 1]]

48 – 18 – N zeros

48 – 18 – N + 17 zeros

48 – 18 – N zeros N MSBs of A

17 bits of A

N MSBs of A

18 – N LSBs of A

N zeros

ug073_c1_28_082205

http://www.xilinx.com

54 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 1: XtremeDSP Design Considerations
R

Figure 1-29 shows the DSP48 used an 18-bit circular barrel shifter. The P register for slice 1
contains leading zeros in the MSBs, followed by the most-significant 17 bits of A, followed
by n trailing zeros. If n equals zero, then are no trailing zeros and the P register contains
leading zeros followed by 17 bits of A.
X-Ref Target - Figure 1-29

In the case of n equal to zero (i.e., no shift), the P register of slice 1 is passed to slice 2 with
17 bits of right shift. All 48 bits of the P carry input are effectively equal to zero because
A[17:1] shifted toward the least-significant direction. If there is a positive shift amount,
then P carry out of slice 1 contains A[17:1] padded in front by 48 – 17– n zeros and in back
by n zeros. After the right shift by 17, only the n most-significant bits of A remain in the
lower 48 bits of the P carry input.

This n-bit guaranteed positive number is added to the A[17:0], left shifted by n bits. In the
n least-significant bits, there are zeros. The end result contained in A[17:0] of the second
slice P register is A[17 – n:n, 17:17 – n + 1] or a barrel shifted A[17:0]. The design is fully
pipelined and can generate a new result every clock cycle at the maximum DSP48 clock
rate.

A single slice version of the dynamic 18-bit barrel shifter can be implemented. For this
implementation, Table 1-14 describes the DSP48 slice function and OPMODE settings for
each clock cycle.

Figure 1-29: Dynamic 18-Bit Barrel Shifter

Zero

48

48

48

18

18

18

48

A[17:0]

A[0,17:1]

2n

AR[17:0]

Slice 1

Slice 2

Right “wire shift” by 17 bits

PREG2 = right shifted by 17 PREG1+ n bit left shifted A[17:0]

PREG1 = [000..., 000..., A17:1, ...000]
 12 36 – 18 – n + 1 17-bit n
 zeros zeros A zeros

ug073_c1_29_082205

× +

× +

Table 1-14: Miscellaneous DSP48 Implementations

Single Slice
Mode

Cycle
Inputs

Function and OPMODE[6:0] Output
A B C

18-Bit Barrel
Shifter

0 A[17:0] B[17:0] X Multiply 0x05

1 A[17:0] B[17:0] X Multiply Accumulate 0x25 P

2 A[17:0] B[17:0] X Multiply 0x05

3 A[17:0] B[17:0] X Multiply Accumulate 0x25 P

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 55
UG073 (v2.7) May 15, 2008

R

Chapter 2

DSP48 Slice Math Functions

The DSP48 slice efficiently performs a wide range of basic math functions, including
adders, subtracters, accumulators, MACCs, multiply multiplexers, counters, dividers,
square-root functions, and shifters. The optional pipeline stage within the DSP48 tile
ensures high performance arithmetic functions. The DSP48 column structure and
associated routing provides fast routing between DSP48 tiles, with less routing congestion
to the FPGA fabric. This chapter describes how to use the DSP48 slice to perform some
basic arithmetic functions.

This chapter contains the following sections:

• “Overview”

• “Basic Math Functions”

• “Reference Design Files”

• “Conclusion”

Overview
The DSP48 slice is shown in Figure 2-1. Refer to Figure 1-3, page 18 for a diagram showing
two slices cascaded together.

X-Ref Target - Figure 2-1

Figure 2-1: DSP Slice Architecture

±

×

ZEROC

A

B

PCINBCIN

P
18

18

48

1848

18

48 48

48

48

36

48

48

48

Y

X

BCOUT PCOUT

Z

72

18

18
36

36

48

48

Wire Shift Right by 17 Bits

Cascade In from Previous Slice

Cascade Out to Next Slice

ug073_c2_01_061304

SUBTRACT

CIN

http://www.xilinx.com

56 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 2: DSP48 Slice Math Functions
R

Basic Math Functions

Add/Subtract
The DSP48 slice contains an adder/subtracter unit allowing different combinations of
add/subtract logic to be implemented in a single DSP slice. The output of the DSP48 slice
in adder/subtracter mode is:

Output = Z ± (X + Y +CIN)

The X, Y, and Z terms in this equation refer to the X, Y, and Z multiplexers shown in
Figure 2-1. The inputs to the X, Y, and Z multiplexers are routed to the outputs using
OPMODE settings (see Table 2-1). The CIN term is the Carry Input to the
Adder/subtracter unit.

Determining whether to execute an addition or a subtraction (±) is controlled by the
SUBTRACT input to the adder/subtracter unit. The SUBTRACT input must be set to 0 to
add, and 1 to subtract.

The Verilog and VHDL code for a 48-bit adder is in the reference design file: ADDSUB48.v.
and ADDSUB48.vhd, respectively. The code implements a 48-bit adder/subtractor of the
form PCIN + CIN or PCIN – CIN. The OPMODE is set to choose PCIN as the output of the
Z multiplexer, C as the output of the Y multiplexer, and “0” as the output of the X
multiplexer. The carry-in signal is tied to “0.”

The output equation now becomes:

Output = PCIN ± (0 + CIN +0)

The PCIN input signal in the HDL code is the PCOUT output signal of an adjacent DSP48.
This DSP48 is not included in the HDL code. This code can be used to implement any data
combination for the generic DSP output equation by using the different OPMODEs found
in Table 2-1.

Table 2-1: OPMODE Settings for the Z, Y, and X Multiplexers

Z OPMODE[6:4] Y OPMODE[3:2] X OPMODE[1:0]

0 000 0 00 0 00

PCin 001 AxB 01 AxB 01

P 010 Illegal 10 P 10

C 011 C 11 A:B 11

ShiftPCin 101

ShiftP 110

Notes:
1. If either X or Y is set to 01, the other one must also be set to 01.
2. For Carryin Select (CIN), see “Carry Input Logic” in Chapter 1.

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 57
UG073 (v2.7) May 15, 2008

Basic Math Functions
R

Accumulate
A DSP48 slice can implement add and accumulate functions with up to 36-bit inputs. The
output equation of the accumulator is:

Output = Output + A:B + C

Concatenate (:) the A and B inputs to provide a 36-bit input from Multiplexer X using the
setting OPMODE[1:0] = 11. Select the C input to Multiplexer Y using the setting
OPMODE[3:2] = 11. To add (accumulate) the output of the slice, select the feedback path
(P) through the Z multiplexer using the setting OPMODE[6:4] = 010.

Other accumulate functions can be implemented by changing the OPMODE selection for
the Z input multiplexer. To get an output of:

Output = Shift(P) ± (A:B + C)

use the setting OPMODE[6:4] = 110 to select the Shift(P) input to the Z multiplexer. To get
an output of:

Output = 0 ± (A:B +C)

(no accumulation) use the setting OPMODE [6:4] = 0000 to select the ZERO input to the Z
multiplexer.

The Verilog code for the accumulator is in the reference design file ACCUM48.v, and the
VHDL code is in the reference design file ACCUM48.vhd.

Multiply Accumulate (MACC)
The DSP48 slice allows two 18-bit numbers to be multiplied together, and the product to be
added to or subtracted from a previous product, a “0,” or a shifted product. In addition,
rounding of any of the add, subtract, previous product, “0,” or shifted product options is
also possible.

The input added or subtracted from the product is from the output of the Z multiplexer.
This output is set using the corresponding OPMODE setting as shown in Table 2-1.
Cascade the MACC tree by selecting the PCIN signal from the previous slice as the output
from the Z multiplexer.

The Verilog code for the multiply-accumulate function is in the reference design file
macc.v, and the VHDL code is in the reference design file macc.vhd.

http://www.xilinx.com

58 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 2: DSP48 Slice Math Functions
R

Multiplexer
There are three multiplexers in a DSP48 slice: the 3:1 Y multiplexer, the 4:1 X multiplexer,
and the 6:1 Z multiplexer. Only one of the three multiplexers should be active within the
slice when the slice is used as a multiplexer. The other two multiplexers can be made
inactive by choosing the OPMODE selecting the ZERO inputs. The two DSP48 tiles in a
slice can be combined to make wider input multiplexers.

Barrel Shifter
An 18-bit barrel shifter can be implemented using the two DSP48 tiles in the DSP slice. To
barrel shift the 18-bit number A[17:0] two positions to the left, the output from the barrel
shifter is A[15:0], A[17], and A[16]. This operation is implemented as follows.

The first DSP48 is used to multiply {0,A[17:1]} by 22. The output of this DSP48 tile is now
{0,A[17:1],0,0}. The output from the first tile is fed into the second DSP48 tile over the
PCIN/PCOUT signals and is passed through the 17-bit right-shifted input. The input to
the Z multiplexer becomes {0,A[17],A[16]}, or {0,A[17:0],0,0} shifted right by 17 bits.

The multiplier inputs to the second DSP48 tile are A = A[17:0] and B = 22. The output of this
multiplier is {A[17:0], 0,0}. This output is added to the 17-bit right-shifted value of
{0,A[17],A[16]} coming from the previous slice. The 18-bit output of the adder is
{A[15:0],A[17],A[16]}. This is the initial A input shifted by two to the left.

The Verilog code is in the reference design file barrelshifter_18bit.v, and the VHDL
code is in the reference design file barrelshifter_18bit.vhd).

Counter
The DSP48 slice can be used as a one-bit counter. Setting the SUBTRACT input to “0,” the
carry-in input (CIN) to 1, and OPMODE [6:0] = 0100000 gives an output of P + CIN. After
the first clock, the output P is 0 + 1 = 1. Subsequent outputs are P + 1. This method is
equivalent to counting up by one. The counter can be used as a down counter by setting
the SUBTRACT input to a “1” at the start.

The counter can also be preloaded using the C input to provide the preload value. Setting
the Carry In input (CIN) to “1” and OPMODE [6:4] = 0110000 gives an output of P = C+1
in the first cycle. For subsequent clocks, set the OPMODE to select P = P+1 by changing
OPMODE [6:4] from 0110000 to 0100000.

The Verilog code for a loadable counter is in the reference design file CNTR_LOAD.v, and
the VHDL code for a loadable counter is in the reference design file CNTR_LOAD.vhd.

Multiply
A single DSP48 slice can implement an 18x18 signed multiplication. Larger multipliers can
be implemented in a single DSP48 slice by sequentially shifting the appropriate number of
bits in each clock cycle. The Verilog implementation of an 18x18 multiplier is in the
reference design file MULT18X18_PARALLEL.v, and the VHDL implementation is in the
reference design file MULT18X18_PARALLEL.vhd.

The Verilog implementation of a 35x35 multiplier and a sequential 35x35 multiplier are in
the reference design files MULT35X35_PIPE.v and MULT35X35_SEQUENTIAL_PIPE.v,
respectively. The VHDL implementation of a 35x35 multiplier and a sequential 35x35
multiplier are in the reference design files MULT35X35_PIPE.vhd and
MULT35x35_SEQUENTIAL_PIPE.vhd, respectively.

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 59
UG073 (v2.7) May 15, 2008

Basic Math Functions
R

Divide
Binary division can be implemented in the DSP48 slice by performing a shift and subtract
or a multiply and subtract. The DSP48 slice includes a shifter, a multiplier, and
adder/subtracter unit to implement binary division. The division by subtraction and
division by multiplication algorithms are shown below. These algorithms assume:

1. N > D

2. N and D are both positive

If either N or D is negative, use the same algorithms by taking the absolute positive values
for N and D and making the appropriate sign change in the result.

The terms N and D in the algorithms refer to the number to be divided (N) and the divisor
(D). The terms Q and R in the algorithms refer to the quotient and remainder, respectively.

Dividing with Subtraction

The shift and subtract algorithm can be explained as follows:

If N is an 8-bit integer and D is not more than 8-bits wide, N/D = Q + R.

1. Assign the value “00000000” to the 8-bit register R.

2. Shift the R register one bit to the left and fill in the LSB with N[8-n].

3. Calculate R-D.

4. Set R and set Q:

a. If R-D is positive, set Q[8-n] to 1 and R = R-D

b. If R-D is negative, set Q[0] to 0 and R = R

5. Repeat Steps 2 to 4, filling in R[n] each time with N[8-n], where n is the number of the
iteration. Q[8-n] is filled each time in Step 4.

After the eighth iteration, Q[7:0] contains the quotient, and R[7:0] contains the remainder.
For example:

Table 2-2: :

Step
Iteration

(n)
Action

After Action

Q R

1 1 R = 0000,0000 xxxx,xxxx 0000,0000

2 1 R <-- N[7] = 0000,0000 xxxx,xxxx 0000,0000

3 1 R-D = Negative xxxx,xxxx 0000,0000

4 1 Q[7] = 0 0xxx,xxxx 0000,0000

2 2 R <-- N[6] = 0000,0000 0xxx,xxxx 0000,0000

3 2 R-D = Negative 0xxx,xxxx 0000,0000

4 2 Q[6] = 0 00xx,xxxx 0000,0000

N
D
---- 8

3
--- 0000 1000,

011
--------------------------- Q(10) R(10)+= = =

http://www.xilinx.com

60 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 2: DSP48 Slice Math Functions
R

Dividing with Multiplication

The multiply and subtract method consists of rewriting N/D = Q + R as N= D * (Q + R).

The answer is calculated using these steps for an 8-bit N/D:

1. Set the initial value of Q[8-n] =1 and the bits right of Q[8-n] to 0.

2. Calculate D*Q.

3. Calculate N - (D*Q).

a. If step 2 is positive, N > (D*Q), set Q[8-n] to a 1.

b. If step 2 is negative, N < (D*Q), set Q[8-n] to a 0.

4. Repeat steps 1 to 3.

After the eighth iteration, Q[7:0] contains the quotient and N - (D*Q) contains the
remainder. Using the same example:

2 3 R <-- N[5] = 0000,0000 00xx,xxxx 0000,0000

3 3 R-D = Negative 00xx,xxxx 0000,0000

4 3 Q[5] = 0 000x,xxxx 0000,0000

2 4 R <-- N[4] = 0000,0000 000x,xxxx 0000,0000

3 4 R-D = Negative 000x,xxxx 0000,0000

4 4 Q[4] = 0 0000,xxxx 0000,0000

2 5 R <-- N[3] = 0000,0001 0000,xxxx 0000,0001

3 5 R-D = Negative 0000,xxxx 0000,0001

4 5 Q[3] = 0 0000,0xxx 0000,0001

2 6 R <-- N[2] = 0000,0010 0000,0xxx 0000,0010

3 6 R-D = Negative 0000,0xxx 0000,0010

4 6 Q[2] = 0 0000,00xx 0000,0010

2 7 R <-- N[1] = 0000,0100 0000,00xx 0000,0100

3 7 R-D = Positive 0000,00xx 0000,0100

4 7 Q[1] = 1, R = 0000,0001 0000,001x 0000,0001

2 8 R <-- N[0] = 0000,0010 0000,001x 0000,0010

3 8 R-D = Negative 0000,001x 0000,0010

8 Q[2] = 0 0000,0010 0000,0010

Step
Iteration

(n)
Action

After Action

Q R

8
3
--- 0000 1000,

011
--------------------------- Q(10) R(10)+= =

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 61
UG073 (v2.7) May 15, 2008

Basic Math Functions
R

Both of the division implementations are possible in one DSP48 slice. The slice usage for
8-bit division is one DSP48, and the latency is eight clock cycles.

Step
Iteration

(n)
Action

After Action

Q

1 1 Q[8-1] = 1, Set the bits right of Q[8-1] to 0 1000,0000

2 1 D*Q = 3 * 128 = 384 1000,0000

3 1 N - (D*Q) = 8 - 384 = Negative
Q[8-1] = 0

0000,0000

1 2 Q[8-2] = 1, Set the bits right of Q[8-2] to 0 0100,0000

2 2 D*Q = 3 * 64 = 192 0100,0000

3 2 N - (D*Q) = 8 - 192 = Negative
Q[8-2] = 0

0000,0000

1 3 Q[8-3] = 1, Set the bits right of Q[8-3] to 0 0010,0000

2 3 D*Q = 3 * 32 = 96 0010,0000

3 3 N - (D*Q) = 8 - 96 = Negative
Q[8-3] = 0

0000,0000

1 4 Q[8-4] = 1, Set the bits right of Q[8-4] to 0 0001,0000

2 4 D*Q = 3 * 16 = 48 0001,0000

3 4 N - (D*Q) = 8 - 48 = Negative
Q[8-4] = 0

0000,0000

1 5 Q[8-5] = 1, Set the bits right of Q[8-5] to 0 0000,1000

2 5 D*Q = 3 * 8 = 24 0000,1000

3 5 N - (D*Q) = 8 - 24 = Negative
Q[8-5] = 0

0000,0000

1 6 Q[8-6] = 1, Set the bits right of Q[8-6] to 0 0000,0100

2 6 D*Q = 3 * 4 = 12 0000,0100

3 6 N - (D*Q) = 8 - 12 = Negative
Q[8-6] = 0

0000,0000

1 7 Q[8-7] = 1, Set the bits right of Q[8-7] to 0 0000,0010

2 7 D*Q = 3 * 2 = 6 0000,0010

3 7 N - (D*Q) = 8 - 6 = Positive
Q[8-7] = 1

0000,0010

1 8 Q[8-8] = 1 0000, 0011

2 8 D*Q = 3 * 3 = 9 0000,0011

3 8 N - (D*Q) = 8 – 9 = Negative
Q[8-8] = 0

0000,0010

Remainder = N-(D*Q) = 8-(3*2) = 2

http://www.xilinx.com

62 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 2: DSP48 Slice Math Functions
R

The Verilog code for the Divide by Subtraction implementation is in the reference design
file div_sub_cascade.v, and the VHDL code is in the reference design file
div_sub_cascade.vhd. The Verilog code for the Divide by Multiplication
implementation is in div_mult_cascade.v, and the VHDL code for the second
implementation is in div_mult_cascade.vhd.

Square Root
The square root of an integer number can be calculated by successive multiplication and
subtraction. This is similar to the subtraction method used to divide two numbers. The
square root of an N-bit number will have N/2 (rounded up) bits. If the square root is a
fractional number, N/2 clocks are needed for the integer part of the answer, and every
following clock gives one bit of the fraction part. The logic needed to compute this is
shown in Figure 2-2.
X-Ref Target - Figure 2-2

The square root for an 8-bit number can be calculated as follows:

Y is the integer part of the root, and Z is the fraction part. Register A refers to the registers
found on the A input to the DSP48 slice, and Register C refers to the registers found on the
C input to the DSP48 slice.

1. Read the number into Register C. Set Register A to 10000000.

2. Calculate Register C – (Register A * Register A).

3. If step 2 is positive, set Register A[(8-clock)] = 1,
Register A[(8-clock)-1] = 1

If step 2 is negative, set Register A[(8-clock)] = 0,
Register A[(8-clock)-1] = 1

4. Repeat steps 1 to 3.

Four clocks are required to calculate the integer part of the value (Y). The number of clocks
required for the fraction part (Z) depends on the precision required. For an 8-bit input
value, the value in Reg_A after eight clocks includes the integer part given by the four
MSBs and the fractional part given by the four LSBs.

Figure 2-2: Square Root Logic

Register
A

Register
A

Input = Reg C

Multiplier

Subtractor

1'b1

1'b0

Input

UG073_c2_02_061304

X Y.Z=

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 63
UG073 (v2.7) May 15, 2008

Basic Math Functions
R

For example, the square root of 11 decimal = 3.3166. Because 11 decimal is a 4-bit binary
number, the integer part is two-bits wide and is obtained in two clock cycles. The bit width
of the fractional part depends on the precision required. In this example, four bits of
precision are used requiring four clock cycles.

The binary of value of 11 decimal is 1011. Expressed as an 8-bit number, it becomes
0000,1011. Store this value as 0000,1011,0000,0000. The last eight bits are necessary
because the result is an 8-bit number, and 8 bits x 8 bits gives a 16-bit multiplication result.

The output is in Register A and is 0011,0101. The final answer is 11.0101.

Clock Step Action

1 1 Register A = 1000,0000

1 2 0000,1011,0000,0000 – (1000,0000 * 1000,0000)

1 3 Step 2 is negative. Set Register A to 0100,0000

2 1 Register A = 0100,0000

2 2 0000,1011,0000,0000 – (0100,0000 * 0100,0000)

2 3 Step 2 is negative. Set Register A to 0010,0000

3 1 Register A = 0010,0000

3 2 0000,1011,0000,0000 – (0010,0000 * 0010,0000)

3 3 Step 2 is positive. Set Register A to 0011,0000

4 1 Register A = 0011,0000

4 2 0000,1011,0000,0000 – (0011,0000* 0011,0000)

4 3 Step 2 is positive. Set Register A to 0011,1000

5 1 Register A = 0011,1000

5 2 0000,1011,0000,0000 – (0011,1000* 0011,1000)

5 3 Step 2 is negative. Set Register A to 0011,0100

6 1 Register A = 0011,0100

6 2 0000,1011,0000,0000 – (0011,0100* 0011,0100)

6 3 Step 2 is positive. Set Register A to 0011,0110

7 1 Register A = 0011,0110

7 2 0000,1011,0000,0000 – (0011,0110* 0011,0110)

7 3 Step 2 is negative. Set Register A to 0011,0101

8 1 Register A = 0011,0101

8 2 0000,1011,0000,0000 – (0011,0101* 0011,0101)

8 3 Step 2 is positive.

http://www.xilinx.com

64 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 2: DSP48 Slice Math Functions
R

Square Root of the Sum of Squares
The sum of squares is a widely used DSP function. The sum of squares can be either of the
forms listed in Equation 2-1 or Equation 2-2.

Equation 2-1

Equation 2-2

These functions are basic multiply-accumulate operations easily implemented on the
DSP48 slice as described in “Multiply Accumulate (MACC),” page 57. A variation of this
function is when the square root of either Equation 2-1 or Equation 2-2 is needed. In this
case, the OPMODE does the MACC function for n cycles and then switches to do the
square root function for the next n cycles. The Subtract input is dynamic and does an
addition for the MAC cycles and a subtraction for the square root cycles.

With the SUBTRACT input equal to 0, the OPMODE for the function is 0110101. A square
root function is implemented by changing the SUBTRACT input to a 1.

Reference Design Files
The reference design files associated with this chapter, ug073_c02.zip, can be viewed at:
https://secure.xilinx.com/webreg/clickthrough.do?cid=30160

Conclusion
The DSP48 slice has a variety of features for fast and easy implementation of many basic
math functions. The dedicated routing region around the DSP48 slice and the feedback
paths provided in each slice result routing improvements. The high-speed multiplier and
adder/subtracter unit in the slice delivers high-speed math functions.

The following document contains VHDL code to infer the DSP48 in Precision Synthesis,
Synplify and XST:

ftp://ftp.xilinx.com/pub/documentation/misc/dsp48_inference.pdf

SoS A2 B2
+=

SoS Ai2

i 0=

I n 1–=

∑=

https://secure.xilinx.com/webreg/clickthrough.do?cid=30160
ftp://ftp.xilinx.com/pub/documentation/misc/dsp48_inference.pdf
http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 65
UG073 (v2.7) May 15, 2008

R

Chapter 3

MACC FIR Filters

This chapter describes the implementation of a Multiply-Accumulate (MACC) Finite
Impulse Response (FIR) filter using the DSP48 slice in a Virtex-4 device. Because the
Virtex®-4 architecture is flexible, constructing FIR filters for specific application
requirements is practical. Creating optimized filter structures of a sequential nature saves
resources and potential clock cycles.

This chapter demonstrates two sequential filter architectures: the single-multiplier and the
dual-multiplier MACC FIR filter. Reference design files are available for the System
Generator in DSP, VHDL, and Verilog. These reference designs permit filter parameter
changes including coefficients and the number of taps.

This chapter contains the following sections:

• “Overview”

• “Single-Multiplier MACC FIR Filter”

• “Symmetric MACC FIR Filter”

• “Dual-Multiplier MACC FIR Filter”

• “Conclusion”

Overview
A large array of filtering techniques is available to signal processing engineers. A common
filter implementation uses the single multiplier MACC FIR filter. In the past, this structure
used the Virtex-II embedded multipliers and 18K block RAMs. The Virtex-4 DSP48 slice
contains higher performance multiplication and arithmetic capabilities specifically
designed to enhance the use of MACC FIR filters in FPGA-based DSP.

Single-Multiplier MACC FIR Filter
The single-multiplier MACC FIR is one of the simplest DSP filter structures. The MACC
structure uses a single multiplier with an accumulator to implement a FIR filter
sequentially versus a full parallel FIR filter. This trade-off reduces hardware by a factor of
N, but also reduces filter throughput by the same factor. The general FIR filter equation is
a summation of products (also know as an inner product), defined as:

Equation 3-1

In this equation, a set of N coefficients is multiplied by N respective data samples, and the
inner products are summed together to form an individual result. The values of the

yn xn i– hi
i 0=

N 1–

∑=

http://www.xilinx.com

66 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 3: MACC FIR Filters
R

coefficients determine the characteristics of the filter (e.g., low-pass filter, band-pass filter,
and high-pass filter). The equation can be mapped to many different implementations
(e.g., sequential, semi-parallel, or parallel) in the different available architectures.

For slow sample rate requirements and a large number of coefficients, the single MACC
FIR filter is well suited, and dual-port block RAM is the optimal choice for the memory
buffer. This structure is illustrated in Figure 3-1. If the number of coefficients is small,
distributed memory and the SRL16E can be used as the data and coefficient buffers. For
more information on using distributed memory, refer to “Using Distributed RAM for Data
and Coefficient Buffers,” page 72.

The input data buffer is implemented in dual-port block RAM. The read address port is
clocked N times faster than the input samples are written into the data port, where N is the
number of filter taps. The filter coefficients are also stored in the same dual-port block
RAM and are output at port B. Hence, the RAM is used in a mixed-mode configuration.
The data is written and read from port A (RAM mode), and the coefficients are read only
from port B (ROM mode).

The control logic provides the necessary address logic for the dual-port block RAM and
creates a cyclic RAM buffer for port A (data buffer) to create the FIR filter delay line. An
optional output capture register might be required for streaming operation if the
accumulation result can not be immediately used in downstream processing.

The multiplier followed by the accumulator sums the products over the same number of
cycles as there are coefficients. With this relationship, the performance of the MACC FIR
filter is calculated by the following equation:

Maximum Input Sample Rate = Clock Speed / Number of Taps Equation 3-2

If the coefficients possess a symmetric shape, a slightly costlier structure is available (see
“Symmetric MACC FIR Filter,” page 74), however, the maximum sampled rate is doubled.
The sample rate of the costlier structure is defined as follows:

Sample Rate = Clock Speed / (1/2 x number of taps) Equation 3-3

X-Ref Target - Figure 3-1

Figure 3-1: Single-Multiplier MACC FIR Filter

Data Samples
96 x 18

Coefficients
96 x 18Control

Data Addr

WE

Dual-Port Block RAM

Optional Output
Register Used

18

Coef Addr

18

A

B

load

P

Z-4

DSP48 Slice
OPMODE = 0100101

UG073_c3_01_083105

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 67
UG073 (v2.7) May 15, 2008

Single-Multiplier MACC FIR Filter
R

Bit Growth
The nature of the FIR filter, with numerous multiplies and adds, outputs a larger number
of bits from the filter than are present on the filter’s input. This effect is the bit growth or the
gain of a filter. These larger results cannot be maintained throughout a system due to cost
implications. Therefore, the full precision result is typically rounded and quantized (refer
to “Rounding,” page 71) back to a desired level. However, it is important to calculate the
full precision output in order to select the correct bits from the output of the MACC.

A simple explanation for implementation purposes involves considering the maximum
value expected at the output (saturation level). A greater understanding of the specific
filter enhances the accuracy of the output bit width. The following two techniques help
determine the full precision output bit width.

Generic Saturation Level

This technique assumes every value in the filter could be the worst possible for the size of
the two’s complement numbers specified. Using the generic saturation level is a good
starting point when the coefficients are unknown, but the number of bits required to
represent them is known, e.g., if the coefficients are reloadable, as in adaptive filters.

Output Width = ceil (log2 (2(b-1) x 2(c-1) x N) + 1 Equation 3-4

where:

ceil: Rounds up to the nearest integer

b: Number of bits in the data samples

c: Number of bits in the coefficients

Coefficient Specific Saturation Level

This technique uses the magnitude-only sum of actual coefficient values and applies the
worst-case data samples to the filter. More accurate calculations could be required if a bit
maximum is reached. With actual coefficients, the output for the worst possible inputs can
be determined.

Output Width = ceil (log2 (2(b-1) x abs (sum (coef)) x N) + 1 Equation 3-5

where:

ceil: Rounds up to the nearest integer

abs: Makes the absolute value of a number (not negative)

sum: Sums all the values in an array

B: Number of bits in the data samples

C: Number of bits in the coefficients

If the output width exceeds 48 bits, there are notable effects on the size (in terms of the
number of DSP48 slices used to implement the filter) because the DSP48 slice is limited to
a 48-bit result. The output width can be extended by using more DSP48 slices; however,
reconsidering the specification is more practical.

Control Logic
The control logic is very straightforward when using an SRL16E for the data buffer. For
dual-port block RAM implementations the cyclic RAM buffer is required. This can

http://www.xilinx.com

68 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 3: MACC FIR Filters
R

complicate the control logic, and there are two different ways this control can be
implemented. Both techniques produce the same results, but one way uses all slice-based
logic to produce the results, while the other way embeds the control in the available space
in the block RAM. The basic architecture of the control logic for the slice based approach is
outlined in Figure 3-2.

The control logic consists of two counters. One counter drives the address of the coefficient
section of the dual-port block RAM, while the other controls the address for the data buffer.
A comparator controls an enable to the data buffer counter to disable the count for one
cycle every output sample and writes a new sample into the data buffer every N cycles. A
simplified diagram of the control logic and the memory is shown in Figure 3-3.
X-Ref Target - Figure 3-3

X-Ref Target - Figure 3-2

Figure 3-2: Dual-Port Block RAM MACC FIR Filter Control Logic Using Slices

Figure 3-3: Control Logic and Memory

Coefficient
Counter

Coefficient
Address

Load ACC

Data
Counter WE

Data
Address

en addr

en addr

A = 2N – 2

UG073_c3_02_090204

Counter
N – (2N–1)

Counter
0 – (N–1)

A = 2N–2

DIN A

DIN B

WE
data addr

WE

coef addraddr

addren

DOUT A

DOUT B

RAM must be:
Read after Write

Coefficient
 ROM

Dual-Port RAM

DIN D1 X X X

Data Addr

Coeff Addr

X X XD2 X X X X D3 X X X

0 1 2 3 94 95 93 9495 210 0 194 95

96 97 98 99 190 191 96 9897 99 190191 96 9897 99

WE WE UG073_c3_03_082905

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 69
UG073 (v2.7) May 15, 2008

Single-Multiplier MACC FIR Filter
R

The cyclic data RAM buffer is required to emulate the delay line shift register of the FIR
filter while using a static RAM. The RAM is addressed sequentially every clock cycle. The
counter rolls over to have the last coefficient (N–1) read out. At this point, the data buffer
is stalled by the controlling clock enable and the newest sample is read into the buffer
AFTER the oldest data sample is read out. This newest data sample is now multiplied by
the first coefficient (as the coefficient address counter is never disabled), and the cycle is
repeated. The effect is data shifting over time as the FIR filter equation requires. The ability
to perform a simultaneous read and write requires the RAM buffer to have a read port and
a write port (called read before write mode).

The inverted WE signal is also used to drive the load input (OPMODE[5]) on the DSP48
slice. This signal must be delayed with a simple SRL16E to make sure the latency on the
signal matches the latency through the MACC engine. This delay is typically four clocks
but depends on the number of pipelining registers used in the DSP48 slice and block RAM.
The number of required pipelining stages is a function of the desired, achievable clock
frequency.

The number of resources used for the control logic is easily calculated. The counters are
always two bits per slice plus the additional logic required to count limit the counter
(unless the counter is a power of two limit). The count limiter circuit size is determined by
the number of bits needed to represent the count limit value divided by four. Therefore,
n/2 + n/4 slices are required for each counter, but the coefficient counter is larger due to
the higher count value. The other control logic typically yields about N/4 slices due to the
comparator required for the enable circuitry and the inverter to disable the data counter.

The total number of slices for the control logic for an 18 x 18 MACC FIR filter with 96
coefficients is listed in Table 3-1.

Embedding the Control Logic into the Block RAM
The total number of slices for the control logic can be reduced if required by embedding the
coefficient address sequence, CE, WE, and capture signal into the leftover block RAM
space. This clever trick is enabled by the separation of the DSP48 from the Virtex-4 block
RAM. It is different from Virtex-II Pro FPGAs where the embedded multiplier and block

Table 3-1: Control Logic Using Slice Resource Utilization

Elements Slices

Coefficient Counter 5

Data Counter 4

Relational Operator 1

Other Logic 1

Total 11

http://www.xilinx.com

70 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 3: MACC FIR Filters
R

RAM share routing and prevent this kind of trick. Figure 3-4 illustrates the control logic
and memory layout for this embedded control logic implementation.

Figure 3-4 demonstrates how the predictable and repeatable control sequence for the
coefficient side of the memory can be embedded into the remaining space of the memory.
The coefficient address value, accumulator Load signal, CE, and WE for the data buffer are
precalculated and concatenated onto the coefficient values. The memory must be used in
512 x 36 mode, instead of 1024 x 18 mode. The individual signals are split up correctly on
the output of the memory. This costs nothing in logic utilization, apart from routing.

Due to the feedback nature of the address line, it is important to set the initial state of the
dual-port block RAM’s output register to effectively “kick-start” the MACC process. The
initial values need to be different from each other to start the correct addressing; however,
the silicon forces them to be the same. This changes the 1-bit masking of the LSB of the
coefficient address; the first value is 0 instead of the initialized value of 1. The initial value
of the output latch is on the address bus the next cycle and, by unmasking the LSB, the
count is successfully kick-started. Because the coefficients are placed in the upper half of
the memory, only a single LSB must be masked, not the complete address bus. The
masking signal can take the form of a reset signal or a registered permanent value to get the
required single cycle mask. Each address concatenated onto its respective coefficient is the
next required address (ahead by two cycles due to the output latch and register) to keep
cycling through the coefficients.

X-Ref Target - Figure 3-4

Figure 3-4: Control Logic Using Embedded Control Technique

en addr

Counter
N -> (2N–1)

DIN A

WE_A

data addr

coef addr

WE

DIN B
DOUT B

DOUT A

RAM must be:
- Read before Write
- Output Register On

Dual-Port RAM

WE_B

CE
coef addr

18

17 ... 026 ... 18272829

coef addr coef (0)

coef (N)

loadCEWE

18

Coefficients

18

..

.

.

.

. .
.

.

.

. .
. .

.

.

..

.

.

.

.

.
..

.

.
.

.

..

.

.

..

Load ACC
0

coef
addr(0)

DIN D1 X X X

Coeff Addr

Data Addr

X X XD2 X X X X D3 X X X

0 1 2 3 94 95 94 950 321 2 30 1

96 97 98 99 190 191 191 9796 98 189 190 190 96191 97

WE WE UG073_c3_04_082905

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 71
UG073 (v2.7) May 15, 2008

Single-Multiplier MACC FIR Filter
R

This technique enables a reduction in the control logic required for the MACC FIR filter,
but it can only be exploited when the number of coefficients is smaller than 256 for greater
than 9-bit data (256 data and 256 coefficient elements are required to be stored). Table 3-2
highlights the smaller resource utilization.

Rounding
As noted earlier, the number of bits on the output of the filter is much larger than the
number of bits on the input, and they must be reduced to a manageable width. The output
can be truncated by simply selecting the MSBs required from the filter. However,
truncation introduces an undesirable DC data shift due to the nature of two’s complement
numbers. Negative numbers become more negative, and positive numbers also become
more negative. The DC shift can be improved with the use of symmetric rounding, where
positive numbers are rounded up and negative numbers are rounded down.

The rounding capability built into the DSP48 slice maintains performance and minimizes
the use of the FPGA logic. This is implemented in the DSP48 slice using the C input port
and the Carry-In port. The rounding is achieved in the following manner:

• For positive numbers: Binary Data Value + 0.10000… and then truncate

• For negative numbers: Binary Data Value + 0.01111... and then truncate

The actual implementation always adds 0.0111… to the data value using the C input
port, as in the negative case, and then adds the extra carry in required to adjust for positive
numbers. Table 3-3 illustrates some examples of symmetric rounding.

In the instance of the MACC FIR filter, the C input is available for continued use because
the Z multiplexer is used for the feedback from the P output. Therefore, for rounding to be
performed, either an extra cycle or another DSP48 slice is required. Typically, an extra cycle
is used to save on DSP48 slices. On the extra cycle, OPMODE is changed for the X and Y
multiplexers, setting the X multiplexer to zero and the Y multiplexer to use the C input to
add the user-specified requirements for a negative rounding scenario.

Table 3-2: Control Logic Using Embedded Block RAM Resource Utilization

Element Slices

Control Counter 5

Total 5

Table 3-3: Symmetric Rounding Examples

Decimal Value Binary Value Add Round
Truncate:

Finish
Rounded

Value

2.4375 0010.0111 0010.1111 0010 2

2.5 0010.1000 0011.0000 0011 3

2.5625 0010.1001 0011.0001 0011 3

-2.4375 1101.1001 1110.0000 1110 -2

-2.5 1101.1000 1101.1111 1101 -3

-2.5625 1101.0111 1101.1110 1101 -3

http://www.xilinx.com

72 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 3: MACC FIR Filters
R

The Z multiplexer remains unchanged, as the feedback loop is still required, leading to the
opcode being 0101100. The simplified diagram in Figure 3-5 shows how the DSP48 slice
functions during this extra cycle.

Rounding without an Extra Cycle
A trade-off can be made to avoid using the extra cycle required for true symmetric
rounding. In this instance, the rounding constant is added to first inner product when the
load of the first inner product occurs, leading to an OPMODE value of 0110101 instead of
0100101. The carry-in value is applied on the final cycle to complete the rounding.

The trade-off is using the penultimate accumulated inner product as the basis for
rounding, which is fine unless the penultimate inner product value is very close to zero. In
this case, if the value is positive and the final inner product makes the result negative,
leading to a rounding down, an incorrect result occurs due to the rounding function
assuming a positive number instead of a negative. The last coefficient in typical FIR filters
is very small; hence, this case rarely occurs. This form of “not quite perfect” rounding does
save a cycle if absolutely necessary and also gives a significant improvement over
truncation.

Using Distributed RAM for Data and Coefficient Buffers
For smaller-sized MACC FIR filters (typically those under 32 taps), it can be considered
wasteful to use block RAM as a means to store filter input samples and coefficients. Using
block RAM for a 16-tap, 18-bit filter, for example, only uses up to 3% of the memory block.
Block RAMs are not as abundant as the smaller distributed RAMs found inside the slice,
making them an excellent option for smaller FIR filters. Figure 3-6 illustrates the MACC

X-Ref Target - Figure 3-5

Figure 3-5: MACC FIR Filter in Rounding Mode

Data Samples
96 x 18

Coefficients
96 x 18Control

Data Addr

WE

Dual-Port Block RAM

18

18
A

B
CIN

P

Coef Addr

UG073_c3_05_083105

C

Rounding
Constant

 OPMODE
Translation

Z-4

DSP48 Slice

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 73
UG073 (v2.7) May 15, 2008

Single-Multiplier MACC FIR Filter
R

FIR filter implementation using distributed RAM for the coefficient bank and an SRL16E
for the data buffer.

The resource utilization is still small for these small memories. For a 16-tap (or less), n-bit
memory bank, the cost is n/2 slices. Therefore, for this example, the cost is nine slices per
memory bank (18 slices in total).

The added benefit of using SRL16Es is the embedded shifting capabilities leading to a
reduction in control logic. Only a single count value is required to address both the
coefficient buffer and the data buffer. The terminal count signal is used to write the slower
input samples into the data buffer and capture the results and to load the accumulator with
the new set of inner products. The size of the control logic and memory buffer for a 16-tap,
18-bit data and coefficient FIR is detailed in Table 3-4.

All aspects of the DSP48 and capture register approach to the MACC FIR filter using
distributed RAM are identical to the block RAM based MACC FIR.

X-Ref Target - Figure 3-6

Figure 3-6: 16 Tap-Distributed RAM MACC FIR Filter

Table 3-4: Control Logic Resource Utilization

Element Slices

Data Buffer 9

Coefficient Memory 9

Control Counter 2

Relational Operator 1

Capture/Load Delay 1

Total 22

Control
WE

Addr

18

18

A

B

load

P

Coefficients
16 x 18

Single-Port
Distributed Memory

UG073_c3_06_083105

Z-3

DSP48 Slice
OPMODE = 0100101SRL16E

http://www.xilinx.com

74 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 3: MACC FIR Filters
R

Performance
Table 3-5 compares the performance of a Virtex-4 MACC FIR filter with a Virtex-II Pro
solution. Overall, the Virtex-4 DSP48 slice greatly reduces the logic fabric resource
requirement, improves the speed of the design, and reduces filter power consumption.

Symmetric MACC FIR Filter
The HDL code provided in the reference design is for a single multiplier MACC FIR filter.
Other techniques can also be explored. This section describes how the symmetric nature of
FIR filter coefficients can double the capable sample rate performance of the filter
(assuming the same clock speed). By rearranging the FIR filter equation, the coefficients are
exploited as follows:

(X0 x C0) + (Xn x Cn) … → (X0 + Xn) x C0 (if C0 = Cn) Equation 3-6

Figure 3-7 shows the architecture for a symmetric MACC FIR filter.

Table 3-5: 18 x 18 MACC FIR Filter (96 Tap) Comparison

Parameter
18 x 18 MACC FIR Filter (96 Tap)

Virtex-II Pro FPGA Virtex-4 FPGA

Size 99 slices, 1 Embedded Multiplier, 1
block RAM

24 slices, 1 DSP48 Slice,
1 block RAM

Performance
(Clock Speed)

3.125 MS/S
250 MHz

4.69 MS/S
450 MHz

Power 170 mW 57 mW

X-Ref Target - Figure 3-7

Figure 3-7: Symmetric MACC FIR Filter

Data Samples
96 x 18

Dual Read
AccessControl

Data1 Addr

WE

Data2 Addr

Dual-Port Block RAM

17

18

A

B

load

P

Coefficients
48 x 18

Single-Port Block RAM

Coef Addr

UG073_c3_07_083105

DSP48 Slice
OPMODE = 0100101

Z-4

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 75
UG073 (v2.7) May 15, 2008

Dual-Multiplier MACC FIR Filter
R

There are limitations to using the symmetric MACC FIR filter. Due to the 1-bit growth from
the pre-adder shown in Figure 3-5, the data input to the filter must be less than 18 bits to fit
into one DSP48 slice. If necessary, the pre-adder can be implemented in slices or in another
DSP48 slice.

The performance of this fabric-based adder represents the critical path through the filter
and limits the maximum clock speed. There are extra resources required for the filter to
support symmetry. Three memory ports are needed along with the pre-adder. The control
portion increases in resource utilization because the data is read out of one port in a
forward direction and in reverse on the second port. This technique should only be utilized
when extra sample rate performance is required.

Dual-Multiplier MACC FIR Filter
Another technique used to improve the data throughput of an MACC FIR filter is to
increase the number of multipliers used to process the data. This introduces parallelism
into the DSP design, and can be extrapolated into completely parallel techniques
supporting the highest of sample rates.

Figure 3-8 and Figure 3-9 illustrate how a dual-multiplier MACC FIR filter can be
implemented using two DSP slices. Figure 3-8 shows the accumulation of the coefficients
of each of the two MACC engines. These partial results must be combined together and
then rounded to achieve the final result. This process uses an extra cycle and the OPMODE
switching of the DSP48 slice. This extra cycle is illustrated in Figure 3-9.
X-Ref Target - Figure 3-8

Figure 3-8: Dual-Multiplier MACC FIR Filter

Data Samples
43 x 18

Coefficients
43 x 18Control

Data Addr

WE

Coef Addr

DSP48 Slice18

18

A

B

A

B

P

Dual-Port Block RAM

Data Samples
43 x 18

Coefficients
43 x 18

Dual-Port Block RAM

DSP48 Slice
18

OPMODE = 0100101

OPMODE
Translation

OPMODE = 0100101

UG073_c3_08_083105

http://www.xilinx.com

76 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 3: MACC FIR Filters
R

X-Ref Target - Figure 3-9

Reference Design Files
The reference design files associated with this chapter, ug073_c03.zip, can be found at:
https://secure.xilinx.com/webreg/clickthrough.do?cid=30157

Conclusion
MACC FIR filters are commonly used in DSP applications. With the introduction of the
Virtex-4 DSP48 slice, this function can be achieved in a smaller area, while at the same time
producing higher performance with less power resources. Designers have tremendous
flexibility in determining the desired implementation as well as the ability to change the
implementation parameters.

Each specification and design scenario creates a different set of restrictions for the design.
Several more techniques are discussed in the next chapters. The ability to "tune" a filter in
an existing system or to have multiple filter settings is a distinct advantage. The HDL and
System Generator for DSP reference designs are easily modified to achieve specific
requirements, such as different coefficients, smaller data and coefficient bit widths, and
coefficient values.

Figure 3-9: Dual-Multiplier MACC FIR Filter with Extra Cycle

Data Samples
43 x 18

Coefficients
43 x 18

Control

Data Addr

WE

Coef Addr

DSP48 Slice
18

18
A

B

A

B

P

Dual-Port Block RAM

Data Samples
43 x 18

Coefficients
43 x 18

Dual-Port Block RAM

DSP48 Slice18

OPMODE = 0100101

OPMODE
Translation

OPMODE = 0011110

UG073_c3_9_083105

Rounding
Constant

Cin

https://secure.xilinx.com/webreg/clickthrough.do?cid=30157
http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 77
UG073 (v2.7) May 15, 2008

R

Chapter 4

Parallel FIR Filters

This chapter describes the implementation of high-performance, parallel, full-precision
FIR filters using the DSP48 slice in a Virtex®-4 device. Because the Virtex-4 architecture is
flexible, it is practical to construct custom FIR filters to meet the requirements of a specific
application. Creating optimized, parallel filters saves resources.

This chapter demonstrates two parallel filter architectures: the Transposed and Systolic
Parallel FIR filters. The reference design files in VHDL and Verilog permit filter parameter
changes, including coefficients and the number of taps.

This chapter contains the following sections:

• “Overview”

• “Parallel FIR Filters”

• “Transposed FIR Filter”

• “Systolic FIR Filter”

• “Symmetric Systolic FIR Filter”

• “Rounding”

• “Performance”

• “Conclusion”

Overview
There are many filtering techniques available to signal processing engineers. A common
filter implementation for high-performance applications is the fully parallel FIR filter.
Implementing this structure in the Virtex-II architecture uses the embedded multipliers
and slice based arithmetic logic. The Virtex-4 DSP48 slice introduces higher performance
multiplication and arithmetic capabilities specifically designed to enhance the use of
parallel FIR filters in FPGA-based DSP.

Parallel FIR Filters
A wide variety of filter architectures are available to FPGA designers due to the flexible
nature of FPGAs. The type of architecture chosen is typically determined by the amount of
processing required in the available number of clock cycles. The two most important
factors are:

• Sample Rate (Fs)

• Number of Coefficients (N)

In Figure 4-1, as the sample rate and the number of coefficients increase, the architecture
selected for a desired FIR filter becomes a more parallel structure involving more multiply

http://www.xilinx.com

78 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 4: Parallel FIR Filters
R

and add elements. Chapter 3, “MACC FIR Filters” addresses the details of the sequential
processing FIR filters, including the single and dual MAC FIR filter. This chapter
investigates the other extreme of the fully parallel FIR filter as required to filter the fastest
data streams.
X-Ref Target - Figure 4-1

Figure 4-1: Selecting Filter Architectures

10

50

500
400
300

200

100

1

Semi-Parallel FIR Filters
(Chapter 5)

Sequential FIR Filters (Chapter 3)

Parallel FIR Filters (Chapter 4)

10
20 50 500200

100 1000

UG073_c4_01_083005

Number of Coefficients (N)
Log Scale

S
am

pl
e

R
at

e
(M

H
z)

Lo
g

S
ca

le

5
1

0.5

5

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 79
UG073 (v2.7) May 15, 2008

Parallel FIR Filters
R

The basic parallel architecture, shown in Figure 4-2, is referred to as the
Direct Form Type 1.

This structure implements the general FIR filter equation of a summation of products as
defined in Equation 4-1.

Equation 4-1

In Equation 4-1, a set of N coefficients is multiplied by N respective data samples. The
results are summed together to form an individual result. The values of the coefficients
determine the characteristics of the filter (e.g., a low-pass filter).

The history of data is stored in the individual registers chained together across the top of
the architecture. Each clock cycle yields a new complete result, and all multiplication and
arithmetic required occurs simultaneously. In sequential FIR filter architectures, the data
buffer is created using Virtex-4 dedicated block RAMs or distributed RAMs. This
demonstrates a trend; as algorithms become faster, the memory requirement is reduced.
However, the memory bandwidth increases dramatically because all N coefficients must
be processed at the same time.

The performance of the Parallel FIR filter is calculated in Equation 4-2.

Maximum Input Sample Rate = Clock Speed Equation 4-2

The bit growth through the filter is the same for all FIR filters and is explained in the
section “Bit Growth” in Chapter 3.

X-Ref Target - Figure 4-2

Figure 4-2: Direct Form Type 1 FIR Filter

h3

18

38

18
h2 h1 h0

UG073_c4_02_083005

yn xn i– hi
i 0=

N 1–

∑=

http://www.xilinx.com

80 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 4: Parallel FIR Filters
R

Transposed FIR Filter
The DSP48 arithmetic units are designed to be easily and efficiently chained together using
dedicated routing between slices. The Direct Form Type I uses an adder tree structure. This
makes it difficult to chain the blocks together. The Transposed FIR filter structure
(Figure 4-3) is more optimal for use with the DSP48 Slice.

The input data is broadcast across all the multipliers simultaneously, and the coefficients
are ordered from right to left with the first coefficient, h0, on the right. These results are fed
into the pipelined adder chain acting as a data buffer to store previously calculated inner
products in the adder chain. The rearranged structure yields identical results to the Direct
Form structure but gains the use of an adder chain. This different structure is easily
mapped to the DSP48 slice without additional external logic. If more coefficients are
required, then more DSP48 slices must be added to the chain.

The configuration of the DSP48 slice for each segment of the Transposed FIR filter is shown
in Figure 4-4. Apart from the very first segment, all processing elements must be
configured as shown in Figure 4-4. OPMODE is set to multiply mode with the adder,
combining the results from the multiplier and from the previous DSP48 slice through the
dedicated cascade input (PCIN). OPMODE is set to binary 0010101.

X-Ref Target - Figure 4-3

Figure 4-3: Transposed FIR Filter

h3

B
18

0

h2

B

h1

B

h0

B

P

DSP48 Slice
OPMODE = 0000101

DSP48 Slice
OPMODE = 0010101

DSP48 Slice
OPMODE = 0010101

DSP48 Slice
OPMODE = 0010101

UG073_c4_03_083105

20

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 81
UG073 (v2.7) May 15, 2008

Transposed FIR Filter
R

X-Ref Target - Figure 4-4

Advantages and Disadvantages
The advantages to using the Transposed FIR filter are:

• Low Latency: The maximum latency never exceeds the pipelining time through the
slice containing the first coefficient. Typically, this is three clock cycles between the
data input and the result appearing.

• Efficient Mapping to the DSP48 Slice: Mapping is enabled by the adder chain
structure of the Transposed FIR filter. This extendable structure supports both large
and small FIR filters.

• No External Logic: No external FPGA logic is required, enabling the highest possible
performance to be achieved.

The disadvantage to using the Transposed FIR filter is:

• Limited performance: Performance might be limited by a high fanout input signal if
there are a large number of taps.

Resource Utilization
An N coefficient filter uses N DSP48 slices. A design cannot use symmetry to reduce the
number of DSP48 slices when using the Transposed FIR filter structure.

Figure 4-4: Transpose Multiply-Add Processing Element

UG073_c4_04_083105

DSP48 Slice
OPMODE = 0010101

A

B

PCOUTPCIN

http://www.xilinx.com

82 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 4: Parallel FIR Filters
R

Systolic FIR Filter
The systolic FIR filter is considered an optimal solution for parallel filter architectures. The
systolic FIR filter also uses adder chains to fully utilize the DSP48 slice architecture
(Figure 4-5).

The input data is fed into a cascade of registers acting as a data buffer. Each register
delivers a sample to a multiplier where it is multiplied by the respective coefficient. In
contrast to the Transposed FIR filter, the coefficients are aligned from left to right with the
first coefficients on the left side of the structure. The adder chain stores the gradually
combined inner products to form the final result. As with the Transposed FIR filter, no
external logic is required to support the filter and the structure is extendable to support
any number of coefficients.

The configuration of the DSP48 slice for each segment of the Systolic FIR filter is shown in
Figure 4-6. Apart from the very first segment, all processing elements are to be configured
as shown in Figure 4-6. OPMODE is set to multiply mode with the adder combining the
results from the multiplier and from the previous DSP48 slice through the dedicated
cascade input (PCIN). OPMODE is set to binary 0010101. The dedicated cascade input
(BCIN) and dedicated cascade output (BCOUT) are used to create the necessary input data
buffer cascade.
X-Ref Target - Figure 4-6

X-Ref Target - Figure 4-5

Figure 4-5: Systolic FIR Filter

h0

B

18

0

h1 h2 h3

P

DSP48 Slice
OPMODE = 0000101

DSP48 Slice
OPMODE = 0010101

DSP48 Slice
OPMODE = 0010101

DSP48 Slice
OPMODE = 0010101

UG073_c4_05_083105

18

20

Figure 4-6: Systolic Multiply-Add Processing Element

ug073_c4_06_083105

DSP48 Slice
OPMODE = 0010101

A

PCOUTPCIN

BCOUTBCIN

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 83
UG073 (v2.7) May 15, 2008

Symmetric Systolic FIR Filter
R

Advantages and Disadvantages
The advantages to using the Systolic FIR filter are:

• Highest Performance: Maximum performance can be achieved with this structure
because there is no high fanout input signal. Larger filters can be routing-limited if the
number of coefficients exceeds the number of DSP slices in a column on a device.

• Efficient Mapping to the DSP48 Slice: Mapping is enabled by the adder chain
structure of the Systolic FIR Filter. This extendable structure supports large and small
FIR filters.

• No External Logic: No external FPGA logic is required, enabling the highest possible
performance.

The disadvantage to using the Systolic FIR filter is:

• Higher Latency: The latency of the filter is a function of how many coefficients are in
the filter. The larger the filter, the higher the latency.

Resource Utilization
An N coefficient filter uses N DSP48 slices.

Symmetric Systolic FIR Filter
In Chapter 3, “MACC FIR Filters,” symmetry was examined, and an implementation was
illustrated to exploit this symmetric nature of the coefficients. Exploiting symmetry is
extremely powerful in Parallel FIR filters because it halves the required number of
multipliers, which is advantageous due to the finite number of DSP48 slices. Equation 4-3
demonstrates how the data is pre-added before being multiplied by the single coefficient.

(X0 x C0) + (Xn x Cn) … ⎝ (X0 + Xn) x C0 (if C0 = Cn) Equation 4-3

Figure 4-7 shows the implementation of this type of Systolic FIR Filter structure.
X-Ref Target - Figure 4-7

Figure 4-7: Symmetric Systolic FIR

h0

B B B B

17

0

h1 h2 h3

P

DSP48 Slice
OPMODE = 0000101

DSP48 Slice
OPMODE = 0010101

DSP48 Slice
OPMODE = 0010101

DSP48 Slice
OPMODE = 0010101

UG073_c4_07_083105

38

http://www.xilinx.com

84 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 4: Parallel FIR Filters
R

In this structure, DSP48 slices have been traded off for device logic. From a performance
viewpoint, to achieve the full speed of the DSP48 slice, the logic-slice-based18-bit adder
has to run at the same speed. To achieve this, register duplication can be performed on the
output from the last tap that feeds all the other multipliers.

To save on logic area, the two register delay in the input buffer time series is implemented
as an SRL16E and a register output. A further benefit of the symmetric implementation is
the reduction in latency, due to the adder chain being half the length.

Figure 4-8 shows the configuration of the DSP48 slice for each segment of the Symmetric
Systolic FIR filter. Apart from the very first segment, all processing elements are to be
configured as in Figure 4-8. OPMODE is set to multiply mode, with the adder combining
results from the multiplier and from the previous DSP48 slice via the dedicated cascade
input (PCIN). OPMODE is set to binary 0010101.
X-Ref Target - Figure 4-8

Resource Utilization
An N symmetric coefficient filter uses N DSP48 slices. The slice count for the pre-adder and
input buffer time series is a factor of the input bit width (n) and N. The equation for the size
in slices is:

((n+1) * (N/2)) + (n/2) Equation 4-4

For the example illustrated in Figure 4-7, the size is (17+1) * 8/2 + 17/2 = 81 slices.

Rounding
The number of bits on the output of the filter is much larger than the input and must be
reduced to a manageable width. The output can be truncated by simply selecting the MSBs
required from the filter. However, truncation introduces an undesirable DC data shift. Due
to the nature of two's complement numbers, negative numbers become more negative and
positive numbers also become more negative. The DC shift can be improved with the use
of symmetric rounding, where positive numbers are rounded up and negative numbers
are rounded down.

The rounding capability in the DSP48 slice maintains performance and minimizes the use
of the FPGA fabric. This is implemented in the DSP48 slice using the C input port and the
Carry In port. Rounding is achieved by:

For positive numbers: Binary Data Value + 0.10000… and then truncate

Figure 4-8: Symmetric Systolic Multiply-Add (MADD) Processing Element

UG073_c4_08_083105

DSP48 Slice
OPMODE = 0010101

A

B

PCOUTPCIN

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 85
UG073 (v2.7) May 15, 2008

Rounding
R

For negative numbers: Binary Data Value + 0.01111... and then truncate

The actual implementation always adds 0.0111… to the data value through the C port
input as in the negative case, and then it adds the extra carry in required to adjust for
positive numbers. Table 4-1 illustrates some examples of symmetric rounding.

For both the Transposed and Systolic Parallel FIR filters, the C input is used at the
beginning of the adder chain to drive the carry value into the accumulated result. The final
segment uses the MSB of the PCIN as the carry-in value to determine if the accumulated
product is positive or negative. CARRYINSEL is used to select the appropriate carry-in
value. If positive, the carry-in value is used, and if negative, the result is kept the same (see
Figure 4-9).

The one problem with the rounding solution occurs when the final accumulated inner
product input to the final DSP48 slice is very close to zero. If the value is positive and the
final inner product makes the result negative (leading to a rounding down), then an
incorrect result occurs because the rounding function assumes a positive number instead
of a negative. The last coefficient in typical FIR filters is very small, so this situation rarely
occurs. However, if absolute certainty is required, an extra DSP48 slice can perform the
rounding function (see Figure 4-10). A Transposed FIR filter can have exactly the same
problem as the Systolic FIR filter.

Table 4-1: Symmetric Rounding Examples

Decimal Value Binary Value Add Round Truncate: Finish Rounded Value

2.4375 0010.0111 0010.1111 0010 2

2.5 0010.1000 0011.0000 0011 3

2.5625 0010.1001 0011.0001 0011 3

–2.4375 1101.1001 1110.0000 1110 –2

–2.5 1101.1000 1101.1111 1101 –3

–2.5625 1101.0111 1101.1110 1101 –3

X-Ref Target - Figure 4-9

Figure 4-9: Systolic FIR Filter with Rounding

h0

B
18

0.49999 C

h1 h2 h3

P

DSP48 Slice
OPMODE = 0'b0110101

DSP48 Slice
OPMODE = 0'b0010101

DSP48 Slice
OPMODE = 0'b0010101

DSP48 Slice
OPMODE = 0'b0010101

Carryinsel = 01
UG073_c4_09_083105

18

18

http://www.xilinx.com

86 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 4: Parallel FIR Filters
R

X-Ref Target - Figure 4-10

Performance
When examining the performance of a Virtex-4 Parallel FIR filter, a Virtex-II Pro design is
a valuable reference. Table 4-2 illustrates the ability of the Virtex-4 DSP48 slice to greatly
reduce logic fabric resources requirements while improving the speed of the design and
reducing the power utilization of the filter.

Reference Design File
The reference design files associated with this chapter, ug073_c04.zip, can be found at:
https://secure.xilinx.com/webreg/clickthrough.do?cid=30158

Figure 4-10: Systolic FIR Filter with Separate Rounding Function

h0

B
18

0C

h1 h2 h3

C
0.4999

P

DSP48 Slice
OPMODE = 0'b0000101

DSP48 Slice
OPMODE = 0'b0010101

DSP48 Slice
OPMODE = 0'b0010101

DSP48 Slice
OPMODE = 0'b0010101

DSP48 Slice
OPMODE = 0'b0011100

Carryinsel = 01

UG073_c4_10_083105

18

18

Table 4-2: Performance Analysis

Filter Type Device Family Size Performance
Power
(Watts)

18 x 18 Parallel
Transposed FIR Filter
(51 Tap Symmetric)

Virtex-II Pro FPGA 1860 Slices
26 Embedded Multipliers

300-MHz Clock Speed
300 MS/S

TBD

18 x 18 Parallel
Systolic FIR Filter
(51 Tap Symmetric)

Virtex-II Pro FPGA 2958 Slices
26 Embedded Multipliers

300-MHz Clock Speed
300 MS/S

TBD

18 x 18 Parallel
Transposed FIR Filter
(51 Tap Symmetric)

Virtex-4 FPGA 0 Slices
51 DSP48 Slices

400-MHz Clock Speed
400 MS/S

TBD

17 x 18 Systolic FIR Filter
(51 Tap Non-Symmetric)

Virtex-4 FPGA 0 Slices
51 DSP48 Slices

450-MHz Clock Speed
450 MS/S

TBD

17 x 18 Systolic FIR Filter
(51 Tap Symmetric)

Virtex-4 FPGA 477 Slices
26 DSP48 Slices

400-MHz Clock Speed
400 MS/S

TBD

https://secure.xilinx.com/webreg/clickthrough.do?cid=30158
http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 87
UG073 (v2.7) May 15, 2008

Conclusion
R

Conclusion
Parallel FIR filters are commonly used in high-performance DSP applications. With the
introduction of the Virtex-4 DSP48 slice, DSPs can be achieved in a smaller area, thereby
producing higher performance with less power penalty.

Designers have tremendous flexibility in determining the desired implementation. They
also have the ability to change the implementation parameters. The ability to “tune” a filter
in an existing system or to have multiple filter settings is a distinct advantage. By making
the necessary coefficient changes in the synthesizable HDL code, the reconfigurable nature
of the FPGA is fully exploited. The coefficients can be either hardwired to the A input of
the DSP48 slices or stored in small memories and selected to change the filter
characteristics. The HDL and System Generator for DSP reference designs are easily
modified to achieve specific requirements.

http://www.xilinx.com

88 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 4: Parallel FIR Filters
R

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 89
UG073 (v2.7) May 15, 2008

R

Chapter 5

Semi-Parallel FIR Filters

This chapter describes the implementation of semi-parallel or hardware-folded, full-
precision FIR filters using the Virtex®-4 DSP48 slice. Because the Virtex-4 architecture is
flexible, constructing FIR filters for specific application requirements is practical. Creating
optimum filter structures of a semi-parallel nature saves resources and potential clock
cycles. Therefore, optimum filter structures of a semi-parallel nature can be created
without draining resources or clock cycles.

This chapter demonstrates two semi-parallel filter architectures: the four-multiplier FIR
filter using distributed RAM and the three-multiplier FIR filter using block RAM. These
filters illustrate how resources are saved by using available clock cycles and hardware-
folding techniques. Reference design files are available for system generator in DSP,
VHDL, and Verilog. The reference designs permit filter parameter changes including
coefficients and the number of taps.

This chapter contains the following sections:

• “Overview”

• “Semi-Parallel FIR Filter Structure”

• “Four-Multiplier, Distributed-RAM-Based, Semi-Parallel FIR Filter”

• “Three-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter”

• “Other Semi-Parallel FIR Filter Structures”

• “Conclusion”

Overview
A large array of filtering techniques are available to signal processing engineers. A
common filter implementation to exploit available clock cycles, while still achieving
moderate to high sample rates, is the semi-parallel (also known as folded-hardware) FIR
filter. In the past, this structure used the Virtex-II embedded multipliers and slice-based
arithmetic logic. However, the Virtex-4 DSP48 slice introduces higher performance
multiplication and arithmetic capabilities to enhance the use of semi-parallel FIR filters in
FPGA-based DSP designs.

Semi-Parallel FIR Filter Structure
A wide variety of filter architectures are available to FPGA designers due to the flexible
nature of FPGAs. The type of architecture is typically determined by the amount of
processing required in the number of available clock cycles. The two most important
factors are:

• Sample Rate (Fs)

http://www.xilinx.com

90 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 5: Semi-Parallel FIR Filters
R

• Number of Coefficients (N)

As illustrated in Figure 5-1, as the sample rate increases and the number of coefficients
increase, the architecture selected for a desired FIR filter becomes a more parallel structure
involving more multiply-add elements. Chapter 3, “MACC FIR Filters” addresses the
details of sequential processing FIR filters including the single and dual MACC FIR Filter.
Chapter 4, “Parallel FIR Filters” investigates the polar extreme of the fully-parallel FIR
filter required for the highest sample rate filters. This chapter examines the common
scenario requiring multiple processing elements working over numerous clock cycles to
achieve the result. These techniques are often referred to as semi-parallel and are used to
maximize efficiency of the filter (see Figure 5-1).

The semi-parallel FIR structure implements the general FIR filter equation of a summation
of products defined as shown in Equation 5-1.

Equation 5-1

X-Ref Target - Figure 5-1

Figure 5-1: Selecting Filter Architectures

10

50

500
400
300

200

100

1

Semi-Parallel FIR Filters
(Chapter 5)

Sequential FIR Filters (Chapter 3)

Parallel FIR Filters (Chapter 4)

10
20 50 500200

100 1000

UG073_c5_01_082404

Number of Coefficients (N)
Log Scale

S
am

pl
e

R
at

e
(M

H
z)

Lo
g

S
ca

le

5
1

0.5

5

yn xn i– hi

i 0=

N 1–

∑=

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 91
UG073 (v2.7) May 15, 2008

Four-Multiplier, Distributed-RAM-Based, Semi-Parallel FIR Filter
R

Here a set of N coefficients is multiplied by N respective time series data samples, and the
results are summed together to form an individual result. The values of the coefficients
determine the characteristics of the filter (for example, a low-pass filter).

Along with achievable clock speed and the number of coefficients (N), the number of
multipliers (M) is also a factor in calculating semi-parallel FIR filter performance. The
following equation demonstrates that the more multipliers used, the greater the achievable
performance of the filter.

Maximum Input Sample Rate = (Clock speed/Number of Coefficients) x Number of Multipliers

The Maximum Input Sample Rate equation is rearranged to determine how many
multipliers to use for a particular semi-parallel architecture:

Number of Multipliers = (Maximum Input Sample rate x Number of Coefficients)/Clock speed

The number of clock cycles between each result of the FIR filter is determined by the
following equation:

Number of Clock Cycles per Result = Number of Coefficients / Number of Multipliers

The bit growth on the output of the filter is the same for all FIR filters and is explained in
“Bit Growth” in Chapter 3. The large, 48-bit internal precision of the DSP48 slice means
that little concern needs to be paid to the internal bit growth of the filter.

Four-Multiplier, Distributed-RAM-Based, Semi-Parallel FIR Filter
After the required number of multipliers is determined, there is an extendable architecture
using the DSP48 slice as the basis of the filter. This section assumes the specifications in
Table 5-1 and describes the filter implementation and its functions.

Table 5-1: Four-Multiplier, Semi-Parallel FIR Filter Specifications

Sampling Rate 112.5 MS/S

Number of Coefficients 16

Assumed Clock Speed 450 MHz

Input Data Width 18 Bits

Output Data Width 18 Bits

Number of Multipliers 4

Number of Clock Cycles Between Each Result 4

http://www.xilinx.com

92 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 5: Semi-Parallel FIR Filters
R

Figure 5-2 illustrates the main structure for the four-multiplier, semi-parallel FIR filter.

The DSP48 slice arithmetic units are designed to be chained together easily and efficiently
due to dedicated routing between slices. Figure 5-2 shows how the four DSP48 slice
multiply-add elements are cascaded together to form the main part of the filter structure.
Figure 5-3 provides a detailed view of the main multiply-add elements. The two pipeline
registers are used on the B input to compensate for the register on the output of the
coefficient memory.

An extra DSP48 slice is required on the end to perform the accumulation of the partial
results, thus creating the final result. A new result is created every four cycles. Every four
cycles, the accumulation must be reset to the first partial value of the next result. As in the
MACC FIR Filter, this reset (or load) is achieved by changing the OPMODE value of the
DSP48 slice for a single cycle. OPMODE is changed from binary 0010010 to binary

X-Ref Target - Figure 5-2

Figure 5-2: Four-Multiplier, Semi-Parallel FIR Filter in Accumulation Mode

UG073_c5_02_083105

DSP48 Slice
OPMODE = 0110101

18

Coefficients
4 x 18

Coefficients
4 x 18

Coefficients
4 x 18

Coefficients
4 x 18

0

B

DSP48 Slice
OPMODE = 0010101

18

B

DSP48 Slice
OPMODE = 0010101

18

B

DSP48 Slice
OPMODE = 0010101

18

B

DSP48 Slice
OPMODE = 0010010

SRL16E SRL16E SRL16E SRL16E

18

WE WE1 WE2 WE3

40

WE4P
PCIN

X-Ref Target - Figure 5-3

Figure 5-3: Detailed Diagram of a Single Multiply-Add Element

UG073_c5_03_083105

DSP48 Slice
OPMODE = 0010101

A

B

PCIN PCOUT

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 93
UG073 (v2.7) May 15, 2008

Four-Multiplier, Distributed-RAM-Based, Semi-Parallel FIR Filter
R

0010000 (just a single bit change). At the same time, the capture register is also enabled,
and the final result is stored on the output (see Figure 5-4).

Control logic is required to make this dynamic change occur. The specifics are detailed in
“Control Logic and Address Sequencing,” page 94.

Data Memory Buffers
This example uses eight memories. Four SRL16Es are used as data buffers. Each SRL16E
holds the four samples needed for the result. They are written to once every four cycles
(the input data rate is 4x slower than the internal rate), and the shifting characteristic of the
SRL16E is exploited to pass old samples along the time series buffer. The extra register on
the output of each data buffer is required to match the data buffer pipeline with the extra
delay caused by the adder chain. The extra register should not cost extra resources because
it is already present in the slice containing the SRL16E (see Figure 5-5).

As long as the depth does not exceed 16, the resources required for each of these input
memory buffers is determined by the bit width of the input data (n). Therefore, n/2 SliceM
is required for each memory buffer, leading to nine slices per buffer in this filter example.
For depths up to 32, resources are a little more than doubled because two SRL16Es are
needed, as well as an extra output multiplexer. For more information on SliceM, refer to the
CLB section in the Virtex-4 User Guide.

X-Ref Target - Figure 5-4

Figure 5-4: Four-Multiplier, Semi-Parallel FIR Filter at the Start of a New Result Cycle

UG073_c5_04_083105

DSP48 Slice
OPMODE = 0110101

18

Coefficients
4 x 18

Coefficients
4 x 18

Coefficients
4 x 18

Coefficients
4 x 18

0

B

DSP48 Slice
OPMODE = 0010101

18

B

DSP48 Slice
OPMODE = 0010101

18

B

DSP48 Slice
OPMODE = 0010101

18

B

DSP48 Slice
OPMODE = 0010010

SRL16E SRL16E SRL16E SRL16E

18

WE WE1 WE2 WE3

40

WE4P

PCIN

0

X-Ref Target - Figure 5-5

Figure 5-5: Single Bit of One Input Memory Buffer

UG073_c5_05_081805

1/2 SliceM

Register
SRL16E

DOUT

ADDR[3:0]

WE
DIN

http://www.xilinx.com

94 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 5: Semi-Parallel FIR Filters
R

Coefficient Memory
The coefficients are divided up into four groups of four. This arrangement is determined
by dividing the total number of coefficients by the number of multipliers used in the
implementation. In this example, if the total number of coefficients is 16, and the number of
multipliers is four, four coefficients per memory are needed.

Filters with a total number of coefficients that are integer-divisible by the required number
of multipliers are very desirable. System designers should take this into account when
designing their filters to get the optimal filter specification for the implementation used.
Otherwise, the coefficients have to be padded with zeros to achieve a number of
coefficients that are integer-divisible by the number of multipliers.

The coefficients are simply split into groups according to their order. The first four in the
first memory, the second four in the second memory, and so on (see Figure 5-6).
X-Ref Target - Figure 5-6

The adder chain architecture of the DSP48 slice means that each Multiply-Add cascade
multiplication must be delayed by a single cycle so that the results synchronize
appropriately when added together. This delay is achieved by addressing of the memories
and is explained in “Control Logic and Address Sequencing.”

Distributed RAM (refer to Chapter 1, “XtremeDSP Design Considerations,” for detailed
information) is used for the coefficient memories. Distributed RAM is smaller and
abundant and allows efficient use of the larger block RAMs, especially given their scarcity.
The larger block RAM is used when the number of coefficients per memory starts to
increase to the point where the cost in slice resources becomes significant (for example,
greater than 64).

The total cost of the current example is 36 slices. The coefficient width is 18 bits, and
distributed RAMs cost n/2 slices (that is, nine slices per memory and four memories). For
larger distributed RAMs (larger than 16 elements), the size begins to increase as Write
Enable (WE) control logic and an output multiplexer is needed. The distributed memory
v7.0 in the CORE Generator™ system can be easily used to create the little distributed
RAMs and get accurate size estimates.

Control Logic and Address Sequencing
The Control Logic and Address Sequencing is the most important and complicated aspect
of semi-parallel FIR filters and is crucial to the operation of the filter. The control logic is
discussed in two separate sections:

• Memory Addressing

• Clock Enable Sequencing

Figure 5-6: Coefficient Memory Arrangement

UG073_c5_06_060804

Coefficients Driving
First DSP48 Slice

Coefficients Driving
Second DSP48 Slice

Coefficients Driving
Third DSP48 Slice

Coefficients Driving
Fourth DSP48 Slice

h0

h1
h2
h3

h4
h5

h6
h7

h8
h9

h10
h11

h12

h13

h14
h15

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 95
UG073 (v2.7) May 15, 2008

Four-Multiplier, Distributed-RAM-Based, Semi-Parallel FIR Filter
R

Memory addressing must provide the necessary delay for each multiply-add element
mentioned in “Coefficient Memory,” page 94, caused by the adder chain. This is not the
case when using an adder tree; the DSP48 slice is most efficiently used in adder chains.

Figure 5-7 illustrates the control logic required to create the necessary memory addressing.
The counter creates the fundamental zero through three count. A register in the control
path then delays the coefficient memory and data buffer address by one cycle. Each
successive delay is used to address both the coefficient memory and the data buffer of their
respective multiply-add elements, e.g., a single delay for the second multiply-add element,
two delays for the third multiply-add element, etc. This is extensible control logic for M
number of multipliers.
X-Ref Target - Figure 5-7

Figure 5-7 also shows clock enable sequencing. A relational operator is required to
determine when the count limited counter resets its count. This signal is High for one clock
cycle every four cycles to represent the input and output data rates. The Clock Enable
signal is delayed by a single register just like the coefficient address, and each delayed
version of the signal is tied to the respective section of the filter. Refer to Figure 5-2 to see

Figure 5-7: Control Logic for the Four-Multiplier, Semi-Parallel FIR Filter

UG073_c5_07_081805

addr

Coefficient
Memory 0

and
Data Buffer 0

Address

Coefficient
Memory 1

and
Data Buffer 1

Address

Coefficient
Memory 2

and
Data Buffer 2

Address

Coefficient
Memory 3

and
Data Buffer 3

Address

Counter
0 -> N/M - 1

N/M - 2

WE WE1 WE2 WE3 WE4

z-5

http://www.xilinx.com

96 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 5: Semi-Parallel FIR Filters
R

the signal connections to the element. Figure 5-8 illustrates the control logic waveforms
changing over time.

Resource Utilization
Table 5-2 shows the resources used by a 16-tap, four-multiplier, distributed-RAM-based,
semi-parallel FIR filter.

X-Ref Target - Figure 5-8

Figure 5-8: Control Waveforms for Semi-Parallel FIR Filters

Clock

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5)Input Data

y(n-1)0 y(n) y(n-2)Output Data

0 01 2 3 3 3 3 322 221 00 1 10 1
Address for First DSP48

Slice MADD Element

Control WE

0 213 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
Address for Second DSP48

Slice MADD Element

Control WE1

32 10 2 3 0 1 2 23 0 1 13 0 2 3 0 1 2 3
Address for Third DSP48

Slice Design Element

Control WE2

21 03 1 2 3 0 1 12 3 0 02 3 1 2 3 0 1 2
Address for Fourth DSP48

Slice Design Element

Control WE3

UG073_c5_08_081805

Table 5-2: Resource Utilization

Elements Slices DSP48 Slices

Multiply-Add 5

Input Data Buffers 36

Coefficient Memories 36

Capture Register 20

Main Control Counter 2

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 97
UG073 (v2.7) May 15, 2008

Three-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter
R

Three-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter
This section investigates a different filter structure, the three-multiplier, block-RAM-based,
semi-parallel FIR filter (see Figure 5-9).
X-Ref Target - Figure 5-9

The decision to use this implementation is based on the filter specification. The filter
specifications are described in Table 5-3.

The structure is similar to the four-multiplier filter studied earlier. In this instance, the
lower sample rate of the filter specification and the larger number of taps indicates that only
three multipliers are required, each servicing 100 coefficients, leading to a new result
yielded every 100 clock cycles.

Each memory buffer is required to hold 100 coefficients and also 100 input data history
values. The dedicated Virtex-4 block RAM can be used in dual-port mode with a cyclic
data buffer established in the first half of the memory to serve the shifting input data series.

Relational Operator 1

Multiply-Add Element Control 9 (3 per extra element)

Total 104 5

Table 5-2: Resource Utilization (Continued)

Elements Slices DSP48 Slices

Figure 5-9: Three-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter

UG073_c5_09_083105
DSP48 Slice

OPMODE = 0’b0110101 (a x B +C)

18

0

B18
Cyclic Data

Buffer
100 x 18

Coefficients
100 x 18

Cyclic Data
Buffer

100 x 18

Coefficients
100 x 18

Cyclic Data
Buffer

100 x 18

Coefficients
100 x 18

DSP48 Slice
OPMODE = 0010101

18

B

DSP48 Slice
OPMODE = 0010101

18

B

DSP48 Slice
OPMODE = 0010010

44P

WE3

PCIN

WE WE1 WE2

Table 5-3: Three-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter
Specifications

Parameter Value

Sampling Rate 4.5 MS/S

Number of Coefficients 300

Assumed Clock Speed 450 MHz

Input Data Width 18 bits

Output Data Width 18 bits

Number of Mulipliers 3

Number of Clock Cycles Between Each Result 100

http://www.xilinx.com

98 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 5: Semi-Parallel FIR Filters
R

Chapter 3, “MACC FIR Filters,” describes using these memories to store the input data
series, the coefficients, and the control logic required to make the cyclic RAM buffer
operate. The rest of the control logic and data flow is identical to the first filter investigated
except that only three multipliers are serviced; therefore, the control logic can be scaled
back by one element. Also note that the WE signals are the inversion of their respective CE
pair.

Table 5-4 shows the resource utilization for the 300-tap, three-multiplier, semi-parallel FIR
filter.

Other Semi-Parallel FIR Filter Structures
DSP functions can be implemented in different ways. There is never one solution fitting all
requirements for all specifications. For example, should distributed or block RAM be used
for data storage? Should a systolic or a transposed implementation be used for a given
filter? The goal is to achieve maximum performance and low resource utilization. This
section describes the different single-rate FIR filter implementations using the Virtex-4
architecture and discusses the advantages and disadvantages of their structures.

Table 5-4: Resource Utilization

Elements Slices DSP48 Slices Block RAMs

Multiply-Add 4

Input Data Buffers and
Coefficient Memories

3

Capture Register 20

Main Control Counter 5

Relational Operator 1

Multiply-Add Element Control 12 (6 per extra
element)

Total 38 4 3

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 99
UG073 (v2.7) May 15, 2008

Other Semi-Parallel FIR Filter Structures
R

Semi-Parallel, Transposed, Four-Multiplier FIR Filter
This structure is very different to the main architecture discussed in this chapter (see
Figure 5-10).

Only one data storage buffer is required, typically a block RAM. The data buffer output is
also broadcast to all DSP48 slices. Each DSP48 slice works in accumulator mode until the
last cycle of the calculation, when OPMODE changes to form an adder chain, and then
passes the results to the next DSP48 slice. Actually, four different results are being
calculated at one instance in time, and the completed combined result is output from the
last DSP48 slice. The other DSP48 slices are each calculating their respective portion of
subsequent output results.

X-Ref Target - Figure 5-10

Figure 5-10: Semi-Parallel, Transposed FIR Filter

18

UG073_c5_10_090105

Coefficients
100 x 36

Cyclic Data
Buffer

400 x 18

18

A

B

DSP48 Slice
OPMODE = 0100101

44

CE

18

A

B

DSP48 Slice
OPMODE = 0100101

18

A

B

DSP48 Slice
OPMODE = 0100101

18

A

B

DSP48 Slice
OPMODE = 0’b0011100 (C+PCIN)

Coefficients
100 x 36

36

36

http://www.xilinx.com

100 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 5: Semi-Parallel FIR Filters
R

Figure 5-11 shows the filter structure every time the DSP48 slice OPMODE is changed,
occurring once every result cycle.

Advantages and Disadvantages
The advantages to using the Semi-Parallel, Transposed FIR filter are:

• Lower resource utilization: One less DSP48 slice is required, and only a single input
memory buffer is used.

• Low latency: The transpose nature of the filter implementation is lower than the
Systolic approach. The latency is equal to the size of one coefficient bank.

X-Ref Target - Figure 5-11

Figure 5-11: Semi-Parallel, Transposed FIR Filter (Combination of the Results)

18

UG073_c5_11_090105

Coefficients
100 x 36

18

A

B

DSP48 Slice
OPMODE = 0010101

43

CE

18

A

B

DSP48 Slice
OPMODE = 0010101

18

A

B

DSP48 Slice
OPMODE = 0010101

18

A

B

DSP48 Slice
OPMODE = 0010101

Coefficients
100 x 36

36

36

Cycle Data
Buffer

400 x 18

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 101
UG073 (v2.7) May 15, 2008

Other Semi-Parallel FIR Filter Structures
R

The disadvantages to using the Semi-Parallel, Transposed FIR filter are:

• Lower performance: The broadcast nature of the data buffer output can limit
performance of the filter.

• Control logic: This logic is more difficult to understand, but is still of a compact
nature.

Rounding
The number of bits on the output of the filter is much larger than the input and must be
reduced to a manageable width. The output can be truncated by simply selecting the MSBs
required from the filter. However, truncation introduces an undesirable DC shift on the
data set.

Due to the nature of two’s complement numbers, negative numbers become more
negative, and positive numbers also become more negative. The DC shift can be improved
with the use of symmetric rounding, where positive numbers are rounded up and negative
numbers are rounded down. The rounding capability built into the DSP48 slice maintains
performance and minimizes the use of FPGA fabric. This is ingrained in the DSP48 slice via
the C input port and also the Carry-In port. Rounding is achieved in the following manner:

For positive numbers: Binary Data Value + 0.10000… and then truncate

For negative numbers: Binary Data Value + 0.01111... and then truncate

The actual implementation always adds 0.0111… to the data value using the C port input
as in the negative case, and then it adds the extra carry in required to adjust for positive
numbers. Table 5-5 illustrates some examples of symmetric rounding.

In the instance of the semi-parallel FIR filter, an extra DSP48 slice is required to perform the
rounding functionality. It cannot be ingrained into the final accumulator because the
rounding cannot be done on the final result. If the C input is used and the accumulator is
put into three-input add mode, then rounding is performed on the partial result. The
moremultipliers in the filter, the worse the rounding performance because even fewer
inner products are included in the result. An extra DSP48 slice is required to perform the
rounding.

Due to the finite nature of the DSP48 slices, it is recommended that the symmetric rounder
be implemented in the fabric outside of the slices. The function is small and does not have
to run at a high frequency because the results are running at the much slower input data
rate.

Table 5-5: Symmetric Rounding Examples

Decimal Value Binary Value Add Round Truncate: Finish Rounded Value

2.4375 0010.0111 0010.1111 0010 2

2.5 0010.1000 0011.0000 0011 3

2.5625 0010.1001 0011.0001 0011 3

-2.4375 1101.1001 1110.0000 1110 -2

-2.5 1101.1000 1101.1111 1101 -3

-2.5625 1101.0111 1101.1110 1101 -3

http://www.xilinx.com

102 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 5: Semi-Parallel FIR Filters
R

Performance
Compared to legacy devices, Virtex-4 devices improve the speed of the design, shrink the
area, and reduce power drawn by the filter. All designs assume 18-bit data and 18-bit
coefficient widths. Table 5-6 through Table 5-8 compare the specifications of three filters.

Reference Design Files
The reference design files associated with this chapter, ug073_c05.zip, can be found at:
https://secure.xilinx.com/webreg/clickthrough.do?cid=30159

Table 5-6: 4-Multiplier, Memory-Based, Semi-Parallel FIR Filter Specifications
(16-Tap Symmetric)

Parameter Specification

Size 94 slices, 5 DSP48 slices

Performance 458-MHz clock speed, 114.5 MS/S

Power TBD Watt

Table 5-7: 3-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter Specifications
(300-Tap Symmetric)

Parameter Specification

Size 38 slices, 4 DSP48 slices, 4 block RAMs

Performance 450-MHz clock speed, 4.5 MS/S

Power TBD Watt

Table 5-8: 4-Multiplier, Block-RAM-Based, Semi-Parallel Transposed FIR Filter
Specifications (400-Tap Symmetric)

Parameter Specification

Size 46 slices, 4 DSP48 slices, 2 block RAMs

Performance 450-MHz clock speed, 4.5 MS/S

Power TBD Watt

https://secure.xilinx.com/webreg/clickthrough.do?cid=30159
http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 103
UG073 (v2.7) May 15, 2008

Conclusion
R

Conclusion
Semi-parallel FIR filters are probably the most frequently used filter techniques in Virtex-4
high-performance DSP applications. Figure 5-12 shows the necessary implementation
decisions and provides guidelines for choosing the required structure based on the filter
specifications.
X-Ref Target - Figure 5-12

The major lines indicate the guideline thresholds between given implementation
techniques. For instance, the shift to using block RAM is desirable when the number of
taps needed to be stored in a given memory exceeds 32. This correlates to two SRL16Es for
the data buffers. If more than two SRL16Es are used in a data buffer, it will be difficult to
reach the high clock rate indicated in Chapter 3, “MACC FIR Filters,” Chapter 4, “Parallel
FIR Filters,” and this chapter. However, this is only a guideline. A great deal depends upon
how many slices or block RAMs are remaining in the device, the power requirements, and
the available clock frequencies. A given filter implementation is subjective because a
different set of restrictions is provided by every application and design.

Figure 5-12: Selecting the Correct Filter Architecture for Semi-Parallel FIR Filters

Semi-Parallel
Distributed
Memory FIR

Increasing
Number of
Multipliers

Semi-Parallel
Block RAM FIR

Systolic FIR (Symmetric & Non-Symmetric)

Block RAMDistributed Memory Normal Control
MACC FIR

Number of Coefficients (N)
Log Scale

S
am

pl
e

R
at

e
(M

H
z)

Lo
g

S
ca

le

Embedded
Control

MACC FIR

Distributed
Memory

MACC FIR

Transposed FIR
Symmetric
MACC FIR

UG072_c5_12_090105

10-Multiplier
Semi-Parallel

FIR

1000
500505 20 200

200

500
400
300

50

5

100101

1

0.5

10

100

http://www.xilinx.com

104 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 5: Semi-Parallel FIR Filters
R

In general, the guidelines provided in the past three chapters should enable designers to
make sensible and efficient decisions when designing filters. These chapters also complete
the foundations required for filter construction in Virtex-4 devices so that more complex,
multi-channel and interpolation or decimation multirate filters can be constructed. The
supplied referenced designs further aid in understanding and utilizing these filters.

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 105
UG073 (v2.7) May 15, 2008

R

Chapter 6

Multichannel FIR Filters

This chapter illustrates the use of the advanced Virtex®-4 DSP features when
implementing a widely used DSP function known as multichannel FIR filtering.
Multichannel filters are used to filter multiple input sample streams in a variety of
applications, including communications and multimedia.

The main advantage of using a multichannel filter is leveraging very fast math elements
across multiple input streams (i.e., channels) with much lower sample rates. This
technique increases silicon efficiency by a factor almost equal to the number of channels.

The Virtex-4 DSP48 slice is one of the new and highly innovative diffused elements that
form the basis of the Application Specific Modular BLock (ASMBL™) architecture. This
modular architecture enables Xilinx to rapidly and cost-effectively build FPGA platforms
by combining different elements, such as logic, memory, processors, I/O, and of course,
DSP functionality targeting specific applications such as wireless or video DSP.

The Virtex-4 DSP48 slice contains the basic elements of classic FIR filters: a multiplier
followed by an adder, delay or pipeline registers, plus the ability to cascade an input
stream (B bus) and an output stream (P bus) without exiting to a general slice logic.

The resulting DSP designs can have optional pipelining that permits aggregate
multichannel sample rates of up to 500 million samples per second, while minimizing
power consumption and external slice logic. In the implementation described in this
chapter, multichannel filtering can be looked at as time-multiplexed, single-channel filters.

In a typical multichannel filtering scenario, multiple input channels are filtered using a
separate digital filter for each channel. Due to the high performance of the DSP48 block
within the Virtex-4 device, a single digital filter can be used to filter all eight input channels
by clocking the single filter with an 8x clock. This implementation uses 1/8th of the total
FPGA resource compared to implementing each channel separately.

This chapter contains the following sections:

• “Multichannel FIR Implementation Overview”

• “Combining Separate Input Streams into an Interleaved Stream”

• “Conclusion”

Multichannel FIR Implementation Overview

Top Level
The implementation of a six-channel, eight-tap FIR filter using DSP48 elements is depicted
in Figure 6-1. The design elements used in the implementation include the following:

http://www.xilinx.com

106 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 6: Multichannel FIR Filters
R

• Six-to-one multiplexer that is implemented in slice logic as described in “Combining
Separate Input Streams into an Interleaved Stream,” page 107

• Coefficient ROMs using SRL16Es connected in “head-to-tail” fashion

• Input sample “delay-by-seven” SRL16Es to hold the interleaved streams

• DSP48 slices for multiplication and additions
X-Ref Target - Figure 6-1

All datapaths and coefficient paths for this example are 8 bits wide. The coefficient ROMs
and input sample delay elements are designed using SRL16Es. The SRL16E is a very
compact and efficient memory element, running at the very high 6x clock rate. For
adaptive filtering, where coefficients can be different depending upon their input signals,
coefficient RAMs can be used to update the coefficient values.

The DSP48 slices and interconnects also run at the 6x clock rate, providing unparalleled
performance for multiplication and additions in today’s FPGAs.

DSP48 Tile
The multichannel filter block is a cascade implementation of the DSP48 tile. Each tile is
implemented as shown in Figure 6-2. An SRL16E is used to shift the input from the six
channels. The product cascade path between two DSP48 slices within the tile can be used

Figure 6-1: Block Diagram of a 6-Channel, 8-Tap FIR Filter

UG073_c6_01_090105

XXX X

xo(n)

x1(n)

x2(n)

x3(n)

x4(n)

x5(n)

Z-7Z-7 Z-7

 SRL16
Coefficient ROM

SRL16
Coefficient ROM

SRL16
Coefficient ROM

SRL16
Coefficient ROM

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 107
UG073 (v2.7) May 15, 2008

Combining Separate Input Streams into an Interleaved Stream
R

to bring the product output from one tap into the cascading input of the next tap for the
final addition.

Combining Separate Input Streams into an Interleaved Stream
As shown in Figure 6-3, six separate video input sample streams must be combined into
one interleaved sample stream for this multichannel FIR filter example. Conceptually, a
high-speed, six-to-one multiplexer feeds a seven-deep SRL16E shift register to accomplish
this task. The SRL16E depth is the number of channels plus one.
X-Ref Target - Figure 6-3

For each clock tick, the counter selects a different input stream (in order), and then it
supplies this value to the SRL16E shift register. After six clock ticks, the six input samples
for a given time period are loaded sequentially, or interleaved into a single stream.

A six-to-one multiplexer must be designed carefully, as it is constructed with slice logic
that must run at the 6x clock rate. At 446 MHz, good design practices dictate point-to-point
connections, a maximum of one Look-Up Table (LUT) between flip-flops, and RLOC
techniques.

To reduce the high fanouts on the selected lines of the multiplexer, the conceptual
multiplexer in Figure 6-3 is implemented as shown in Figure 6-4. This circuit is repeated
for all eight bits of the input sample width.

X-Ref Target - Figure 6-2

Figure 6-2: DSP48 Tile Cascading Diagram

UG073_c6_02_090105

XC1

8 Bits

SRL16
 Taps

Input:
6 Channels

Add

SRL16
 Taps

C2 X

Figure 6-3: Converting Eight Input Streams to One Interleaved Input Stream

ug073_c6_03_060904

Shift Register

18

3

Counter

X5(n-1) X4(n-1) X3(n-1) X2(n-1) X1(n-1) X0(n-1)X6(n-1)

http://www.xilinx.com

108 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 6: Multichannel FIR Filters
R

X-Ref Target - Figure 6-4

Coefficient RAM
The six coefficient sets are stored in the SRL16 memories. If the same coefficient set is used
for all channels, then only a single set is stored in the SRL16. If the different channels use
different coefficients, then six sets of SRL16s are used for each tap. (Six RAMs can be used
instead, one for each channel.)

Each RAM is 8 bits wide and six deep, corresponding to the six taps. The optional Load
input is used to change or load a new coefficient set. Six clock cycles are needed to load all
six RAMs. Input C1 is used to load the eight locations of RAM1 that are used for Channel1.
C8 is used to load the eight locations of RAM8 that are used for Channel8. At the eighth
clock, all eight locations of the eight RAMs are loaded; the filter then becomes an adaptive
filter. The speed of the overall filter is reduced when the coefficients are stored in the RAM.

Control Logic
The control logic is used to ensure proper functioning of the different blocks. If the
coefficient RAM block is used, the control logic ensures that the load signal is High for six
clocks. Different tap-enabled signals are used to make sure that RAM values are read into
the DSP48 correctly. For instance, clock1 reads in the first location from RAM1, but the first
location of RAM2 is read only at the clock number equal to shift register length. The design
assumes a clock is running at 6x of the input signals. The DCM can also be used to multiply
the clock if the only available clock is running at the input channel frequency.

The final output is enabled by the control logic after the initial latency.

Figure 6-4: High-Speed 8-to-1 Multiplexer Used in the Filter

UG073_c6_04_090105

100000

Shift Register

'0'

'1''1'

X0(n)

X1(n) LUT

LUT

X2(n)

X3(n) LUT

X4(n)

X5(n) LUT

LUT

LUT

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 109
UG073 (v2.7) May 15, 2008

Reference Design Files
R

Implementation Results
The initial latency of the design is equal to the [(number of channels + 1) * number of taps]
plus three pipe stages within the DSP48. After placement and routing, the design uses 216
slices and eight DSP48 blocks. The design has a speed of 454 MHz.

Reference Design Files
The reference design files associated with this chapter, ug073_c06.zip, can be found at:
https://secure.xilinx.com/webreg/clickthrough.do?cid=30161

Conclusion
The available arithmetic functions within the DSP48 block, combined with fine granularity
and high speed, makes the Virtex-4 FPGA an ideal device to implement high-speed,
multichannel filter functions. The design shows the efficient implementation of a
six-channel, eight-tap filter. Due to the high-performance capability within the DSP48
block, a single channel, eight-tap filter can be used to implement the six-channel, eight-tap
filter, reducing the area utilization by 1/6th.

https://secure.xilinx.com/webreg/clickthrough.do?cid=30161
http://www.xilinx.com

110 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 6: Multichannel FIR Filters
R

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 111
UG073 (v2.7) May 15, 2008

R

Chapter 7

Multirate Filters Using the DSP48

Multirate filtering is used to change the rate or frequency of sampling of an input signal to
an arbitrary rate or frequency at the output. Multirate filtering is widely used in video
applications for interpolation or decimation of video data.

The DSP48 slice is ideally suited to implement multirate sampling because of its high
speed and filter-like structure. The cascaded data input and output paths, pipeline
registers, high precision two’s complement multiplier followed by an adder/subtracter
and accumulation capability provide needed elements for multirate filtering.

This chapter contains the following sections:

• “Introduction”

• “Interpolation Using the DSP48 Slice”

• “Decimation Using the DSP48 Slice”

Introduction
Digital video applications require an enormous amount of bandwidth. Storing a short clip
of video can often lead to hard-disk space limitations, and transmitting a short clip of video
can lead to transmission media bandwidth limitations. In some of these applications,
multirate filtering is used to reduce the sample rate and the number of pixels needed to
represent the image. This process is called decimation. Applications for decimation include
4:4:4 to 4:2:2 conversion and High-Definition TV (HDTV) to Standard-Definition TV
(SDTV) conversion.

Other applications, such as medical imaging, require the user to represent the image in as
much detail as possible, similar to zooming on a picture. Here, filtering is used to increase
the sampling rate so that the image is represented by a larger number of pixels than are
normally used. This process is called interpolation. Applications for interpolation include
SDTV to HDTV signal conversion.

Another use of the multirate DSP technique is to increase computational efficiency.
Changing from a single-rate filter to a multirate filter can reduce the number of multiply
and accumulate operations needed to implement a particular algorithm. Here, decimation
is first used to lower the system rate. Then the particular algorithm is implemented on this
lower rate signal, and the algorithm output is interpolated to bring the sample rate back to
the original rate.

The process of using interpolation and decimation to resize an image is called scaling.
Scaling of a video image involves a two-dimensional array. Two 1-D samples can be
applied in series to achieve a 2-D sampling change. In the example shown in Figure 7-1, an
interpolator and a decimator are used together to achieve the desired final image scaling.

http://www.xilinx.com

112 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 7: Multirate Filters Using the DSP48
R

X-Ref Target - Figure 7-1

Nyquist Theorem
The Nyquist theorem states that when an analog waveform is digitized, samples must be
recorded at greater than twice the highest frequency component in the waveform. Stated
differently, to reconstruct (interpolate) a signal from a sequence of samples, enough
samples must be recorded to capture the peaks and troughs of the original waveform.

When a waveform is sampled at less than twice its highest frequency component, the
reconstructed waveform effectively only contributes noise. This phenomenon called
"aliasing" (the high frequencies are under an alias) is the reason that the best digital audio is
sampled at 44,000 Hz – twice the average upper limit of human hearing.

Interpolation and Decimation
Interpolation or upsampling is the process of representing a signal with more samples.
Decimation or downsampling is the process of representing a signal with less samples.

Conceptually, interpolation is implemented by inserting zeros between samples as shown
in Figure 7-2. To get a 1: L interpolator, L-1 zeros are inserted between every sample. A
filter is used to replace the zero values with the appropriate non-zero values.
X-Ref Target - Figure 7-2

The equation for a 1:L interpolator is given in Equation 7-1. In a 1:L interpolator, the output
data rate is L times the input data rate. L is also called the interpolation factor.

Figure 7-1: Image Rescaling Using Interpolation Followed By Decimation

Interpolator
Upscaling by

a Factor L

Low-Pass,
Anti-Aliasing,

Imaging
Filter

Input x[n] Output y[n]
= L/M * x[n]

UG073_c7_01_091605

Decimator
Downscaling by

a Factor M

Figure 7-2: Input Signal vs. 1:2 Interpolated Signal

Input Signal 1:2 Interpolated Signal

UG073_c7_02_063004

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 113
UG073 (v2.7) May 15, 2008

Introduction
R

Equation 7-1

Where n = 0, ±L, ±2L, and so forth.

Interpolation can be done in multiple stages. For example, to achieve interpolation by a
factor of 15, two interpolation stages can be used, where the first stage interpolates by a
factor of three and the second stage interpolates by a factor of five. The computational and
memory requirements of interpolation are both reduced by multistage interpolation.

Decimation is implemented by keeping every Mth sample and throwing away the samples
in between, as shown in Figure 7-3. If a signal is defined by n samples, to achieve M:1
decimation, you throw away M-1 samples after every sample that you keep. In an M:1
interpolator, the output data rate is 1/M times the input data rate, and M is the decimation
factor.
X-Ref Target - Figure 7-3

The equation for an M:1 interpolator is shown in Equation 7-2.

Equation 7-2

Where M is a positive integer.

When samples are thrown away, the resulting sampling rate can fall less than twice the
frequency of the input signal. Then the output signal is taken at a rate below the Nyquist
rate and is not a true representation of the original input signal. Nyquist criterion should
be observed on the output signal after decimation.

Spectral Imaging
Spectral imaging is the appearance of copies of the original spectrum for the signal within
the system bandwidth. Usually, a signal has spectral images that are repeated at multiples
of the sampling frequency (Fs). The system bandwidth is equal to Fs or Fs/2 on either side

Figure 7-3: Input Signal vs. 2:1 Decimated Input Signal

yout n[] x n L⁄[]= h n kL–[] x• k[]

k α–=

α

∑=

Input Signal 2:1 Decimated Signal

UG073_c7_03_063004

yout x nM[]= h k[] x• nM k–[]

k α–=

α

∑=

http://www.xilinx.com

114 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 7: Multirate Filters Using the DSP48
R

(see Figure 7-4). The first image is centered at Fs (or –Fs), which is outside the bandwidth of
Fs/2. Therefore, all the images are outside the signal bandwidth.
X-Ref Target - Figure 7-4

When the sampling rate of the system is increased by an interpolation factor of L (where L
is an integer greater than 1), the system bandwidth is increased by LFs or LFs/2 on either
side. In this case (see Figure 7-5), the first image that is centered at Fs falls within the
system bandwidth. These spectral images that fall within the system bandwidth should be
eliminated using a low-pass filter after interpolation.

Aliasing
Aliasing can be described as the appearance of a higher frequency signal (B) that has the
same sample values as the original signal (A) at the sampled points, as shown in
Figure 7-6. An anti-aliasing filter is used before decimation to avoid aliasing. The sample
values for the sinusoid signal A with the frequency ω0, and the values for sinusoid signal
B with the frequency ω0 + 2 * 2π/Ts are the same at the different sampling points. The
resultant sampled waveform for both the signals are identical, and the two signals are
indistinguishable. Here, one signal is said to be an alias of the other. Aliasing of signal A
can appear when another signal of frequency ω0 + k2π/Ts is present.

Figure 7-4: System Bandwidth

X-Ref Target - Figure 7-5

Figure 7-5: Interpolation Effect on System Bandwidth

-2FS –FS FS 2FS

FS/2–FS/2

System
Bandwidth

UG073_c7_04_072605

-2FS -FS FS 2FS

Image

2FS/2-2FS/2

System
Bandwidth

Interpolation Factor L = 2 UG073_c7_05_072605

Image

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 115
UG073 (v2.7) May 15, 2008

Interpolation Using the DSP48 Slice
R

X-Ref Target - Figure 7-6

When the sample rate is reduced by decimation, there can be an aliasing frequency created
that was not present in the original higher frequency signal. As a result of this aliasing, an
image can look blurred. In this case, a low-pass, anti-aliasing filter is used before
decimation. This low-pass filter eliminates all frequencies above the signal frequency to
avoid aliasing.

Another way to look at aliasing is that a critically sampled signal, when downsampled,
does not maintain the Nyquist rate and, therefore, is not a true representation of the
original signal. The original signal is passed through a low-pass filter so that only those
frequencies that still hold the Nyquist criterion are present at the new downsampled rate.

Interpolation Using the DSP48 Slice
The section describes the implementation of a 1:4 interpolator using the DSP48 slice. In a
1:4 interpolator, three zeros are inserted between every sample at the input. Consider a
stream of samples T(n-4) to T(n) to T(n+4) in the input signal. The output for this stream is
shown in Figure 7-7.
X-Ref Target - Figure 7-7

The zero values are converted into the appropriate non-zero values by the interpolation
filter in the DSP48 block. The number of taps chosen is usually a multiple of the
interpolation factor. The number of taps used in the interpolator in this example is 16. Each
of the four output samples uses four taps or four different input samples to get the
corresponding output sample. If 12 taps are used, only three input samples are used to
calculate each of the four output samples.

Block Diagram
Figure 7-8 is a block diagram of a 1:4 interpolator. This design uses a 16-tap filter with an
interpolation factor of 4.

Figure 7-6: Aliasing Between Two Frequencies

Signal BSignal A

UG073_c7_06_072605

Figure 7-7: Original vs. Interpolated Input Streams

T+4 T+3 T+2 T+1 T T-1 T-2 T-3 T-4

Interpolated Input Stream

T+4 T+3 T+2 T+1 T T-1 T-2 T-3 T-4

Input Stream

UG073_c7_07_063004

http://www.xilinx.com

116 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 7: Multirate Filters Using the DSP48
R

X-Ref Target - Figure 7-8

The inputs are multiplied by the 16 coefficients and summed to produce the output.
Table 7-1 shows that an output is taken every clock. The output is the sum of the 16
coefficients, (h0) to (h15), multiplied by the corresponding input signals. Of the 16 samples
that contribute toward y0, 12 have an input sample value of zero. Multiplying with zero
does not contribute towards the final output y0 but uses resources and clock cycles. To
eliminate this waste, the 1:4 16-tap interpolator is implemented using four polyphase
filters. The four multiplications needed for each output are done in parallel using the four
polyphase filters. The total number of multipliers used is reduced from 16 to 4.

As shown in Table 7-1, output y0 is obtained when the input x(1) pipe stage is matched
with the coefficient h0. The next three clock cycles give the outputs y1 to y3 that correspond
to the input x(1) matching coefficients h1 to h3 in time. These outputs can be written as
follows:

y0 = x(n)h0 + x(n - 1)h4 + x(n - 2)h8 + x(n - 3)h12

y1 = x(n)h1 + x(n - 1)h5 + x(n - 2)h9 + x(n - 3)h13

y2 = x(n)h2 + x(n - 1)h6 + x(n - 2)h10 + x(n - 3)h14

Figure 7-8: 16-Tap 1:4 Interpolation Filter

x(n)

Z-1 Z-1

0

SRL16
Coefficient ROM

h(3)
h(2)
h(1)
h(0)

Z-2

Z-1

Z-1

X

+

SRL16
Coefficient ROM

h(7)
h(6)
h(5)
h(4)

Z-2

Z-1

Z-1

X

+

Z-1

SRL16
Coefficient ROM

h(11)
h(10)
h(9)
h(8)

Z-2

Z-1

Z-1

X

+

Z-1

SRL16
Coefficient ROM

h(15)
h(14)
h(13)
h(12)

Z-2

Z-1

Z-1

X

+

UG073_c7_08_091605

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 117
UG073 (v2.7) May 15, 2008

Decimation Using the DSP48 Slice
R

y3 = x(n)h3 + x(n - 1)h7 + x(n - 2)h11 + x(n - 3)h15

During the clock when x(1) matches the coefficient h4, a new input is matched with
coefficient h0. After an initial latency, one output sample is obtained at every clock.

The four terms in the equation for y0 are calculated in four consecutive clock cycles. At
each clock, the previous term is added to the current term being calculated. This gives a
total of five clocks of latency to get the first output y0. The coefficients are arranged such
that after the first four clock cycles, all four coefficients (h0 to h3) are multiplied by input
x(n). That is, input x(n) is held at the first DSP48 slice for four clock cycles before it is
shifted to the next DSP48 slice.

The other three DSP slices each use these four clock cycles to multiply their corresponding
input samples by the four incoming coefficients. After four clocks, a new input value
x(n+1) is read in at the first DSP48 slice, and the other three DSP slices shift in the input
sample from the previous DSP slice.

The control logic ensures that each DSP slice shifts in new data every four clocks in a
staggered manner. Each DSP slice retains an input value for four clocks. The clock enable
inputs on the B cascade registers for each slice are used to shift in a new value every four
clocks. The control logic is also used to clock in the four coefficients in a cyclic order.

Decimation Using the DSP48 Slice
This section describes the implementation of a 4:1 decimator using the DSP48 slice. In a 4:1
decimator, every fourth input sample value is retained, and the three sample values in
between are ignored. Consider a stream of samples T(n-4) to T(n) to T(n+4) in the input
signal. The output for this stream is shown in Figure 7-9.

Table 7-1: Interpolator Input Signal and Corresponding Coefficients

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15

clk1 x1 0 0 0 x2 0 0 0 x3 0 0 0 x4 0 0 0

2 x1 0 0 0 x2 0 0 0 x3 0 0 0 x4 0 0

3 x1 0 0 0 x2 0 0 0 x3 0 0 0 x4 0

4 x1 0 0 0 x2 0 0 0 x3 0 0 0 x4

5 x1 0 0 0 x2 0 0 0 x3 0 0 0

6 x1 0 0 0 x2 0 0 0 x3 0 0

7 x1 0 0 0 x2 0 0 0 x3 0

8 x1 0 0 0 x2 0 0 0 x3

9 x1 0 0 0 x2 0 0 0

http://www.xilinx.com

118 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 7: Multirate Filters Using the DSP48
R

X-Ref Target - Figure 7-9

Block Diagram
Table 7-2 shows the input stream shifting through the taps in a 4:1 decimator and the time
at which outputs are valid. An output is taken at every fourth clock. The output is the sum
of the 16 coefficients multiplied by the corresponding input signals.

Looking at the input x1 in Table 7-2, outputs are valid whenever x1 is multiplied with
coefficients h0, h4, h8, h12, and h16. Though x1 gets multiplied by the remaining coefficients,
the outputs at those clocks are ignored. Implementing these multiplies in hardware is a
waste of resources. In the polyphase decimation filter, input and coefficients are arranged
such that an input is only multiplied with a valid coefficient, that is, the coefficient when

Figure 7-9: Original vs. Decimated Input Stream

T+4 T+3 T+2 T+1 T T-1 T-2 T-3 T-4

Original Input Stream

T+4 T+3 T+2 T+1 T T-1 T-2 T-3 T-4

Decimated Input Stream
UG073_c7_09_063004

Table 7-2: Decimator Input Signal and Corresponding Coefficients

out1 out2 out3 out4

↑ ↑ ↑ ↑

coefficient h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15

inputs

clock1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

clock2 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

clock3 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

clock4 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

clock5 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

clock6 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

clock7 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

clock8 x1 x2 x3 x4 x5 x6 x7 x8 x9

clock9 x1 x2 x3 x4 x5 x6 x7 x8

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 119
UG073 (v2.7) May 15, 2008

Decimation Using the DSP48 Slice
R

the output is valid. For the first M+1 inputs, the coefficients used to multiply each input is
as shown in Figure 7-10.

The input signals to each polyphase filter are delayed by (M+1) clocks from the previous
filter. Shift registers are used to achieve this delay, as shown in Figure 7-11. The coefficient
inputs to each of the filters are arranged such that each filter rotates through four different
coefficients.

X-Ref Target - Figure 7-10

Figure 7-10: Input and Corresponding Coefficients for a 4:1 Decimator

h0X1

Dec

Dec

X2

X3

X4

h4 h8 h12

h1 h5 h9 h13

h2 h6 h10 h14

h3 h7 h11 h15

UG073_c7_10_072605

X-Ref Target - Figure 7-11

Figure 7-11: 16-tap 4:1 Decimation Filter

UG073_c7_11_091905

x(n+1)

M+1
FIFO

M+1
FIFO

M+1
FIFO

Z-1 Z-1

0

0

SRL16
Coefficient ROM

h(3)
h(2)
h(1)
h(0)

Z-1

Z-1

Z-1

X

+

Z-1

SRL16
Coefficient ROM

h(7)
h(6)
h(5)
h(4)

Z-1

Z-1

Z-1

X

+

Z-1

SRL16
Coefficient ROM

h(11)
h(10)
h(9)
h(8)

Z-1

Z-1

Z-1

X

+

Z-1

SRL16
Coefficient ROM

h(15)
h(14)
h(13)
h(12)

Z-1

Z-1 Control
Logic

Z-1

X

+ +

Z-1

Z-1

http://www.xilinx.com

120 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 7: Multirate Filters Using the DSP48
R

The decimator creates one output value for every four input values. The design uses a
16-tap filter to do the interpolation. Four parallel polyphase filters are used to implement
the 16 taps of the filter. The output value is a weighted function of the 16 input values.

After an initial latency, a four-tap filter output is obtained at the fourth polyphase filter.
This output is added in a final accumulation block. The accumulation block is in
accumulation mode for four clock cycles after the initial latency. Each clock cycle gives a
four-tap result, and at the end of the fourth clock, the accumulation block has a 16-tap
result. After this, the accumulation block goes into an addition mode where the feedback
path receives an input of 0.

The 4-bit barrel shifter is used to enable the accumulation block into an “add mode” every
fourth clock cycle.

Implementation Results
A 1:4 interpolator can be implemented in four DSP slices at an output frequency of over
450 MHz. This design uses four DSP48 slices in the Virtex®-4 device. The interpolator can
also be implemented using one DSP48 slice if a higher clock latency or slower clock is
sufficient.

The decimator can be implemented in four DSP slices at an output frequency of over
450 MHz. The design uses five DSP48 slices in the Virtex-4 device. The decimator can also
be created in a single DSP48 slice if a higher clock latency or slower clock is sufficient.

The implementation results for the interpolator and decimator are shown in Table 7-3.

Reference Design Files
The reference design files associated with this chapter, ug073_c07.zip, can be found at:
https://secure.xilinx.com/webreg/clickthrough.do?cid=30162

PolyIntrpFilter.zip and PolyDecFilter.zip, included in the reference design
files, provide examples of portable, parameterized, design, and simulation VHDL files that
infer DSP48 slices when creating Polyphase Interpolating/Decimating FIR filters in
Virtex-4 devices. The number of filter taps, interpolation/decimation factors, and data bit
widths are parameterizable. Synplify 8.1 was used to synthesize this portable, RTL VHDL
code with generics for parameterization.

Table 7-3: Implementation Results for Interpolator and Decimator

Speed in MHz Utilization
Power in mW using

XPower

1:4, 16 Tap
Interpolator

XC4VLX15 -11 sf363 450 (2.2 ns) 61 slices, 4 DSP48 205

XC2VP2 -7 fg456 110.49 (7 ns) 339 slices, 12 mults 590

XC2V250 -6 fg456 99.49 (8 ns) 339 slices, 12 mults 449

4:1, 16 Tap Decimator XC4VLX15 -11 sf363 450 (2.2 ns) 228 slices, 5 DSP48 136

XC2VP2 -7 fg456 116.84 (7 ns) 467 slices, 12 mults 682

XC2V250 -6 fg456 98.2 (8 ns) 466 slices, 12 mults 454

https://secure.xilinx.com/webreg/clickthrough.do?cid=30162
http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 121
UG073 (v2.7) May 15, 2008

Conclusion
R

Conclusion
The multirate filtering technique is extensively used in DSP functions. A common
application of multirate filtering is in video scaling. The availability of cascaded path, shift
registers, multiplier, and accumulator in the DSP blocks of Virtex-4 devices, combined with
the high performance, helps in implementing multirate functions very effectively.

Note: Xilinx ISE 6.3i was used to implement these designs.

References
1. “A Digital Signal Processing Primer” by Ken Steiglitz, ISBN: 0-8053-1684-1.

2. “Digital Video and HDTV Algorithms and Interfaces” by Charles Poynton, ISBN: 1-
55860-792-7.

3. “DSP Primer” by C. Britton Rorabaugh, ISBN: 0-07-054004-7.

4. Xilinx, Inc., Virtex-4 User Guide

http://www.xilinx.com

	XtremeDSP for Virtex-4 FPGAs
	Revision History
	Table of Contents
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	XtremeDSP Design Considerations
	Introduction
	Architecture Highlights
	Performance
	Number of DSP48 Slices Per Virtex-4 Device
	DSP48 Slice Primitive
	DSP48 Slice Attributes

	DSP48 Tile and Interconnect
	Simplified DSP48 Slice Operation
	Timing Model
	A, B, C, and P Port Logic
	OPMODE, SUBTRACT, and CARRYINSEL Port Logic
	Two’s Complement Multiplier
	X, Y, and Z Multiplexer
	Three-Input Adder/Subtracter
	Carry Input Logic

	Symmetric Rounding Supported by Carry Logic
	Forming Larger Multipliers
	FIR Filters
	Basic FIR Filters
	Multichannel FIR Filters
	Creating FIR Filters

	Adder Cascade vs. Adder Tree
	DSP48 Slice Functional Use Models
	Single Slice, Multi-Cycle, Functional Use Models
	Fully Pipelined Functional Use Models
	Miscellaneous Functional Use Models
	Dynamic, 18-Bit Circular Barrel Shifter Use Model

	DSP48 Slice Math Functions
	Overview
	Basic Math Functions
	Add/Subtract
	Accumulate
	Multiply Accumulate (MACC)
	Multiplexer
	Barrel Shifter
	Counter
	Multiply
	Divide
	Square Root
	Square Root of the Sum of Squares

	Reference Design Files
	Conclusion

	MACC FIR Filters
	Overview
	Single-Multiplier MACC FIR Filter
	Bit Growth
	Control Logic
	Embedding the Control Logic into the Block RAM
	Rounding
	Rounding without an Extra Cycle
	Using Distributed RAM for Data and Coefficient Buffers
	Performance

	Symmetric MACC FIR Filter
	Dual-Multiplier MACC FIR Filter
	Reference Design Files
	Conclusion

	Parallel FIR Filters
	Overview
	Parallel FIR Filters
	Transposed FIR Filter
	Advantages and Disadvantages
	Resource Utilization

	Systolic FIR Filter
	Advantages and Disadvantages
	Resource Utilization

	Symmetric Systolic FIR Filter
	Resource Utilization

	Rounding
	Performance
	Reference Design File
	Conclusion

	Semi-Parallel FIR Filters
	Overview
	Semi-Parallel FIR Filter Structure
	Four-Multiplier, Distributed-RAM-Based, Semi-Parallel FIR Filter
	Data Memory Buffers
	Coefficient Memory
	Control Logic and Address Sequencing
	Resource Utilization

	Three-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter
	Other Semi-Parallel FIR Filter Structures
	Semi-Parallel, Transposed, Four-Multiplier FIR Filter
	Advantages and Disadvantages
	Rounding
	Performance

	Reference Design Files
	Conclusion

	Multichannel FIR Filters
	Multichannel FIR Implementation Overview
	Top Level
	DSP48 Tile

	Combining Separate Input Streams into an Interleaved Stream
	Coefficient RAM
	Control Logic
	Implementation Results

	Reference Design Files
	Conclusion

	Multirate Filters Using the DSP48
	Introduction
	Nyquist Theorem
	Interpolation and Decimation
	Spectral Imaging
	Aliasing

	Interpolation Using the DSP48 Slice
	Block Diagram

	Decimation Using the DSP48 Slice
	Block Diagram
	Implementation Results

	Reference Design Files
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

