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Preface

About This Guide

Xilinx® 7 series FPGAs include three unified FPGA families that are all designed for lowest 
power to enable a common design to scale across families for optimal power, performance, 
and cost. The Artix™-7 family is optimized for lowest cost and absolute power for the 
highest volume applications. The Virtex®-7 family is optimized for highest system 
performance and capacity. The Kintex™-7 family is an innovative class of FPGAs 
optimized for the best price-performance. This document describes the function and 
operation of the 7 Series FPGAs Integrated Block for PCI Express®, including how to 
design, customize, and implement it. 

This 7 series FPGAs Integrated Block for PCI Express user guide, part of an overall set of 
documentation on the 7 series FPGAs, is available on the Xilinx website at 
www.xilinx.com/7.

Guide Contents
This manual contains these chapters and appendices:

• Chapter 1, Introduction, describes the core and related information, including 
recommended design experience and additional resources. 

• Chapter 2, Core Overview, describes the main components of the integrated block 
architecture.

• Chapter 3, Getting Started Example Design, provides instructions for quickly 
generating, simulating, and implementing the example design using the 
demonstration test bench.

• Chapter 4, Generating and Customizing the Core, describes how to use the graphical 
user interface (GUI) to configure the integrated block using the CORE Generator™ 
software.

• Chapter 5, Designing with the Core, provides instructions on how to design a device 
using the Integrated Block core.

• Chapter 6, Core Constraints, discusses the required and optional constraints for the 
integrated block.

• Chapter 7, FPGA Configuration, discusses considerations for FPGA configuration 
and PCI Express.

• Appendix A, Example Design and Model Test Bench for Endpoint Configuration, 
describes the Programmed Input/Output (PIO) example design for use with the core 
and the Root Port model test bench environment, which provides a test program 
interface for use with the PIO example design.

• Appendix B, Example Design and Model Test Bench for Root Port Configuration, 
describes the Configurator example design for use with the core, and the Endpoint 
Model test bench environment for use with the Configurator example design.

www.xilinx.com/7
http://www.xilinx.com
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• Appendix C, Migration Considerations, defines the differences in behavior and 
options between the 7 Series FPGAs Integrated Block for PCI Express and the 
Endpoint Block Plus for PCI Express.

• Appendix D, Debugging Designs, provides information on resources available on the 
Xilinx support website, available debug tools, and a step-by-step process for 
debugging designs that use the 7 Series FPGAs Integrated Block for PCI Express.

• Appendix E, Managing Receive-Buffer Space for Inbound Completions, provides 
example methods for handling finite receive buffer space for inbound completions 
with regards to the PCI Express Endpoint requirement to advertise infinite 
completion credits.

• Appendix F, TRN to AXI Migration Considerations, describes the differences in signal 
naming and behavior for users migrating to the 7 Series FPGAs Integrated Block for 
PCI Express from the Virtex-6 FPGA Integrated Block for PCI Express.

Additional Resources
To find additional documentation, see the Xilinx website at:

www.xilinx.com/support/documentation. 

To search the Answer Database of silicon, software, and IP questions and answers, or to 
create a technical support WebCase, see the Xilinx website at:

www.xilinx.com/support.

http://www.xilinx.com
http://www.xilinx.com/support/documentation
http://www.xilinx.com/support
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Conventions

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font

Messages, prompts, and 
program files that the system 
displays. Signal names in text 
also.

speed grade: - 100

Courier bold
Literal commands that you enter 
in a syntactical statement

ngdbuild design_name

Helvetica bold

Commands that you select from 
a menu

File →  Open

Keyboard shortcuts Ctrl+C

Italic font 

Variables in a syntax statement 
for which you must supply 
values

ngdbuild design_name

References to other manuals
See the User Guide for more 
information.

Emphasis in text
If a wire is drawn so that it 
overlaps the pin of a symbol, the 
two nets are not connected.

Dark Shading
Items that are not supported or 
reserved

This feature is not supported

Square brackets    [  ]

An optional entry or parameter. 
However, in bus specifications, 
such as bus[7:0], they are 
required.

ngdbuild [option_name] 
design_name

Braces    {  }
A list of items from which you 
must choose one or more

lowpwr ={on|off}

Vertical bar    |
Separates items in a list of 
choices

lowpwr ={on|off}

Angle brackets < >
User-defined variable or in code 
samples

<directory name>

Vertical ellipsis
.
.
.

Repetitive material that has 
been omitted

IOB #1: Name = QOUT’ 
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis  . . .
Repetitive material that has 
been omitted

allow block  block_name loc1 
loc2 ... locn;

http://www.xilinx.com
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Online Document
The following conventions are used in this document:

List of Acronyms
The following table defines acronyms used in this document.

Notations

The prefix ‘0x’ or the suffix ‘h’ 
indicate hexadecimal notation

A read of address 0x00112975 
returned 45524943h.

An ‘_n’ means the signal is 
active Low usr_teof_n is active Low.

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text
Cross-reference link to a location 
in the current document

See the section Guide Contents 
for details.

Refer to Title Formats in Chapter 
1 for details.

Blue, underlined text Hyperlink to a website (URL)
Go to http://www.xilinx.com 
for the latest speed files.

Acronym Definition

AER Advanced Error Reporting

ANFE Advisory Non-Fatal Error

ASPM Active State Power Management

BAR Base Address Register

CAS Compare And Set

CFG Configuration

CMIO Configuration Mapped Input/Output

CMM Configuration Management Module

DLLP Data Link Layer Packet

DRP Dynamic Reconfiguration Port

DSN Device Serial Number

DUT Design Under Test

DQWORD Double Quad Word

DWORD Doubleword

ECRC End-to-end Cyclic Redundancy Check

EOF End of Frame

GUI Graphical User Interface

http://www.xilinx.com
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List of Acronyms

LTSSM Link Training and Status State Machine

MMIO Memory Mapped Input/Output

MPS Maximum Payload Size

MSI Message Signaled Interrupt

PBA Pending Bit Array

PCI Peripheral Component Interconnect

PIO Programmed Input/Output

PL Physical Layer

POR Power On Reset

PPM Programmed Power Management

QWORD Quad Word

RBAR Resizable BAR

RCB Read Completion Boundary

RX Receive/Receiver

SOF Start of Frame

SSC Spread Spectrum Clock

TLP Transaction Layer Packet

TPI Test Programming Interface

TX Transmit/Transmitter

UCF User Constraints File

UR Unsupported Request

VC Virtual Channel

VSEC Vendor Specific

Acronym Definition

http://www.xilinx.com
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Chapter 1

Introduction

This chapter introduces the 7 Series FPGAs Integrated Block for PCI Express® core and 
provides related information including system requirements and recommended design 
experience. 

About the Core
The 7 Series FPGAs Integrated Block for PCI Express core is a reliable, high-bandwidth, 
scalable serial interconnect building block for use with the 7 series FPGA families. The core 
instantiates the 7 Series FPGA Integrated Block for PCI Express found in the 
7 series FPGAs, and supports both Verilog-HDL and VHDL. 

The 7 Series FPGAs Integrated Block for PCI Express is a CORE Generator™ IP core, 
included in the ISE® Design Suite. For detailed information about the core, see the 
7 Series FPGAs Integrated Block for PCI Express product page.

Supported Tools and System Requirements

Windows

• Windows XP Professional 32-bit/64-bit

• Windows Vista Business 32-bit/64-bit

Linux

• Red Hat Enterprise Linux WS v4.0 32-bit/64-bit

• Red Hat Enterprise Desktop v5.0 32-bit/64-bit (with Workstation Option)

• SUSE Linux Enterprise (SLE) desktop and server v10.1 32-bit/64-bit

Tools

• ISE v13.1 software

• Verification/Simulation

http://www.xilinx.com
www.xilinx.com/products/ipcenter/7_SERIES_PCI_Express_Block.htm


18 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 1: Introduction

Table 1-1 lists the tools and their respective versions for the 13.1 release.

Recommended Design Experience
Although the 7 Series FPGAs Integrated Block for PCI Express core is a fully verified 
solution, the challenge associated with implementing a complete design varies depending 
on the configuration and functionality of the application. For best results, previous 
experience building high-performance, pipelined FPGA designs using Xilinx 
implementation software and User Constraints Files (UCFs) is recommended.

Additional Core Resources
For detailed information and updates about the integrated block, refer to these documents 
on the Xilinx website:

• DS821, LogiCORE IP 7 Series Integrated Block for PCI Express Data Sheet

• XTP025, IP Release Notes Guide

Additional information and resources related to the PCI Express technology are available 
from these websites:

• PCI Express at PCI-SIG

• PCI Express Developer’s Forum

Table 1-1: Tools and Versions for 13.1

Tools Version

ISE/XST 13.1

Mentor Graphics ModelSim 6.6d

Cadence Incisive Enterprise Simulator (IES) 10.2

Synopsys VCS and VCS MX 2010.06

http://www.xilinx.com
http://www.pcisig.com/specifications/pciexpress
http://developer.intel.com/technology/pciexpress/devnet
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Chapter 2

Core Overview

This chapter describes the main components of the 7 Series FPGAs Integrated Block for 
PCI Express® architecture.

Overview
The 7 Series FPGAs Integrated Block for PCI Express contains full support for 2.5 Gb/s 
and 5.0 Gb/s PCI Express Endpoint and Root Port configurations. Table 2-1 defines the 
Integrated Block for PCIe® solutions.

The LogiCORE™ IP 7 Series FPGAs Integrated Block for PCI Express core internally 
instantiates the 7 Series FPGAs Integrated Block for PCI Express (PCIE_2_1). The 
integrated block follows the PCI Express Base Specification layering model, which consists of 
the Physical, Data Link, and Transaction layers. The integrated block is compliant with the 
PCI Express Base Specification, rev. 2.1.

Figure 2-1 illustrates these interfaces to the 7 Series FPGAs Integrated Block for 
PCI Express: 

• System (SYS) interface

• PCI Express (PCI_EXP) interface

• Configuration (CFG) interface

• Transaction interface (AXI4-Stream)

• Physical Layer Control and Status (PL) interface

The core uses packets to exchange information between the various modules. Packets are 
formed in the Transaction and Data Link Layers to carry information from the transmitting 
component to the receiving component. Necessary information is added to the packet 
being transmitted, which is required to handle the packet at those layers. At the receiving 

Table 2-1: Product Overview

Product Name User Interface Width Supported Lane Widths

1-lane at 2.5 Gb/s, 5.0 Gb/s 64 x1

2-lane at 2.5 Gb/s, 5.0 Gb/s 64 x1, x2(1)

4-lane at 2.5 Gb/s, 5.0 Gb/s 64, 128 x1, x2, x4(1),(2)

8-lane at 2.5 Gb/s, 5.0 Gb/s 64, 128 x1, x2, x4, x8(1),(3)

Notes: 
1. See Link Training: 2-Lane, 4-Lane, and 8-Lane Components, page 189 for additional information. 
2. The x4 at 2.5 Gb/s option in the CORE Generator™ tool provides only the 64-bit width interface.
3. x8 at 5.0 Gb/s only available in the 128-bit width.

http://www.xilinx.com
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end, each layer of the receiving element processes the incoming packet, strips the relevant 
information and forwards the packet to the next layer. 

As a result, the received packets are transformed from their Physical Layer representation 
to their Data Link Layer representation and the Transaction Layer representation.

Protocol Layers
The functions of the protocol layers, as defined by the PCI Express Base Specification, include 
generation and processing of Transaction Layer Packets (TLPs), flow control management, 
initialization, power management, data protection, error checking and retry, physical link 
interface initialization, maintenance and status tracking, serialization, deserialization, and 
other circuitry for interface operation. Each layer is defined in the next subsections.

Transaction Layer
The Transaction Layer is the upper layer of the PCI Express architecture, and its primary 
function is to accept, buffer, and disseminate Transaction Layer packets or TLPs. TLPs 
communicate information through the use of memory, I/O, configuration, and message 
transactions. To maximize the efficiency of communication between devices, the 
Transaction Layer enforces PCI compliant Transaction ordering rules and manages TLP 
buffer space via credit-based flow control.

X-Ref Target - Figure 2-1

Figure 2-1: Top-Level Functional Blocks and Interfaces
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Data Link Layer
The Data Link Layer acts as an intermediate stage between the Transaction Layer and the 
Physical Layer. Its primary responsibility is to provide a reliable mechanism for the 
exchange of TLPs between two components on a link.

Services provided by the Data Link Layer include data exchange (TLPs), error detection 
and recovery, initialization services and the generation and consumption of Data Link 
Layer Packets (DLLPs). DLLPs are used to transfer information between Data Link Layers 
of two directly connected components on the link. DLLPs convey information such as 
Power Management, Flow Control, and TLP acknowledgments.

Physical Layer
The Physical Layer interfaces the Data Link Layer with signalling technology for link data 
interchange, and is subdivided into the Logical sub-block and the Electrical sub-block. 

• The Logical sub-block frames and deframes TLPs and DLLPs. It also implements the 
Link Training and Status State machine (LTSSM), which handles link initialization, 
training, and maintenance. Scrambling, descrambling, and 8B/10B encoding and 
decoding of data is also performed in this sub-block. 

• The Electrical sub-block defines the input and output buffer characteristics that 
interfaces the device to the PCIe® link.

The Physical Layer also supports Lane Reversal (for multi-lane designs) and Lane Polarity 
Inversion, as indicated in the PCI Express Base Specification, rev. 2.1 requirement.

Configuration Management
The Configuration Management layer maintains the PCI™ Type 0 Endpoint configuration 
space and supports these features: 

• Implements the PCI Configuration Space 

• Supports Configuration Space accesses

• Power Management functions

• Implements error reporting and status functionality

• Implements packet processing functions

• Receive

- Configuration Reads and Writes

• Transmit

- Completions with or without data

- TLM Error Messaging

- User Error Messaging

- Power Management Messaging/Handshake

• Implements MSI and INTx interrupt emulation

• Optionally implements MSIx Capability Structure in the PCI Configuration Space

• Optionally implements the Device Serial Number Capability in the PCI Express 
Extended Capability Space

• Optionally implements Virtual Channel Capability (support only for VC0) in the 
PCI Express Extended Capability Space

http://www.xilinx.com
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• Optionally implements Xilinx defined Vendor Specific Capability Structure in the 
PCI Express Extended Capability space to provide Loopback Control and Status

• Optionally implements Advanced Error Reporting (AER) Capability Structure in the 
PCI Express Extended Configuration Space

• Optionally implements Resizeable BAR (RBAR) Capability Structure in the PCI 
Express Extended Configuration Space

PCI Configuration Space
The PCI configuration space consists of three primary parts, illustrated in Table 2-2. These 
include:

• Legacy PCI v3.0 Type 0/1 Configuration Space Header

• Type 0 Configuration Space Header used by Endpoint applications (see Table 2-3)

• Type 1 Configuration Space Header used by Root Port applications (see Table 2-4)

• Legacy Extended Capability Items

• PCIe Capability Item

• Power Management Capability Item

• Message Signaled Interrupt (MSI) Capability Item

• MSI-X Capability Item (optional)

• PCIe Extended Capabilities

• Device Serial Number Extended Capability Structure (optional)

• Virtual Channel Extended Capability Structure (optional)

• Vendor Specific Extended Capability Structure (optional)

• Advanced Error Reporting Extended Capability Structure (optional)

• Resizable BAR Extended Capability Structure (optional)

The core implements up to four legacy extended capability items. The remaining legacy 
extended capability space from address 0xA8 to 0xFF is reserved or user-definable 
(Endpoint configuration only). Also, the locations for any optional capability structure that 
is not implemented are reserved. If the user does not use this space, the core returns 
0x00000000 when this address range is read. If the user chooses to implement registers 
within user-definable locations in the range 0xA8 to 0xFF, this space must be 
implemented in the User Application. The user is also responsible for returning 
0x00000000 for any address within this range that is not implemented in the User 
Application. 

For more information about enabling this feature, see Chapter 4, Generating and 
Customizing the Core. For more information about designing with this feature, see Design 
with Configuration Space Registers and Configuration Interface in Chapter 5.

The core optionally implements up to three PCI Express Extended Capabilities. The 
remaining PCI Express Extended Capability Space is available for users to implement. The 
starting address of the space available to the users depends on which, if any, of the five 
optional PCIe Extended Capabilities are implemented. If the user chooses to implement 
registers in this space, the user can select the starting location of this space, and this space 
must be implemented in the User Application. For more information about enabling this 
feature, see PCI Express Extended Capabilities in Chapter 4. For more information about 
designing with this feature, see Design with Configuration Space Registers and 
Configuration Interface in Chapter 5.

http://www.xilinx.com


7 Series FPGAs Integrated Block for PCIe www.xilinx.com 23
UG477 March 1, 2011

PCI Configuration Space

Table 2-2: Common PCI Configuration Space Header

31 16 15 0

Device ID Vendor ID 000h

Status Command 004h

Class Code Rev ID 008h

BIST Header Lat Timer Cache Ln 00Ch

Header Type Specific

(see Table 2-3 and Table 2-4)

010h

014h

018h

01Ch

020h

024h

028h

02Ch

030h

CapPtr 034h

038h

Intr Pin Intr Line 03Ch

PM Capability NxtCap PM Cap 040h

Data BSE PMCSR 044h

Customizable(1) MSI Control NxtCap MSI Cap 048h

Message Address (Lower) 04Ch

Message Address (Upper) 050h

Reserved Message Data 054h

Mask Bits 058h

Pending Bits 05Ch

PE Capability NxtCap PE Cap 060h

PCI Express Device Capabilities 064h

Device Status Device Control 068h

PCI Express Link Capabilities 06Ch

Link Status Link Control 070h

Root Port 
Only(2)

Slot Capabilities 074h

Slot Status Slot Control 078h

Root Capabilities Root Control 07Ch

Root Status 080h

PCI Express Device Capabilities 2 084h

Device Status 2 Device Control 2 088h

PCI Express Link Capabilities 2 08Ch
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Link Status 2 Link Control 2 090h

Unimplemented Configuration Space 
(Returns 0x00000000)

094h-
098h

Optional MSlx Control NxtCap MSlx Cap 09Ch

Table Offset Table
BIR

0A0h

PBA Offset PBA
BIR

0A4h

Reserved Legacy Configuration Space 
(Returns 0x00000000)

0A8h-
0FFh

Optional(3) Next Cap Cap.
Ver.

PCI Express Extended Capability - 
DSN

100h

PCI Express Device Serial Number (1st) 104h

PCI Express Device Serial Number (2nd) 108h

Optional(3) Next Cap Cap.
Ver.

PCI Express Extended
Capability - VC

10Ch

Port VC Capability Register 1 110h

Port VC Capability Register 2 114h

Port VC Status Port VC Control 118h

VC Resource Capability Register 0 11Ch

VC Resource Control Register 0 120h

VC Resource Status Register 0 124h

Optional(3) Next Cap Cap.
Ver.

PCI Express Extended Capability - 
VSEC

128h

Vendor Specific Header 12Ch

Vendor Specific - Loopback Command 130h

Vendor Specific - Loopback Status 134h

Vendor Specific - Error Count #1 138h

Vendor Specific - Error Count #2 13Ch

Table 2-2: Common PCI Configuration Space Header (Cont’d)

31 16 15 0
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Optional(3)

Next Cap Cap. Ver. PCI Express Extended Cap. ID (AER) 140h

Uncorrectable Error Status Register 144h

Uncorrectable Error Mask Register 148h

Uncorrectable Error Severity Register 14Ch

Correctable Error Status Register 150h

Correctable Error Mask Register 154h

Advanced Error Cap. & Control Register 158h

Header Log Register 1 15Ch

Header Log Register 2 160h

Header Log Register 3 164h

Header Log Register 4 168h

Optional, Root 
Port only(3)

Root Error Command Register 16Ch

Root Error Status Register 170h

Error Source ID Register 174h

Optional(3)

Next Cap Cap. Ver. PCI Express Extended Cap. ID (RBAR) 178h

Resizable BAR Capability Register(0) 17Ch

Reserved Resizable BAR Control(0) 180h

Resizable BAR Capability Register(1) 184h

Reserved Resizable BAR Control(1) 188h

Resizable BAR Capability Register(2) 18Ch

Reserved Resizable BAR Control(2) 190h

Resizable BAR Capability Register(3) 194h

Reserved Resizable BAR Control(3) 198h

Resizable BAR Capability Register(4) 19Ch

Reserved Resizable BAR Control(4) 1A0h

Resizable BAR Capability Register(5) 1A4h

Reserved Resizable BAR Control(5) 1A8h

Reserved Extended Configuration Space (Returns Completion with 
0x00000000)

1ACh-
FFFh

Notes: 
1. The MSI Capability Structure varies dependent on the selections in the CORE Generator tool GUI.
2. Reserved for Endpoint configurations (returns 0x00000000).
3. The layout of the PCI Express Extended Configuration Space (100h-FFFh) can change dependent on 

which optional capabilities are enabled. This table represents the Extended Configuration space layout 
when all five optional extended capability structures are enabled. For more information, see Optional 
PCI Express Extended Capabilities, page 167.

Table 2-2: Common PCI Configuration Space Header (Cont’d)

31 16 15 0
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Table 2-3: Type 0 PCI Configuration Space Header

31 16 15 0

Device ID Vendor ID 00h

Status Command 04h

Class Code Rev ID 08h

BIST Header Lat Timer Cache Ln 0Ch

Base Address Register 0 10h

Base Address Register 1 14h

Base Address Register 2 18h

Base Address Register 3 1Ch

Base Address Register 4 20h

Base Address Register 5 24h

Cardbus CIS Pointer 28h

Subsystem ID Subsystem Vendor ID 2Ch

Expansion ROM Base Address 30h

Reserved CapPtr 34h

Reserved 38h

Max Lat Min Gnt Intr Pin Intr Line 3Ch

Table 2-4: Type 1 PCI Configuration Space Header

31 16 15 0

Device ID Vendor ID 00h

Status Command 04h

Class Code Rev ID 08h

BIST Header Lat Timer Cache Ln 0Ch

Base Address Register 0 10h

Base Address Register 1 14h

Second Lat 
Timer

Sub Bus 
Number

Second Bus 
Number

Primary Bus 
Number 18h

Secondary Status I/O Limit I/O Base 1Ch

Memory Limit Memory Base 20h

Prefetchable Memory Limit Prefetchable Memory Base 24h

Prefetchable Base Upper 32 Bits 28h

Prefetchable Limit Upper 32 Bits 2Ch

I/O Limit Upper 16 Bits I/O Base Upper 16 Bits 30h

Reserved CapPtr 34h

Expansion ROM Base Address 38h

Bridge Control Intr Pin Intr Line 3Ch
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Core Interfaces
The 7 Series FPGAs Integrated Block for PCI Express core includes top-level signal 
interfaces that have sub-groups for the receive direction, transmit direction, and signals 
common to both directions. 

System Interface
The System (SYS) interface consists of the system reset signal (sys_reset) and the system 
clock signal (sys_clk), as described in Table 2-5.

The system reset signal is an asynchronous input. The assertion of sys_reset causes a hard 
reset of the entire core. The reset provided by the PCI Express system is typically active 
Low (for example, PERST#) and needs to be inverted before connecting to the sys_reset 
signal. The system input clock must be 100 MHz, 125 MHz, or 250 MHz, as selected in the 
CORE Generator™ software GUI Clock and Reference Signals. 

PCI Express Interface 
The PCI Express (PCI_EXP) interface consists of differential transmit and receive pairs 
organized in multiple lanes. A PCI Express lane consists of a pair of transmit differential 
signals (pci_exp_txp, pci_exp_txn) and a pair of receive differential signals {pci_exp_rxp, 
pci_exp_rxn}. The 1-lane core supports only Lane 0, the 2-lane core supports lanes 0-1, the 
4-lane core supports lanes 0-3, and the 8-lane core supports lanes 0-7. Transmit and receive 
signals of the PCI_EXP interface are defined in Table 2-6.

Table 2-5: System Interface Signals

Function Signal Name Direction Description

System Reset sys_reset Input Asynchronous signal. sys_reset must 
be asserted for at least 1500 ns during 
power on and warm reset operations.

System Clock sys_clk Input Reference clock: Selectable frequency 
100 MHz, 125 MHz, or 250 MHz.

Table 2-6: PCI Express Interface Signals for 1-, 2-, 4- and 8-Lane Cores

Lane 
Number

Name Direction Description

1-Lane Cores

0 pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential 
Output 0 (+)

pci_exp_txn0 Output PCI Express Transmit Negative: Serial 
Differential Output 0 (–)

pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential 
Input 0 (+)

pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential 
Input 0 (–)
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2-Lane Cores

0 pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential 
Output 0 (+)

pci_exp_txn0 Output PCI Express Transmit Negative: Serial 
Differential Output 0 (–)

pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential 
Input 0 (+)

pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential 
Input 0 (–)

1 pci_exp_txp1 Output PCI Express Transmit Positive: Serial Differential 
Output 1 (+)

pci_exp_txn1 Output PCI Express Transmit Negative: Serial 
Differential Output 1 (–)

pci_exp_rxp1 Input PCI Express Receive Positive: Serial Differential 
Input 1 (+)

pci_exp_rxn1 Input PCI Express Receive Negative: Serial Differential 
Input 1 (–)

4-Lane Cores

0 pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential 
Output 0 (+)

pci_exp_txn0 Output PCI Express Transmit Negative: Serial 
Differential Output 0 (–)

pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential 
Input 0 (+)

pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential 
Input 0 (–)

1 pci_exp_txp1 Output PCI Express Transmit Positive: Serial Differential 
Output 1 (+)

pci_exp_txn1 Output PCI Express Transmit Negative: Serial 
Differential Output 1 (–)

pci_exp_rxp1 Input PCI Express Receive Positive: Serial Differential 
Input 1 (+)

pci_exp_rxn1 Input PCI Express Receive Negative: Serial Differential 
Input 1 (–)

Table 2-6: PCI Express Interface Signals for 1-, 2-, 4- and 8-Lane Cores (Cont’d)

Lane 
Number

Name Direction Description
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2 pci_exp_txp2 Output PCI Express Transmit Positive: Serial Differential 
Output 2 (+)

pci_exp_txn2 Output PCI Express Transmit Negative: Serial 
Differential Output 2 (–)

pci_exp_rxp2 Input PCI Express Receive Positive: Serial Differential 
Input 2 (+)

pci_exp_rxn2 Input PCI Express Receive Negative: Serial Differential 
Input 2 (–)

3 pci_exp_txp3 Output PCI Express Transmit Positive: Serial Differential 
Output 3 (+)

pci_exp_txn3 Output PCI Express Transmit Negative: Serial 
Differential Output 3 (–)

pci_exp_rxp3 Input PCI Express Receive Positive: Serial Differential 
Input 3 (+)

pci_exp_rxn3 Input PCI Express Receive Negative: Serial Differential 
Input 3 (–)

8-Lane Cores

0 pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential 
Output 0 (+)

pci_exp_txn0 Output PCI Express Transmit Negative: Serial 
Differential Output 0 (–) 

pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential 
Input 0 (+)

pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential 
Input 0 (–) 

1 pci_exp_txp1 Output PCI Express Transmit Positive: Serial Differential 
Output 1 (+) 

pci_exp_txn1 Output PCI Express Transmit Negative: Serial 
Differential Output 1 (–) 

pci_exp_rxp1 Input PCI Express Receive Positive: Serial Differential 
Input 1 (+) 

pci_exp_rxn1 Input PCI Express Receive Negative: Serial Differential 
Input 1 (–) 

Table 2-6: PCI Express Interface Signals for 1-, 2-, 4- and 8-Lane Cores (Cont’d)

Lane 
Number

Name Direction Description
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2 pci_exp_txp2 Output PCI Express Transmit Positive: Serial Differential 
Output 2 (+) 

pci_exp_txn2 Output PCI Express Transmit Negative: Serial 
Differential Output 2 (–) 

pci_exp_rxp2 Input PCI Express Receive Positive: Serial Differential 
Input 2 (+) 

pci_exp_rxn2 Input PCI Express Receive Negative: Serial Differential 
Input 2 (–) 

3 pci_exp_txp3 Output PCI Express Transmit Positive: Serial Differential 
Output 3 (+) 

pci_exp_txn3 Output PCI Express Transmit Negative: Serial 
Differential Output 3 (–) 

pci_exp_rxp3 Input PCI Express Receive Positive: Serial Differential 
Input 3 (+) 

pci_exp_rxn3 Input PCI Express Receive Negative: Serial Differential 
Input 3 (–) 

4 pci_exp_txp4 Output PCI Express Transmit Positive: Serial Differential 
Output 4 (+) 

pci_exp_txn4 Output PCI Express Transmit Negative: Serial 
Differential Output 4 (–) 

pci_exp_rxp4 Input PCI Express Receive Positive: Serial Differential 
Input 4 (+) 

pci_exp_rxn4 Input PCI Express Receive Negative: Serial Differential 
Input 4 (–) 

5 pci_exp_txp5 Output PCI Express Transmit Positive: Serial Differential 
Output 5 (+)

pci_exp_txn5 Output PCI Express Transmit Negative: Serial 
Differential Output 5 (–) 

pci_exp_rxp5 Input PCI Express Receive Positive: Serial Differential 
Input 5 (+) 

pci_exp_rxn5 Input PCI Express Receive Negative: Serial Differential 
Input 5 (–) 

6 pci_exp_txp6 Output PCI Express Transmit Positive: Serial Differential 
Output 6 (+) 

pci_exp_txn6 Output PCI Express Transmit Negative: Serial 
Differential Output 6 (–) 

pci_exp_rxp6 Input PCI Express Receive Positive: Serial Differential 
Input 6 (+) 

pci_exp_rxn6 Input PCI Express Receive Negative: Serial Differential 
Input 6 (–) 

Table 2-6: PCI Express Interface Signals for 1-, 2-, 4- and 8-Lane Cores (Cont’d)

Lane 
Number

Name Direction Description
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Transaction Interface
The Transaction interface provides a mechanism for the user design to generate and 
consume TLPs. The signal names and signal descriptions for this interface are shown in 
Table 2-7, Table 2-9, and Table 2-10.

Common Interface
Table 2-7 defines and describes the common interface signals.

7 pci_exp_txp7 Output PCI Express Transmit Positive: Serial Differential 
Output 7 (+) 

pci_exp_txn7 Output PCI Express Transmit Negative: Serial 
Differential Output 7 (–) 

pci_exp_rxp7 Input PCI Express Receive Positive: Serial Differential 
Input 7 (+) 

pci_exp_rxn7 Input PCI Express Receive Negative: Serial Differential 
Input 7 (–) 

Table 2-6: PCI Express Interface Signals for 1-, 2-, 4- and 8-Lane Cores (Cont’d)

Lane 
Number

Name Direction Description

Table 2-7: Common Transaction Interface Signals

Name Direction Description

user_clk_out Output Transaction Clock: Transaction, Configuration, and Physical 
Layer Control and Status Interface operations are referenced 
to and synchronous with the rising edge of this clock. This 
signal is active after power-on, and sys_reset has no effect on 
it. This signal is guaranteed to be stable at the selected 
operating frequency only after user_reset_out is deasserted. 
The user_clk_out clock output is a fixed frequency 
configured in the CORE Generator software. This signal does 
not change frequencies in case of link recovery or training 
down.

See Table 2-8 for recommended and optional frequencies.

user_reset_out Output Transaction Reset: User logic interacting with the Transaction 
and Configuration interfaces must use user_reset_out to 
return to its quiescent state. This signal is deasserted 
synchronously with respect to user_clk_out, and is 
deasserted and asserted asynchronously with sys_reset 
assertion. This signal is asserted for core in-band reset events 
such as Hot Reset or Link Disable.
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user_lnk_up Output Transaction Link Up: Transaction link-up is asserted when 
the core and the connected upstream link partner port are 
ready and able to exchange data packets. Transaction link-up 
is deasserted when the core and link partner are attempting 
to establish communication, or when communication with 
the link partner is lost due to errors on the transmission 
channel. This signal is also deasserted when the core is driven 
to Hot Reset or Link Disable state by the link partner, and all 
TLPs stored in the core are lost. This signal is not deasserted 
while in the Recovery state, but is deasserted if Recovery 
fails.

fc_ph[7:0] Output Posted Header Flow Control Credits: The number of Posted 
Header FC credits for the selected flow control type.

fc_pd[11:0] Output Posted Data Flow Control Credits: The number of Posted 
Data FC credits for the selected flow control type.

fc_nph[7:0] Output Non-Posted Header Flow Control Credits: The number of 
Non-Posted Header FC credits for the selected flow control 
type.

fc_npd[11:0] Output Non-Posted Data Flow Control Credits: The number of 
Non-Posted Data FC credits for the selected flow control 
type.

fc_cplh[7:0] Output Completion Header Flow Control Credits: The number of 
Completion Header FC credits for the selected flow control 
type.

fc_cpld[11:0] Output Completion Data Flow Control Credits: The number of 
Completion Data FC credits for the selected flow control 
type. 

fc_sel[2:0] Input Flow Control Informational Select: Selects the type of flow 
control information presented on the fc_* signals. Possible 
values:

• 000: Receive buffer available space
• 001: Receive credits granted to the link partner
• 010: Receive credits consumed
• 100: Transmit user credits available
• 101: Transmit credit limit
• 110: Transmit credits consumed

Table 2-7: Common Transaction Interface Signals (Cont’d)

Name Direction Description
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Transmit Interface
Table 2-9 defines the transmit (TX) interface signals. The bus s_axis_tx_tuser consists of 
unrelated signals. Both the mnemonics and TSUSER signals are used throughout this 
document. For example, the Transmit Source Discontinue signal is referenced as: 
(tsrc_dsc)s_axis_tx_tuser[3].

Table 2-8: Recommended and Optional Transaction Clock (user_clk_out) 
Frequencies

Product
Link Speed 

(Gb/s)
Interface Width(1) 

(Bits)
Recommended 

Frequency (MHz)
Optional 

Frequency (MHz)

1-lane 2.5 64 62.5 31.25, 125, 250

1-lane 5 64 62.5 125, 250

2-lane 2.5 64 62.5 125, 250

2-lane 5 64 125 250

4-lane 2.5 64 125 250

4-lane 5 64 250 -

4-lane 5 128 125 250

8-lane 2.5 64 250 -

8-lane 2.5 128 125 250

8-lane 5 128 250 -

Notes: 
1. Interface Width is a static selection and does not change with dynamic Link Speed changes

Table 2-9: Transmit Interface Signals

Name Mnemonic Direction Description

s_axis_tx_tlast Input Transmit End-of-Frame (EOF): Signals the end of a packet. 
Valid only along with assertion of s_axis_tx_tvalid.

s_axis_tx_tdata[W-1:0] Input Transmit Data: Packet data to be transmitted.

Product  Data Bus Width (W)

1-lane (2.5 Gb/s and 5.0 Gb/s)  64

2-lane (2.5 Gb/s and 5.0 Gb/s)  64

4-lane (2.5 Gb/s and 5.0 Gb/s)  64 or 128

8-lane (2.5 Gb/s and 5.0 Gb/s)  64 or 128
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s_axis_tx_tstrb[7:0] 
(64-bit interface)

s_axis_tx_tstrb[15:0] 
(128-bit interface)

Input Transmit Data Strobe: Determines which data bytes are 
valid on s_axis_tx_tdata[W-1:0] during a given beat 
(s_axis_tx_tvalid and s_axis_tx_tready both asserted).

Bit 0 corresponds to the least significant byte on 
s_axis_tx_tdata and bit 7 (64-bit) and bit 15(128-bit) 
correspond to the most significant byte, for example:

• s_axis_tx_tstrb[0] == 1b, s_axis_tx_tdata[7:0] is valid
• s_axis_tx_tstrb[7] ==0b, s_axis_tx_tdata[63:56] is not 

valid

When s_axis_tx_tlast is not asserted, the only valid values 
are 0xFF (64-bit) or 0xFFFF (128-bit). 

When s_axis_tx_tlast is asserted, valid values are:

• 64-bit: only 0x0F and 0xFF are valid
• 128-bit: 0x000F, 0x00FF, 0x0FFF, and 0xFFFF are 

valid

s_axis_tx_tvalid Input Transmit Source Ready: Indicates that the User Application 
is presenting valid data on s_axis_tx_tdata.

s_axis_tx_tready Output Transmit Destination Ready: Indicates that the core is 
ready to accept data on s_axis_tx_tdata. The simultaneous 
assertion of s_axis_tx_tvalid and s_axis_tx_tready marks 
the successful transfer of one data beat on s_axis_tx_tdata. 

s_axis_tx_tuser[3] t_src_dsc Input Transmit Source Discontinue: Can be asserted any time 
starting on the first cycle after SOF. Assert s_axis_tx_tlast 
simultaneously with (tx_src_dsc)s_axis_tx_tuser[3].

tx_buf_av[5:0] Output Transmit Buffers Available: Indicates the number of free 
transmit buffers available in the core. Each free transmit 
buffer can accommodate one TLP up to the supported 
Maximum Payload Size (MPS). The maximum number of 
transmit buffers is determined by the supported MPS and 
block RAM configuration selected. (See Core Buffering and 
Flow Control, page 147.)

tx_terr_drop Output Transmit Error Drop: Indicates that the core discarded a 
packet because of a length violation or, when streaming, 
data was not presented on consecutive clock cycles.

s_axis_tx_tuser[2] tx_str Input Transmit Streamed: Indicates a packet is presented on 
consecutive clock cycles and transmission on the link can 
begin before the entire packet has been written to the core. 
Commonly referred as transmit cut-through mode.

tx_cfg_req Output Transmit Configuration Request: Asserted when the core is 
ready to transmit a Configuration Completion or other 
internally generated TLP.

Table 2-9: Transmit Interface Signals (Cont’d)

Name Mnemonic Direction Description
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tx_cfg_gnt Input Transmit Configuration Grant: Asserted by the User 
Application in response to tx_cfg_req, to allow the core to 
transmit an internally generated TLP. The tx_cfg_req signal 
is always deasserted after the core-generated packet has 
been serviced before another request is made. Therefore, 
user designs can look for the rising edge of tx_cfg_req to 
determine when to assert tx_cfg_gnt. Holding tx_cfg_gnt 
deasserted after tx_cfg_req allows user-initiated TLPs to be 
given a higher priority of transmission over core-generated 
TLPs. Asserting tx_cfg_gnt for one clock cycle when 
tx_cfg_req is asserted causes the next packet output to be 
the core’s internally generated packet. In cases where there 
is no buffer space to store the internal packet, tx_cfg_req 
remains asserted even after tx_cfg_gnt has been asserted. 
The user design does not need to assert tx_cfg_gnt again 
because the initial assertion has been captured. 

If the user does not wish to alter the prioritization of the 
transmission of internally generated TLPs, this signal can 
be continuously asserted. 

s_axis_tx_tuser[1] tx_err_fwd Input Transmit Error Forward: This input marks the current 
packet in progress as error-poisoned. It can be asserted any 
time between SOF and EOF, inclusive. The tx_err_fwd 
signal must not be asserted if (tx_str)s_axis_tx_tuser[2] is 
asserted.

s_axis_tx_tuser[0] tx_ecrc_gen Input Transmit ECRC Generate: Causes the end-to-end cyclic 
redundancy check (ECRC) digest to be appended. This 
input must be asserted at the beginning of the TLP.

Table 2-9: Transmit Interface Signals (Cont’d)

Name Mnemonic Direction Description
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Receive Interface
Table 2-10 defines the receive (RX) interface signals. The bus m_axis_tx_tuser consists of 
unrelated signals. Mnemonics for these signals are used throughout this document in place 
of the TUSER signal names.

Table 2-10: Receive Interface Signals

Name Mnemonic Direction Description

m_axis_rx_tlast Output Receive End-of-Frame (EOF): Signals the end of a packet. 
Valid only if m_axis_rx_tvalid is also asserted.

m_axis_rx_tdata[W-1:0] Output Receive Data: Packet data being received. Valid only if 
m_axis_rx_tvalid is also asserted.

128-bit interface only: Unlike the Transmit interface 
s_axis_tx_tdata[127:0], received TLPs can begin on either 
the upper QWORD m_axis_rx_tdata[127:64] or lower 
QWORD m_axis_rx_tdata[63:0] of the bus. See the 
description of is_sof and (rx_is_sof[4:0]) 
m_axis_rx_tuser[14:10] m_axis_rx_tuser[21:17] for 
further explanation.

m_axis_rx_tstrb[7:0]
(64-bit interface only)

Output Receive Data Strobe: 

Determines which data bytes are valid on 
m_axis_rx_tdata[63:0] during a given beat 
(m_axis_rx_tvalid and m_axis_rx_tready both asserted).

Bit 0 corresponds to the least significant byte on 
m_axis_rx_tdata and bit 7 correspond to the most 
significant byte, for example:

• m_axis_rx_tstrb[0] == 1b, m_axis_rx_tdata[7:0] is valid
• m_axis_rx_tstrb[7] == 0b, m_axis_rx_tdata[63:56] is 

not valid

When m_axis_rx_tlast is not asserted, the only valid value 
is 0xFF.

When m_axis_rx_tlast is asserted, valid values are:

• 64-bit:, only 0x0F and 0xFF are valid

Product  Data Bus Width (W)

1-lane (2.5 Gb/s and 5.0 Gb/s)  64

2-lane (2.5 Gb/s and 5.0 Gb/s)  64

4-lane (2.5 Gb/s and 5.0 Gb/s)  64 or 128

8-lane (2.5 Gb/s and 5.0 Gb/s)  64 or 128
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m_axis_rx_tuser[14:10]

(128-bit interface only)

rx_is_sof[4:0] Output Indicates the start of a new packet header in 
m_axis_rx_tdata: 

Bit 4: Asserted when a new packet is present

Bit 0-3: Indicates byte location of start of new packet, 
binary encoded. 

Valid values:

• 5'b10000 = SOF at AXI byte 0 (DWORD 0) 
m_axis_rx_tdata[7:0]

• 5'b11000 = SOF at AXI byte 8 (DWORD 2) 
m_axis_rx_tdata[71:64]

• 5'b00000 = No SOF present

m_axis_rx_tuser[21:17]

(128-bit interface only)

rx_is_eof[4:0] Output Indicates the end of a packet in m_axis_rx_tdata: 

Bit 4: Asserted when a packet is ending

Bit 0-3: Indicates byte location of end of the packet, binary 
encoded. 

Valid values:

• 5'b10011 = EOF at AXI byte 3 (DWORD 0) 
m_axis_rx_tdata[31:24]

• 5'b10111 = EOF at AXI byte 7 (DWORD 1) 
m_axis_rx_tdata[63:56]

• 5'b11011 = EOF at AXI byte 11 (DWORD 2) 
m_axis_rx_tdata[95:88]

• 5'b11111 = EOF at AXI byte 15 (DWORD 3) 
m_axis_rx_tdata[127:120]

• 5'b00011 = No EOF present

m_axis_rx_tuser[1] rx_err_fwd Output Receive Error Forward: 

64-bit interface: When asserted, marks the packet in 
progress as error-poisoned. Asserted by the core for the 
entire length of the packet.

128-bit interface: When asserted, marks the current packet 
in progress as error-poisoned. Asserted by the core for the 
entire length of the packet. If asserted during a straddled 
data transfer, applies to the packet that is beginning.

m_axis_rx_tuser[0] rx_ecrc_err Output Receive ECRC Error: Indicates the current packet has an 
ECRC error. Asserted at the packet EOF.

m_axis_rx_tvalid Output Receive Source Ready: Indicates that the core is 
presenting valid data on m_axis_rx_tdata.

m_axis_rx_tready Input Receive Destination Ready: Indicates that the User 
Application is ready to accept data on m_axis_rx_tdata. 
The simultaneous assertion of m_axis_rx_tvalid and 
m_axis_rx_tready marks the successful transfer of one 
data beat on s_axis_tx_tdata. 

Table 2-10: Receive Interface Signals (Cont’d)

Name Mnemonic Direction Description
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rx_np_ok Input Receive Non-Posted OK: The User Application asserts 
this signal when it is ready to accept Non-Posted Request 
TLPs. rx_np_ok must be deasserted when the User 
Application cannot process received Non-Posted TLPs, so 
that these can be buffered within the core's receive queue. 
In this case, Posted and Completion TLPs received after 
the Non-Posted TLPs bypass the blocked TLPs.

When the User Application approaches a state where it is 
unable to service Non-Posted Requests, it must deassert 
rx_np_ok two clock cycle before the core asserts 
m_axis_rx_tlast of the next-to-last Non-Posted TLP the 
User Application can accept.

rx_np_req Input Receive Non-Posted Request: When asserted, requests 
one non-posted TLP from the core per user_clk cycle. If 
the User Application can process received Non-Posted 
TLPs at the line rate, this signal can be constantly asserted. 
If the User Application is not requesting Non-Posted 
packets, received Posted and Completion TLPs bypass 
waiting Non-Posted TLPs.

m_axis_rx_tuser[9:2] rx_bar_hit[7:0] Output Receive BAR Hit: Indicates BAR(s) targeted by the current 
receive transaction. Asserted from the beginning of the 
packet to m_axis_rx_tlast.

• (rx_bar_hit[0])m_axis_rx_tuser[2]: BAR0
• (rx_bar_hit[1])m_axis_rx_tuser[3]: BAR1
• (rx_bar_hit[2])m_axis_rx_tuser[4]: BAR2
• (rx_bar_hit[3])m_axis_rx_tuser[5]: BAR3
• (rx_bar_hit[4])m_axis_rx_tuser[6]: BAR4
• (rx_bar_hit[5])m_axis_rx_tuser[7]: BAR5
• (rx_bar_hit[6])m_axis_rx_tuser[8]: Expansion ROM 

Address

If two BARs are configured into a single 64-bit address, 
both corresponding rx_bar_hit bits are asserted.

m_axis_rx_tuser[8:4] are not applicable to Root Port 
configurations.

m_axis_rx_tuser[9] is reserved for future use.

Table 2-10: Receive Interface Signals (Cont’d)

Name Mnemonic Direction Description
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Physical Layer Interface
The Physical Layer (PL) interface enables the user design to inspect the status of the Link 
and Link Partner and control the Link State. Table 2-11 defines and describes the signals for 
the PL interface.

Table 2-11: Physical Layer Interface Signals

Name Direction Description

pl_initial_link_width[2:0] Output Initial Negotiated Link Width: Indicates the 
link width after the PCI Express port has 
achieved the first successful link training. 
Initial Negotiated Link Width represents the 
widest link width possible during normal 
operation of the link, and can be equal to or 
smaller than the capability link width (smaller 
of the two) supported by link partners. This 
value is reset when the core is reset or the 
LTSSM goes through the Detect state. 
Otherwise the value remains the same.

• 000: Link not trained
• 001: 1-Lane link
• 010: 2-Lane link
• 011: 4-Lane link
• 100: 8-Lane link

pl_phy_lnk_up Output Physical Layer Link Up Status: Indicates the 
physical layer link up status.

pl_lane_reversal_mode[1:0] Output Lane Reversal Mode: Indicates the current Lane 
Reversal mode. 

• 00: No reversal
• 01: Lanes 1:0 reversed
• 10: Lanes 3:0 reversed
• 11: Lanes 7:0 reversed

pl_link_gen2_cap Output Link Gen2 Capable: Indicates that the 
PCI Express link is 5.0 Gb/s (Gen 2) speed 
capable (both the Link Partner and the Device 
are Gen 2 capable)

• 0: Link is not Gen2 Capable
• 1: Link is Gen2 Capable

pl_link_partner_gen2_supported Output Link Partner Gen2 Capable: Indicates if the PCI 
Express link partner advertises 5.0 Gb/s (Gen2) 
capability. Valid only when user_lnk_up is 
asserted.

• 0: Link partner not Gen2 capable
• 1: Link partner is Gen2 capable

pl_link_upcfg_cap Output Link Upconfigure Capable: Indicates the 
PCI Express link is Upconfigure capable. Valid 
only when user_lnk_up is asserted.

• 0: Link is not Upconfigure capable
• 1: Link is Upconfigure capable
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pl_sel_lnk_rate Output Current Link Rate: Reports the current link 
speed. Valid only when user_lnk_up is 
asserted.

0: 2.5 Gb/s

1: 5.0 Gb/s

pl_sel_lnk_width[1:0] Output Current Link Width: Reports the current link 
width. Valid only when user_lnk_up is 
asserted.

00: 1-Lane link

01: 2-Lane link

10: 4-Lane link

11: 8-Lane link

Table 2-11: Physical Layer Interface Signals (Cont’d)

Name Direction Description
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pl_ltssm_state[5:0] Output LTSSM State: Shows the current LTSSM state 
(hex).

0, 1: Detect Quiet

2, 3: Detect Active

4: Polling Active

5: Polling Configuration 

6: Polling Compliance, Pre_Send_EIOS 

7: Polling Compliance, Pre_Timeout 

8: Polling Compliance, Send_Pattern 

9: Polling Compliance, Post_Send_EIOS

A: Polling Compliance, Post_Timeout 

B: Configuration Linkwidth, State 0 

C: Configuration Linkwidth, State 1 

D: Configuration Linkwidth, Accept 0 

E: Configuration Linkwidth, Accept 1 

F: Configuration Lanenum Wait 

10: Configuration Lanenum, Accept 

11: Configuration Complete x1 

12: Configuration Complete x2

13: Configuration Complete x4 

14: Configuration Complete x8 

15: Configuration Idle 

16: L0 

17: L1 Entry0 

18: L1 Entry1 

19: L1 Entry2 (also used for the L2/L3 Ready 
pseudo state)

1A: L1 Idle 

1B: L1 Exit 

1C: Recovery Rcvrlock 

1D: Recovery Rcvrcfg 

Table 2-11: Physical Layer Interface Signals (Cont’d)

Name Direction Description
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pl_ltssm_state[5:0] (Cont’d) Output 1E: Recovery Speed_0 

1F: Recovery Speed_1 

20: Recovery Idle 

21: Hot Reset 

22: Disabled Entry 0 

23: Disabled Entry 1 

24: Disabled Entry 2 

25: Disabled Idle 

26: Root Port, Configuration, Linkwidth State 0 

27: Root Port, Configuration, Linkwidth State 1

28: Root Port, Configuration, Linkwidth State 2

29: Root Port, Configuration, Link Width 
Accept 0 

2A: Root Port, Configuration, Link Width 
Accept 1 

2B: Root Port, Configuration, Lanenum_Wait 

2C: Root Port, Configuration, 
Lanenum_Accept 

2D: Timeout To Detect 

2E: Loopback Entry0 

2F: Loopback Entry1 

30: Loopback Active0 

31: Loopback Exit0 

32: Loopback Exit1 

33: Loopback Master Entry0 

pl_rx_pm_state[1:0] Output RX Power Management State: Indicates the RX 
Power Management State:

00: RX Not in L0s

01: RX L0s Entry

10: RX L0s Idle

11: RX L0s FTS

pl_tx_pm_state[2:0] Output TX Power Management State: Indicates the TX 
Power Management State:

000: TX Not in L0s

001: TX L0s Entry

010: TX L0s Idle

011: TX L0s FTS

100 - 111: Reserved

Table 2-11: Physical Layer Interface Signals (Cont’d)

Name Direction Description
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pl_directed_link_auton Input Directed Autonomous Link Change: Specifies 
the reason for directed link width and speed 
change. This must be used in conjunction with 
pl_directed_link_change[1:0], 
pl_directed_link_speed, and 
pl_directed_link_width[1:0] inputs.

• 0: Link reliability driven
• 1: Application requirement driven 

(autonomous)

pl_directed_link_change[1:0] Input Directed Link Change Control: Directs the PCI 
Express Port to initiate a link width and/or 
speed change. Link change operation must be 
initiated when user_lnk_up is asserted. For a 
Root Port, pl_directed_link_change must not 
be set to 10 or 11 unless the attribute 
RP_AUTO_SPD = 11.

• 00: No change
• 01: Link width
• 10: Link speed
• 11: Link width and speed (level-triggered)

pl_directed_link_speed Input Directed Target Link Speed: Specifies the target 
link speed for a directed link change operation, 
in conjunction with the 
pl_directed_link_change[1:0] input. The target 
link speed must not be set High unless the 
pl_link_gen2_capable output is High.

• 0: 2.5 Gb/s
• 1: 5.0 Gb/s

pl_directed_link_width[1:0] Input Directed Target Link Width: Specifies the target 
link width for a directed link change operation, 
in conjunction with 
pl_directed_link_change[1:0] input.

Encoding Target Link Width:

• 00: 1-Lane link
• 01: 2-Lane link
• 10: 4-Lane link
• 11: 8-Lane link

Table 2-11: Physical Layer Interface Signals (Cont’d)

Name Direction Description
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Configuration Interface
The Configuration (CFG) interface enables the user design to inspect the state of the 
Endpoint for PCIe configuration space. The user provides a 10-bit configuration address, 
which selects one of the 1024 configuration space doubleword (DWORD) registers. The 
Endpoint returns the state of the selected register over the 32-bit data output port. 
Table 2-14 defines the Configuration interface signals. See Design with Configuration 
Space Registers and Configuration Interface, page 158 for usage.

pl_directed_change_done Output Directed Link Change Done: Indicates to the 
user that the directed link speed change or 
directed link width change is done.

pl_upstream_prefer_deemph Input Endpoint Preferred Transmitter De-emphasis: 
Enables the Endpoint to control de-emphasis 
used on the link at 5.0 Gb/s speeds. 
pl_upstream_prefer_deemph can be changed 
in conjunction with pl_directed_link_speed 
and pl_directed_link_change[1:0] inputs when 
transitioning from 2.5 Gb/s to 5.0 Gb/s data 
rates. Value presented on 
pl_upstream_prefer_deemph depends upon 
the property of PCI Express physical 
interconnect channel in use. 

• 0: –6 dB de-emphasis recommended for 
short, reflection dominated channels.

• 1: –3.5 dB de-emphasis recommended for 
long, loss dominated channels. 

Table 2-12: Role-Specific Physical Layer Interface Signals: Endpoint

Name Direction Description

pl_received_hot_rst Output Hot Reset Received: Indicates that an in-band hot reset 
command has been received.

Table 2-13: Role-Specific Physical Layer Interface Signals: Root Port

Name Direction Description

pl_transmit_hot_rst Input Transmit Hot Reset: Active High. Directs the PCI 
Express Port to transmit an In-Band Hot Reset.

Table 2-11: Physical Layer Interface Signals (Cont’d)

Name Direction Description
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Table 2-14: Configuration Interface Signals

Name Direction Description

cfg_mgmt_do[31:0] Output Configuration Data Out: A 32-bit data output port 
used to obtain read data from the configuration 
space inside the core. 

cfg_mgmt_rd_wr_done Output Configuration Read Write Done: Read-write done 
signal indicates a successful completion of the user 
configuration register access operation. 

• For a user configuration register read 
operation, this signal validates the 
cfg_mgmt_do[31:0] data-bus value. 

• For a user configuration register write 
operation, the assertion indicates completion of 
a successful write operation. 

cfg_mgmt_di[31:0] Input Configuration Data In: A 32-bit data input port 
used to provide write data to the configuration 
space inside the core. 

cfg_mgmt_dwaddr[9:0] Input Configuration DWORD Address: A 10-bit address 
input port used to provide a configuration register 
DWORD address during configuration register 
accesses.

cfg_mgmt_byte_en[3:0] Input Configuration Byte Enable: Byte enables for 
configuration register write access.

cfg_mgmt_wr_en Input Configuration Write Enable: Write enable for 
configuration register access. 

cfg_mgmt_rd_en Input Configuration Read Enable: Read enable for 
configuration register access.

cfg_mgmt_wr_readonly Input Management Write Readonly Bits: Write enable to 
treat any ReadOnly bit in the current Management 
Write as a RW bit, not including bits set by 
attributes, reserved bits, and status bits.

cfg_status[15:0] Output Configuration Status: Status register from the 
Configuration Space Header. Not supported.

cfg_command[15:0] Output Configuration Command: Command register 
from the Configuration Space Header.

cfg_dstatus[15:0] Output Configuration Device Status: Device status 
register from the PCI Express Capability Structure.

cfg_dcommand[15:0] Output Configuration Device Command: Device control 
register from the PCI Express Capability Structure.

cfg_dcommand2[15:0] Output Configuration Device Command 2: Device control 
2 register from the PCI Express Capability 
Structure.

cfg_lstatus[15:0] Output Configuration Link Status: Link status register 
from the PCI Express Capability Structure.
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cfg_lcommand[15:0] Output Configuration Link Command: Link control 
register from the PCI Express Capability Structure.

cfg_aer_ecrc_gen_en Output Configuration AER - ECRC Generation Enable: 
AER Capability and Control Register bit 6. When 
asserted, indicates that ECRC Generation has been 
enabled by the host.

cfg_aer_ecrc_check_en Output Configuration AER - ECRC Check Enable: AER 
Capability and Control Register bit 8. When 
asserted, indicates that ECRC Checking has been 
enabled by the host.

cfg_pcie_link_state[2:0] Output PCI Express Link State: This encoded bus reports 
the PCI Express Link State information to the user.

• 000: “L0”
• 001: “PPM L1”
• 010: “PPM L2/L3 Ready”
• 011: “PM_PME”
• 100: “in or transitioning to/from ASPM L0s”
• 101: “transitioning to/from PPM L1”
• 110: “transition to PPM L2/L3 Ready”
• 111: Reserved

cfg_trn_pending Input User Transaction Pending: If asserted, sets the 
Transactions Pending bit in the Device Status 
Register. 

Note: The user is required to assert this input if the 
User Application has not received a completion to 
an upstream request.

cfg_dsn[63:0] Input Configuration Device Serial Number: Serial 
Number Register fields of the Device Serial 
Number extended capability. 

cfg_pmcsr_pme_en Output PMCSR PME Enable: PME_En bit (bit 8) in the 
Power Management Control/Status Register.

cfg_pmcsr_pme_status Output PMCSR PME_Status: PME_Status bit (bit 15) in the 
Power Management Control/Status Register.

cfg_pmcsr_powerstate[1:0] Output PMCSR PowerState: PowerState bits (bits 1:0) in 
the Power Management Control/Status Register.

cfg_pm_halt_aspm_l0s Input Halt ASPM L0s: When asserted, it prevents the 
core from going into ASPM L0s. If the core is 
already in L0s, it causes the core to return to L0. 
cfg_pm_force_state, however, takes precedence 
over this input.

cfg_pm_halt_aspm_l1 Input Halt ASPM L1: When asserted, it prevents the core 
from going into ASPM L1. If the core is already in 
L1, it causes the core to return to L0. 
cfg_pm_force_state, however, takes precedence 
over this input.

Table 2-14: Configuration Interface Signals (Cont’d)

Name Direction Description
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cfg_pm_force_state[1:0] Input Force PM State: Forces the Power Management 
State machine to attempt to stay in or move to the 
desired state.

• 00: Move to or stay in L0 
• 01: Move to or stay in PPM L1
• 10: Move to or stay in ASPM L0s
• 11: Move to or stay in ASPM L1

cfg_pm_force_state_en Input Force PM State Transition Enable: Enables the 
transition to/stay in the desired Power 
Management state, as indicated by 
cfg_pm_force_state. If attempting to move to a 
desired state, cfg_pm_force_state_en must be held 
asserted until cfg_pcie_link_state indicates a move 
to the desired state.

Table 2-15: Role-Specific Configuration Interface Signals: Endpoint

Name Direction Description

cfg_bus_number[7:0] Output Configuration Bus Number: Provides the 
assigned bus number for the device. The User 
Application must use this information in the 
Bus Number field of outgoing TLP requests. 
Default value after reset is 00h. Refreshed 
whenever a Type 0 Configuration Write 
packet is received.

cfg_device_number[4:0] Output Configuration Device Number: Provides the 
assigned device number for the device. The 
User Application must use this information 
in the Device Number field of outgoing TLP 
requests. Default value after reset is 00000b. 
Refreshed whenever a Type 0 Configuration 
Write packet is received.

cfg_function_number[2:0] Output Configuration Function Number: Provides 
the function number for the device. The User 
Application must use this information in the 
Function Number field of outgoing TLP 
request. Function number is hardwired to 
000b.

cfg_to_turnoff Output Configuration To Turnoff: Output that 
notifies the user that a PME_TURN_Off 
message has been received and the CMM 
starts polling the cfg_turnoff_ok input 
coming in from the user. After cfg_turnoff_ok 
is asserted, CMM sends a PME_To_Ack 
message to the upstream device. 

Table 2-14: Configuration Interface Signals (Cont’d)

Name Direction Description
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cfg_turnoff_ok Input Configuration Turnoff OK: The User 
Application can assert this to notify the 
Endpoint that it is safe to turn off power.

cfg_pm_wake Input Configuration Power Management Wake: A 
one-clock cycle assertion informs the core to 
generate and send a Power Management 
Wake Event (PM_PME) Message TLP to the 
upstream link partner. 

Note: The user is required to assert this input 
only under stable link conditions as reported 
on the cfg_pcie_link_state[2:0] bus. Assertion 
of this signal when the PCI Express link is in 
transition results in incorrect behavior on the 
PCI Express link.

Table 2-16: Role-Specific Configuration Interface Signals: Root Port

Name Direction Description

cfg_ds_bus_number[7:0] Input Configuration Downstream Bus Number: Provides 
the bus number (Requester ID) of the Downstream 
Port. This is used in TLPs generated inside the core 
and does not affect the TLPs presented on the 
AXI4-Stream interface.

cfg_ds_device_number[4:0] Input Configuration Downstream Device Number: 
Provides the device number (Requester ID) of the 
Downstream Port. This is used in TLPs generated 
inside the core and does not affect the TLPs 
presented on the Transaction interface.

cfg_wr_rw1c_as_rw Input Configuration Write RW1C Bit as RW: Indicates that 
the current write operation should treat any RW1C 
bit as a RW bit. Normally, a RW1C bit is cleared by 
writing a 1 to it, and can normally only be set by 
internal core conditions. However, during a 
configuration register access operation with this 
signal asserted, for every bit on cfg_di that is 1, the 
corresponding RW1C configuration register bit is 
set to 1. A value of 0 on cfg_di during this operation 
has no effect, and non-RW1C bits are unaffected 
regardless of the value on cfg_di.

cfg_msg_received Output Message Received: Active High. Notifies the user 
that a Message TLP was received on the Link.

cfg_msg_data[15:0] Output Message Requester ID: The Requester ID of the 
Message was received. Valid only along with 
assertion of cfg_msg_received.

Table 2-15: Role-Specific Configuration Interface Signals: Endpoint (Cont’d)

Name Direction Description
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cfg_msg_received_
err_cor

Output Received ERR_COR Message: Active High. 
Indicates that the core received an ERR_COR 
Message. Valid only along with assertion of 
cfg_msg_received. The Requester ID of this 
Message Transaction is provided on 
cfg_msg_data[15:0].

cfg_msg_received_
err_non_fatal

Output Received ERR_NONFATAL Message: Active High. 
Indicates that the core received an 
ERR_NONFATAL Message. Valid only along with 
assertion of cfg_msg_received. The Requester ID of 
this Message Transaction is provided on 
cfg_msg_data[15:0].

cfg_msg_received_
err_fatal

Output Received ERR_FATAL Message: Active High. 
Indicates that the core received an ERR_FATAL 
Message. Valid only along with assertion of 
cfg_msg_received. The Requester ID of this 
Message Transaction is provided on 
cfg_msg_data[15:0]. 

cfg_pm_send_pme_to Input Configuration Send Turn-off: Asserting this 
active-Low input causes the Root Port to send Turn 
Off Message. When the link partner responds with a 
Turn Off Ack, this is reported on 
cfg_msg_received_pme_to_ack, and the final 
transition to L3 Ready is reported on 
cfg_pcie_link_state. Tie-off to 1 for Endpoint.

cfg_msg_received_err_
pme_to_ack

Output Received PME_TO_Ack Message: Active High. 
Indicates that the core received an PME_TO_Ack 
Message. Valid only along with assertion of 
cfg_msg_received. The Requester ID of this 
Message Transaction is provided on 
cfg_msg_data[15:0].

cfg_msg_received_
assert_inta

Output Received Assert_INTA Message: Active High. 
Indicates that the core received an Assert INTA 
Message. Valid only along with assertion of 
cfg_msg_received. The Requester ID of this 
Message Transaction is provided on 
cfg_msg_data[15:0].

cfg_msg_received_
assert_intb

Output Received Assert_INTB Message: Active High. 
Indicates that the core received an Assert_INTB 
Message. Valid only along with assertion of 
cfg_msg_received. The Requester ID of this 
Message Transaction is provided on 
cfg_msg_data[15:0].

Table 2-16: Role-Specific Configuration Interface Signals: Root Port (Cont’d)

Name Direction Description
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cfg_msg_received_
assert_intc

Output Received Assert_INTC Message: Active High. 
Indicates that the core received an Assert_INTC 
Message. Valid only along with assertion of 
cfg_msg_received. The Requester ID of this 
Message Transaction is provided on 
cfg_msg_data[15:0].

cfg_msg_received_
assert_intd

Output Received Assert_INTD Message: Active High. 
Indicates that the core received an Assert_INTD 
Message. Valid only along with assertion of 
cfg_msg_received. The Requester ID of this 
Message Transaction is provided on 
cfg_msg_data[15:0]. 

cfg_msg_received_
deassert_inta

Output Received Deassert_INTA Message: Active High. 
Indicates that the core received a Deassert_INTA 
Message. Valid only along with assertion of 
cfg_msg_received. The Requester ID of this 
Message Transaction is provided on 
cfg_msg_data[15:0]. 

cfg_msg_received_
deassert_intb

Output Received Deassert_INTB Message: Active High. 
Indicates that the core received a Deassert_INTB 
Message. Valid only along with assertion of 
cfg_msg_received. The Requester ID of this 
Message Transaction is provided on 
cfg_msg_data[15:0]. 

cfg_msg_received_
deassert_intc

Output Received Deassert_INTC Message: Active High. 
Indicates that the core received a Deassert_INTC 
Message. Valid only along with assertion of 
cfg_msg_received. The Requester ID of this 
Message Transaction is provided on 
cfg_msg_data[15:0]. 

cfg_msg_received_
deassert_intd

Output Received Deassert_INTD Message: Active High. 
Indicates that the core received a Deassert_INTD 
Message. Valid only along with assertion of 
cfg_msg_received. The Requester ID of this 
Message Transaction is provided on 
cfg_msg_data[15:0].

Table 2-16: Role-Specific Configuration Interface Signals: Root Port (Cont’d)

Name Direction Description
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Interrupt Interface Signals
Table 2-17 defines the Interrupt interface signals.

Table 2-17: Configuration Interface Signals: Interrupt Interface - Endpoint Only

Name Direction Description

cfg_interrupt Input Configuration Interrupt: Interrupt-request signal. The User Application can 
assert this input to cause the selected interrupt message type to be 
transmitted by the core. The signal should be held Low until 
cfg_interrupt_rdy is asserted.

cfg_interrupt_rdy Output Configuration Interrupt Ready: Interrupt grant signal. The simultaneous 
assertion of cfg_interrupt_rdy and cfg_interrupt indicates that the core has 
successfully transmitted the requested interrupt message.

cfg_interrupt_assert Input Configuration Legacy Interrupt Assert/Deassert Select: Selects between 
Assert and Deassert messages for Legacy interrupts when cfg_interrupt is 
asserted. Not used for MSI interrupts.

Value Message Type

0 Assert

1 Deassert

cfg_interrupt_di[7:0] Input Configuration Interrupt Data In: For MSIs, the portion of the Message Data 
that the Endpoint must drive to indicate the MSI vector number, if 
Multi-Vector Interrupts are enabled. The value indicated by 
cfg_interrupt_mmenable[2:0] determines the number of lower-order bits of 
Message Data that the Endpoint provides; the remaining upper bits of 
cfg_interrupt_di[7:0] are not used. For Single-Vector Interrupts, 
cfg_interrupt_di[7:0] is not used. For Legacy Interrupt messages 
(Assert_INTx, Deassert_INTx), only INTA (00h) is supported.

cfg_interrupt_do[7:0] Output Configuration Interrupt Data Out: The value of the lowest eight bits of the 
Message Data field in the Endpoint’s MSI capability structure. This value is 
provided for informational purposes and backwards compatibility.

cfg_interrupt_mmenable[2:0] Output Configuration Interrupt Multiple Message Enable: This is the value of the 
Multiple Message Enable field and defines the number of vectors the system 
allows for multi-vector MSI. Values range from 000b to 101b. A value of 
000b indicates that single-vector MSI is enabled, while other values indicate 
the number of lower-order bits that can be overridden by 
cfg_interrupt_di[7:0].

• 000, 0 bits
• 001, 1 bit
• 010, 2 bits
• 011, 3 bits
• 100, 4 bits
• 101, 5 bits

cfg_interrupt_msienable Output Configuration Interrupt MSI Enabled: Indicates that MSI messaging is 
enabled.

• 0: Only Legacy (INTX) interrupts or MSI-X Interrupts can be sent.
• 1: Only MSI Interrupts should be sent.
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Error Reporting Signals
Table 2-18 defines the User Application error-reporting signals.

cfg_interrupt_msixenable Output Configuration Interrupt MSI-X Enabled: Indicates that the MSI-X messaging 
is enabled.

• 0: Only Legacy (INTX) interrupts or MSI Interrupts can be sent.
• 1: Only MSI-X Interrupts should be sent.

cfg_interrupt_msixfm Output Configuration Interrupt MSI-X Function Mask: Indicates the state of the 
Function Mask bit in the MSI-X Message Control field. If 0, each vector’s 
Mask bit determines its masking. If 1, all vectors are masked, regardless of 
their per-vector Mask bit states.

cfg_pciecap_interrupt_msgnum[4:0] Input Configuration PCIe Capabilities - Interrupt Message Number: This input sets 
the Interrupt Message Number field in the PCI Express Capability register. 
This input value must be adjusted by the user if only MSI is enabled and the 
host adjusts the Multiple Message Enable field such that it invalidates the 
current value.

Table 2-17: Configuration Interface Signals: Interrupt Interface - Endpoint Only (Cont’d)

Name Direction Description

Table 2-18: User Application Error-Reporting Signals

Port Name Direction Description

cfg_err_ecrc Input ECRC Error Report: The user can assert this 
signal to report an ECRC error (end-to-end CRC).

cfg_err_ur Input Configuration Error Unsupported Request: The 
user can assert this signal to report that an 
unsupported request was received. This signal is 
ignored if cfg_err_cpl_rdy is deasserted.

cfg_err_cpl_timeout(1) Input Configuration Error Completion Timeout: The 
user can assert this signal to report a completion 
timed out.

cfg_err_cpl_unexpect Input Configuration Error Completion Unexpected: 
The user can assert this signal to report that an 
unexpected completion was received.

cfg_err_cpl_abort Input Configuration Error Completion Aborted: The 
user can assert this signal to report that a 
completion was aborted. This signal is ignored if 
cfg_err_cpl_rdy is deasserted.

cfg_err_posted Input Configuration Error Posted: This signal is used to 
further qualify any of the cfg_err_* input signals. 
When this input is asserted concurrently with 
one of the other signals, it indicates that the 
transaction that caused the error was a posted 
transaction. 

cfg_err_cor(1) Input Configuration Error Correctable Error: The user 
can assert this signal to report that a correctable 
error was detected.
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cfg_err_atomic_egress_blocked Input  Configuration Error AtomicOp Egress Blocked: 
The user asserts this signal to report that an 
Atomic TLP was blocked. 

cfg_err_internal_cor Input Configuration Error Corrected Internal: The user 
asserts this signal to report that an Internal error 
occurred and was corrected. This input is only 
sampled if AER is enabled.

cfg_err_internal_uncor Input Configuration Error Uncorrectable Internal: The 
user asserts this signal to report that an 
Uncorrectable Internal error occurred. This input 
is only sampled if AER is enabled.

cfg_err_malformed Input Configuration Error Malformed Error: The user 
asserts this signal to report a Malformed Error. 

cfg_err_mc_blocked Input  Configuration Error MultiCast Blocked: The 
user asserts this signal to report that a Multicast 
TLP was blocked. 

cfg_err_poisoned Input Configuration Error Poisoned TLP: The user can 
assert this signal to report that a Poisoned TLP 
was received. Normally, only used if attribute 
DISABLE_RX_POISONED_RESP=TRUE. 

cfg_err_no_recovery Input Configuration Error Cannot Recover: Used to 
further qualify the cfg_err_poisoned and 
cfg_err_cpl_timeout input signals. When this 
input is asserted concurrently with one of these 
signals, it indicates that the transaction that 
caused these errors cannot be recovered from. 
For a Completion Timeout, it means the user 
elects not to attempt the Request again. For a 
received Poisoned TLP, it means that the user 
cannot continue operation. In either case, 
assertion causes the corresponding error to not 
be regarded as ANFE. 

cfg_err_tlp_cpl_header[47:0] Input Configuration Error TLP Completion Header: 
Accepts the header information from the user 
when an error is signaled. This information is 
required so that the core can issue a correct 
completion, if required. 

This information should be extracted from the 
received error TLP and presented in the given 
format:

[47:41] Lower Address

[40:29] Byte Count

[28:26] TC

[25:24] Attr

[23:8] Requester ID

[7:0] Tag

Table 2-18: User Application Error-Reporting Signals (Cont’d)

Port Name Direction Description
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cfg_err_cpl_rdy Output Configuration Error Completion Ready: When 
asserted, this signal indicates that the core can 
accept assertions on cfg_err_ur and 
cfg_err_cpl_abort for Non-Posted Transactions. 
Assertions on cfg_err_ur and cfg_err_cpl_abort 
are ignored when cfg_err_cpl_rdy is deasserted.

cfg_err_locked Input Configuration Error Locked: This signal is used 
to further qualify any of the cfg_err_* input 
signals. When this input is asserted concurrently 
with one of the other signals, it indicates that the 
transaction that caused the error was a locked 
transaction. 

This signal is for use in Legacy mode. If the user 
needs to signal an unsupported request or an 
aborted completion for a locked transaction, this 
signal can be used to return a Completion Locked 
with UR or CA status.

Note: When not in Legacy mode, the core 
automatically returns a Completion Locked, if 
appropriate.

cfg_err_aer_headerlog[127:0] Input Configuration Error AER Header Log: AER 
Header log for the signalled error.

cfg_err_aer_headerlog_set Output Configuration Error AER Header Log Set: When 
asserted, indicates that Error AER Header Log is 
Set in the case of a Single Header 
implementation/Full in the case of a 
Multi-Header implementation and the header 
for user-reported error is not needed.

cfg_aer_interrupt_msgnum[4:0] Input Configuration AER Interrupt Message Number: 
This input sets the AER Interrupt Message (Root 
Port only) Number field in the AER Capability - 
Root Error Status register. 

If AER is enabled, this input must be driven to a 
value appropriate for MSI or MSIx mode, 
whichever is enabled. This input value must be 
adjusted by the user if only MSI is enabled and 
the host adjusts the Multiple Message Enable 
field such that it invalidates the current value.

Notes: 
1. The user should assert these signals only if the device power state is D0. Asserting these signals in 

non-D0 device power states might result in an incorrect operation on the PCIe link. For additional 
information, see the PCI Express Base Specification, rev. 2.1, Section 5.3.1.2.

Table 2-18: User Application Error-Reporting Signals (Cont’d)

Port Name Direction Description
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Dynamic Reconfiguration Port Interface
The Dynamic Reconfiguration Port (DRP) interface allows for the dynamic change of 
FPGA configuration memory bits of the 7 Series FPGAs Integrated Block for PCI Express 
core. These configuration bits are represented as attributes for the PCIE_2_1 library 
primitive, which is instantiated as part of this core. Table 2-19 defines the DRP interface 
signals. For detailed usage information, see Using the Dynamic Reconfiguration Port 
Interface, page 194.

Table 2-19: Dynamic Reconfiguration Port Interface Signals

Name Direction Description

pcie_drp_clk Input PCI Express DRP Clock: The rising edge of this signal 
is the timing reference for all the other DRP signals. 
Normally, drp_clk is driven with a global clock buffer. 
The maximum frequency is defined in the 
appropriate 7 Series FPGAs Data Sheet. 

pcie_drp_en Input PCI Express DRP Data Enable: When asserted, this 
signal enables a read or write operation. If drp_dwe is 
deasserted, it is a read operation, otherwise a write 
operation. For any given drp_clk cycle, all other input 
signals are don’t cares if drp_den is not active.

pcie_drp_we Input PCI Express DRP Write Enable: When asserted, this 
signal enables a write operation to the port (see 
drp_den).

pcie_drp_addr[8:0] Input PCI Express DRP Address Bus: The value on this bus 
specifies the individual cell that is written or read. 
The address is presented in the cycle that drp_den is 
active.

pcie_drp_di[15:0] Input PCI Express DRP Data Input: The value on this bus is 
the data written to the addressed cell. The data is 
presented in the cycle that drp_den and drp_dwe are 
active, and is captured in a register at the end of that 
cycle, but the actual write occurs at an unspecified 
time before drp_drdy is returned.

pcie_drp_rdy Output PCI Express DRP Ready: This signal is a response to 
drp_den to indicate that the DRP cycle is complete 
and another DRP cycle can be initiated. In the case of 
a DRP read, the drp_do bus must be captured on the 
rising edge of drp_clk in the cycle that drp_drdy is 
active. The earliest that drp_den can go active to start 
the next port cycle is the same clock cycle that 
drp_drdy is active.

pcie_drp_do[15:0] Output PCI Express DRP Data Out: If drp_dwe was inactive 
when drp_den was activated, the value on this bus 
when drp_drdy goes active is the data read from the 
addressed cell. At all other times, the value on 
drp_do[15:0] is undefined.
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Chapter 3

Getting Started Example Design

This chapter provides an overview of the 7 Series FPGA Integrated Block for PCI Express® 
example design and instructions for generating the core. It also includes information about 
simulating and implementing the example design using the provided demonstration test 
bench. 

For current information on generating, simulating, and implementing the core, refer to the 
Release Notes provided with the core, when it is generated using the CORE Generator™ 
tool. 

Integrated Block Endpoint Configuration Overview
The example simulation design for the Endpoint configuration of the integrated block 
consists of two discrete parts:

• The Root Port Model, a test bench that generates, consumes, and checks PCI Express 
bus traffic.

• The Programmed Input/Output (PIO) example design, a completer application for 
PCI Express. The PIO example design responds to Read and Write requests to its 
memory space and can be synthesized for testing in hardware.

Simulation Design Overview
For the simulation design, transactions are sent from the Root Port Model to the Integrated 
Block core (configured as an Endpoint) and processed by the PIO example design. 
Figure 3-1 illustrates the simulation design provided with the Integrated Block core. For 
more information about the Root Port Model, see Root Port Model Test Bench for Endpoint 
in Appendix A.
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X-Ref Target - Figure 3-1

Figure 3-1: Simulation Example Design Block Diagram
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Implementation Design Overview
The implementation design consists of a simple PIO example that can accept read and 
write transactions and respond to requests, as illustrated in Figure 3-2. Source code for the 
example is provided with the core. For more information about the PIO example design, 
see Appendix A, Example Design and Model Test Bench for Endpoint Configuration.

Example Design Elements
The PIO example design elements include:

• Core wrapper

• An example Verilog HDL or VHDL wrapper (instantiates the cores and example 
design)

• A customizable demonstration test bench to simulate the example design

The example design has been tested and verified with Xilinx® ISE® v13.1 software and 
these simulators:

• Synopsys VCS and VCS MX 2010.06

• Mentor Graphics ModelSim 6.6d

• Cadence IES 10.2

X-Ref Target - Figure 3-2

Figure 3-2: Implementation Example Design Block Diagram
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Generating the Core
To generate a core using the default values in the CORE Generator software Graphical User 
Interface (GUI), follow these steps:

1. Start the CORE Generator tool.

For help starting and using the CORE Generator tool, see the Xilinx CORE Generator 
Guide, available from the ISE software documentation web page.

2. Choose File > New Project.

3. Enter a project name and location, then click OK. This example uses 
project_name.cpg and project_dir. The Project Options dialog box appears 
(Figure 3-3).

X-Ref Target - Figure 3-3

Figure 3-3: New Project Dialog Box

UG477_c3_04_021611

http://www.xilinx.com


7 Series FPGAs Integrated Block for PCIe www.xilinx.com 61
UG477 March 1, 2011

Generating the Core

4. Set the project options (Figure 3-4):

From the Part tab, select these options:

• Family: Virtex7

• Device: xc7v285t

• Package: ffg1157

• Speed Grade: -3

Note: If an unsupported silicon device is selected, the core is dimmed (unavailable) in the list of 
cores.

From the Generation tab, select these parameters and then click OK:

• Design Entry: Select Verilog or VHDL

• Vendor: Select ISE (for XST) 

Note: Selecting Synplicity generates a sample Synplicity project file only for the top-level 
example design. The underlying PCI Express core is still synthesized using XST. 

5. Locate the core in the selection tree under Standard Bus Interfaces/PCI Express; then 
double-click the core name to display the Integrated Block main screen.

X-Ref Target - Figure 3-4

Figure 3-4: Project Options
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6. In the Component Name field, enter a name for the core. <component_name> is used 
in this example.

7. From the Device/Port Type drop-down menu, select the appropriate device/port type 
of the core (Endpoint or Root Port).

8. Click Generate to generate the core using the default parameters. The core and its 
supporting files, including the example design and model test bench, are generated in 
the project directory. For detailed information about the example design files and 
directories, see Directory Structure and File Contents, page 65. In addition, see the 
README file.

X-Ref Target - Figure 3-5

Figure 3-5: Integrated Block Main Screen
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Simulating the Example Design
The example design provides a quick way to simulate and observe the behavior of the core. 

Endpoint Configuration
The simulation environment provided with the 7 Series FPGAs Integrated Block for 
PCI Express core in Endpoint configuration performs simple memory access tests on the 
PIO example design. Transactions are generated by the Root Port Model and responded to 
by the PIO example design.

• PCI Express Transaction Layer Packets (TLPs) are generated by the test bench 
transmit User Application (pci_exp_usrapp_tx). As it transmits TLPs, it also 
generates a log file, tx.dat.

• PCI Express TLPs are received by the test bench receive User Application 
(pci_exp_usrapp_rx). As the User Application receives the TLPs, it generates a log 
file, rx.dat. 

For more information about the test bench, see Root Port Model Test Bench for Endpoint in 
Appendix A. 

Setting Up for Simulation
To run the gate-level simulation, the Xilinx Simulation Libraries must be compiled for the 
user system. See the Compiling Xilinx Simulation Libraries (COMPXLIB) in the Xilinx ISE 
Synthesis and Verification Design Guide and the Xilinx ISE Software Manuals and Help. 
Documents can be downloaded from www.xilinx.com/support/software_manuals.htm.

Simulator Requirements

7 Series device designs require a Verilog LRM-IEEE 1364-2005 encryption-compliant 
simulator. This core supports these simulators:

• Mentor Graphics ModelSim

• Cadence IES (Verilog only)

• Synopsys VCS and VCS MX (Verilog only)

Running the Simulation
The simulation scripts provided with the example design support pre-implementation 
(RTL) simulation. The existing test bench can be used to simulate with a 
post-implementation version of the example design.

The pre-implementation simulation consists of these components:

• Verilog or VHDL model of the test bench

• Verilog or VHDL RTL example design

• The Verilog or VHDL model of the 7 Series FPGAs Integrated Block for PCI Express

1. To run the simulation, go to this directory: 

<project_dir>/<component_name>/simulation/functional

http://www.xilinx.com
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2. Launch the simulator and run the script that corresponds to the user simulation tool 
using one of these: 

• VCS > ./simulate_vcs.sh 

• IES > ./simulate_ncsim.sh 

• ModelSim > do simulate_mti.do

Implementing the Example Design
After generating the core, the netlists and the example design can be processed using the 
Xilinx implementation tools. The generated output files include scripts to assist in running 
the Xilinx software.

To implement the example design:

Open a command prompt or terminal window and type:

• Windows

ms-dos> cd <project_dir>\<component_name>\implement
ms-dos> implement.bat

• Linux

% cd <project_dir>/<component_name>/implement
% ./implement.sh

These commands execute a script that synthesizes, builds, maps, and place-and-routes the 
example design, and then generates a post-par simulation model for use in timing 
simulation. The resulting files are placed in the results directory and execute these 
processes: 

1. Removes data files from the previous runs. 

2. Synthesizes the example design using XST based on the flow settings in the Project 
Options window.

3. ngdbuild: Builds a Xilinx design database for the example design. 

- Inputs:

Part-Package-Speed Grade selection:

XC7V285T-FFG1157-3 

Example design UCF:

xilinx_pcie_2_1_ep_7x_01_lane_gen1_xc7v285t-ffg1157-3-PCIE_X0Y0.ucf

4. map: Maps design to the selected FPGA using the constraints provided.

5. par: Places cells onto FPGA resources and routes connectivity.

6. trce: Performs static timing analysis on design using constraints specified.

7. netgen: Generates a logical Verilog or VHDL HDL representation of the design and 
an SDF file for post-layout verification.

These FPGA implementation related files are generated in the results directory:

• routed.v[hd] 
Verilog or VHDL functional Model.

• routed.sdf
Timing model Standard Delay File.
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• mapped.mrp 
Xilinx map report. 

• routed.par
Xilinx place and route report. 

• routed.twr
Xilinx timing analysis report. 

Directory Structure and File Contents
The 7 Series FPGAs Integrated Block for PCI Express example design directories and their 
associated files are defined in the sections that follow. Click a directory name to go to the 
desired directory and its associated files.

Example Design
<project directory>topdirectory

Top-level project directory; name is user-defined

 <project directory>/<component name> 
Core release notes readme file 

 <component name>/doc 
Product documentation 

 <component name>/example_design
Verilog or VHDL design files

 <component name>/implement
Implementation script files

 implement/results
Contains implement script results

 implement/xst
Contains synthesis results, when XST is chosen as the synthesis tool

 <component name>/source
Core source files

 <component name>/simulation
Simulation scripts

 simulation/dsport (for Endpoint configuration only)
Root Port Bus Functional Model

 simulation/functional
Functional simulation files

 simulation/tests (for Endpoint configuration only)
Test command files
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<project directory> 
The project directory contains all the CORE Generator tool project files.

<project directory>/<component name>
The component name directory contains the release notes in the readme file provided with 
the core, which can include tool requirements, updates, and issue resolution. 

<component name>/doc
The doc directory contains the PDF documentation provided with the core.

Table 3-1: Project Directory

Name Description

<project_dir>

<component_name>.xco CORE Generator software project-specific option 
file; can be used as an input to the CORE 
Generator tool.

<component_name>_flist.txt List of files delivered with core.

<component_name>.{veo|vho} Verilog or VHDL instantiation template. 

<component_name>_xmdf.tcl Xilinx standard IP Core information file used by 
Xilinx design tools.

Back to Top

Table 3-2: Component Name Directory

Name Description

<project_dir>/<component_name>

pcie_7x_readme.txt Release notes file.

Back to Top

Table 3-3: Doc Directory

Name Description

<project_dir>/<component_name>/doc

ug477_7Series_IntBlock
_PCIe.pdf

7 Series FPGAs Integrated Block for PCI Express User Guide 

ds821_7series_pcie.pdf LogiCORE IP 7 Series FPGAs Integrated Block for PCI Express 
Data Sheet

Back to Top
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<component name>/example_design
The example_design directory contains the example design files provided with the core. 
Table 3-4 shows the directory contents for an Endpoint configuration core.

<component name>/implement
The implement directory contains the core implementation script files.

implement/results

The results directory is created by the implement script. The implement script results are 
placed in the results directory.

Table 3-4: Example Design Directory: Endpoint Configuration

Name Description

<project_dir>/<component_name>/example_design

xilinx_pcie_2_1_ep_7x_01_lane_
gen1_xc7v285t-ffg1157-3-PCIE_
X0Y0.ucf

Example design UCF. Filename varies by 
Device/Port Type, lane width, maximum link 
speed, part, package, PCIe block location, and 
Xilinx Development Board selected.

xilinx_pcie_2_1_ep_7x.v[hd] Verilog or VHDL top-level PIO example design file.

pcie_app_7x.v[hd] 

EP_MEM.v[hd] 

PIO.v[hd] 

PIO_EP.v[hd] 

PIO_EP_MEM_ACCESS.v[hd] 

PIO_TO_CTRL.v[hd] 

PIO_[64|128].v[hd] 

PIO_[64|128]_RX_ENGINE.v[hd] 

PIO_[64|128]_TX_ENGINE.v[hd] 

PIO example design files. 

Back to Top

Table 3-5: Implement Directory 

Name Description

<project_dir>/<component_name>/implement

implement.bat

implement.sh
DOS and Linux implementation scripts.

xilinx_pcie_2_1_ep_7x.prj XST file list for the core.

xilinx_pcie_2_1_ep_7x.xst XST command file.

xilinx_pcie_2_1_ep_7x.xcf XST synthesis constraints file.

Back to Top

Table 3-6: Results Directory

Name Description

<project_dir>/<component_name>/implement/results

Implement script result files. 

Back to Top
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implement/xst

The xst directory is created by the XST script. The synthesis results are placed in the xst 
directory.

<component name>/source
The source directory contains the generated core source files.

Table 3-7: XST Results Directory

Name Description

<project_dir>/<component_name>/implement/xst

XST result files. 

Back to Top

Table 3-8: Source Directory

Name Description

<project_dir>/<component_name>/source

<component_name>.v Verilog or VHDL top-level solution wrapper for 
the 7 Series FPGAs Integrated Block for PCI 
Express

pcie_2_1_7x.v Solution Wrapper for the 7 Series FPGAs 
Integrated Block for PCI Express

pcie_pipe_2_1.v

pcie_pipe_lane_v7.v

pcie_pipe_misc_v7.v

PIPE module for the 7 Series FPGAs Integrated 
Block for PCI Express.

pcie_bram_top_7x.v

pcie_brams_7x.v

pcie_bram_7x.v

Block RAM module for the 7 Series FPGAs 
Integrated Block for PCI Express.

pcie_gtx_7x.v

gtx_wrapper.v

GTX wrapper for the 7 Series FPGAs Integrated 
Block for PCI Express. 

axi_basic_top.v

axi_basic_rx.v

axi_basic_rx_pipeline.v

axi_basic_rx_null_gen.v

axi_basic_tx.v

axi_basic_tx_pipeline.v

axi_basic_tx_thrtl_ctl.v

AXI4-Stream Interface files for the 7 Series FPGAs 
Integrated Block for PCI Express.

http://www.xilinx.com


7 Series FPGAs Integrated Block for PCIe www.xilinx.com 69
UG477 March 1, 2011

Directory Structure and File Contents

<component name>/simulation
The simulation directory contains the simulation source files provided with the core.

simulation/dsport

The dsport directory contains the files for the Root Port model test bench.

pipe_clock.v

pipe_drp.v

pipe_rate.v

pipe_reset.v

pipe_sync.v

pipe_user.v

pipe_wrapper.v

qpll_drp.v

qpll_reset.v

qpll_wrapper.v

GTX module for the 7 Series FPGAs GTX 
transceivers.

Back to Top

Table 3-8: Source Directory (Cont’d)

Name Description

Table 3-9: dsport Directory: Endpoint Configuration

Name Description

<project_dir>/<component_name>/simulation/dsport

pcie_2_1_rp_v7.v[hd] 

pci_exp_expect_tasks.v

pci_exp_usrapp_cfg.v[hd] 

pci_exp_usrapp_com.v

pci_exp_usrapp_pl.v[hd] 

pci_exp_usrapp_rx.v[hd] 

pci_exp_usrapp_tx.v[hd] 

xilinx_pcie_2_1_rport_v7.v[hd]

test_interface.vhd

Root Port model files.

Back to Top
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simulation/functional

The functional directory contains functional simulation scripts provided with the core.

simulation/tests

Note: This directory exists for Endpoint configuration only.

The tests directory contains test definitions for the example test bench.

Table 3-10: Functional Directory

Name Description

<project_dir>/<component_name>/simulation/functional

board.f List of files for RTL simulations.

simulate_mti.do Simulation script for ModelSim.

simulate_ncsim.sh Simulation script for Cadence IES (Verilog only).

simulate_vcs.sh Simulation script for VCS (Verilog only).

xilinx_lib_vcs.f Points to the required SecureIP Model.

board_common.v
(Endpoint configuration only)

Contains test bench definitions (Verilog only). 

board.v[hd] Top-level simulation module.

sys_clk_gen_ds.v[hd] 
(Endpoint configuration only)

System differential clock source.

sys_clk_gen.v[hd] System clock source.

Back to Top

Table 3-11: Tests Directory

Name Description

<project_dir>/<component_name>/simulation/tests

sample_tests1.v

tests.v[hd] 
Test definitions for example test bench.

Back to Top
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Generating and Customizing the Core

The 7 Series FPGAs Integrated Block for PCI Express® core is a fully configurable and 
highly customizable solution. The 7 Series FPGAs Integrated Block for PCI Express is 
customized using the CORE Generator™ software.

Note: The screen captures in this chapter are conceptual representatives of their subjects and 
provide general information only. For the latest information, see the CORE Generator tool.

Customizing the Core using the CORE Generator Software
The CORE Generator software GUI for the 7 Series FPGA Integrated Block for PCI Express 
consists of 12 screens:

• Screen 1: Basic Parameter Settings

• Screen 2: Base Address Registers

• Screen 3: PCI Registers

• Screens 4 and 5: Configuration Register Settings

• Screen 6: Interrupt Capabilities

• Screen 7: Power Management Registers

• Screen 8 and 9: PCI Express Extended Capabilities

• Screen 10: Pinout Selection

• Screens 11 and 12: Advanced Settings
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Basic Parameter Settings
The initial customization screen shown in Figure 4-1 is used to define the basic parameters 
for the core, including the component name, lane width, and link speed.

Component Name

Base name of the output files generated for the core. The name must begin with a letter and 
can be composed of these characters: a to z, 0 to 9, and “_.”

PCIe Device / Port Type

Indicates the PCI Express logical device type.

X-Ref Target - Figure 4-1

Figure 4-1: Screen 1: Integrated Block for PCI Express Parameters
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Number of Lanes

The 7 Series FPGAs Integrated Block for PCI Express requires the selection of the initial 
lane width. Table 4-1 defines the available widths and associated generated core. Wider 
lane width cores are capable of training down to smaller lane widths if attached to a 
smaller lane-width device. See Link Training: 2-Lane, 4-Lane, and 8-Lane Components, 
page 189 for more information.

Link Speed

The 7 Series FPGAs Integrated Block for PCI Express allows the selection of Maximum 
Link Speed supported by the device. Table 4-2 defines the lane widths and link speeds 
supported by the device. Higher link speed cores are capable of training to a lower link 
speed if connected to a lower link speed capable device.

Interface Width

The 7 Series FPGAs Integrated Block for PCI Express allows the selection of Interface 
Width, as defined in Table 4-3. The default interface width set in the CORE Generator GUI 
is the lowest possible interface width.

Table 4-1: Lane Width and Product Generated

Lane Width Product Generated

x1 1-Lane 7 Series FPGAs Integrated Block for PCI Express

x2 2-Lane 7 Series FPGAs Integrated Block for PCI Express

x4 4-Lane 7 Series FPGAs Integrated Block for PCI Express

x8 8-Lane 7 Series FPGAs Integrated Block for PCI Express

Table 4-2: Lane Width and Link Speed

Lane Width Link Speed

x1 2.5 Gb/s, 5 Gb/s

x2 2.5 Gb/s, 5 Gb/s

x4 2.5 Gb/s, 5 Gb/s

x8 2.5 Gb/s, 5 Gb/s

Table 4-3: Lane Width, Link Speed, and Interface Width

Lane Width
Link Speed

(Gb/s)
Interface Width 

(Bits)

X1 2.5, 5.0 64

X2 2.5, 5.0 64

X4 2.5 64

X4 5.0 64, 128

X8 2.5 64, 128

X8 5.0 128
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Interface Frequency

It is possible to select the clock frequency of the core's user interface. Each lane width 
provides multiple frequency choices: a default frequency and alternative frequencies, as 
defined in Table 4-4. Where possible, Xilinx recommends using the default frequency. 
Selecting the alternate frequencies does not result in a difference in throughput in the core, 
but does allow the user application to run at an alternate speed.

Table 4-4: Recommended and Optional Transaction Clock (user_clk_out) 
Frequencies

Product
Link Speed 

(Gb/s)
Interface Width(1) 

(Bits)
Recommended 

Frequency (MHz)
Optional 

Frequency (MHz)

1-lane 2.5 64 62.5 31.25, 125, 250

1-lane 5 64 62.5 125, 250

2-lane 2.5 64 62.5 125, 250

2-lane 5 64 125 250

4-lane 2.5 64 125 250

4-lane 5 64 250 -

4-lane 5 128 125 250

8-lane 2.5 64 250 -

8-lane 2.5 128 125 250

8-lane 5 128 250 -

Notes: 
1. Interface Width is a static selection and does not change with dynamic Link Speed changes
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Base Address Registers
The Base Address Register (BAR) screen shown in Figure 4-2 sets the base address register 
space for the Endpoint configuration. Each BAR (0 through 5) represents a 32-bit 
parameter.

Base Address Register Overview

The 7 Series FPGAs Integrated Block for PCI Express in Endpoint configuration supports 
up to six 32-bit BARs or three 64-bit BARs, and the Expansion ROM BAR. The 7 Series 
FPGAs Integrated Block for PCI Express in Root Port configuration supports up to two 
32-bit BARs or one 64-bit BAR, and the Expansion ROM BAR. 

BARs can be one of two sizes:

• 32-bit BARs: The address space can be as small as 16 bytes or as large as 2 gigabytes. 
Used for Memory to I/O.

• 64-bit BARs: The address space can be as small as 128 bytes or as large as 8 exabytes. 
Used for Memory only.

X-Ref Target - Figure 4-2

Figure 4-2: Screen 2: BAR Options - Endpoint
UG477_c4_02_012511
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All BAR registers share these options:

• Checkbox: Click the checkbox to enable the BAR; deselect the checkbox to disable the 
BAR.

• Type: BARs can either be I/O or Memory.

• I/O: I/O BARs can only be 32-bit; the Prefetchable option does not apply to I/O 
BARs. I/O BARs are only enabled for the Legacy PCI Express Endpoint core.

• Memory: Memory BARs can be either 64-bit or 32-bit and can be prefetchable. 
When a BAR is set as 64 bits, it uses the next BAR for the extended address space 
and makes the next BAR inaccessible to the user.

• Size: The available Size range depends on the PCIe® Device/Port Type and the Type 
of BAR selected. Table 4-5 lists the available BAR size ranges.

• Prefetchable: Identifies the ability of the memory space to be prefetched.

• Value: The value assigned to the BAR based on the current selections.

For more information about managing the Base Address Register settings, see Managing 
Base Address Register Settings.

Expansion ROM Base Address Register

If selected, the Expansion ROM is activated and can be a value from 2 KB to 4 GB. 
According to the PCI 3.0 Local Bus Specification, the maximum size for the Expansion ROM 
BAR should be no larger than 16 MB. Selecting an address space larger than 16 MB might 
result in a non-compliant core.

Managing Base Address Register Settings

Memory, I/O, Type, and Prefetchable settings are handled by setting the appropriate GUI 
settings for the desired base address register.

Memory or I/O settings indicate whether the address space is defined as memory or I/O. 
The base address register only responds to commands that access the specified address 
space. Generally, memory spaces less than 4 KB in size should be avoided. The minimum 
I/O space allowed is 16 bytes; use of I/O space should be avoided in all new designs.

Prefetchability is the ability of memory space to be prefetched. A memory space is 
prefetchable if there are no side effects on reads (that is, data is not destroyed by reading, as 
from a RAM). Byte write operations can be merged into a single double word write, when 
applicable.

When configuring the core as an Endpoint for PCIe (non-Legacy), 64-bit addressing must 
be supported for all BARs (except BAR5) that have the prefetchable bit set. 32-bit 
addressing is permitted for all BARs that do not have the prefetchable bit set. The 
prefetchable bit related requirement does not apply to a Legacy Endpoint. The minimum 

Table 4-5: BAR Size Ranges for Device Configuration

PCIe Device / Port Type BAR Type BAR Size Range

PCI Express Endpoint
32-bit Memory 128 Bytes – 2 Gigabytes

64-bit Memory 128 Bytes – 8 Exabytes

Legacy PCI Express Endpoint

32-bit Memory 16 Bytes – 2 Gigabytes

64-bit Memory 16 Bytes – 8 Exabytes

I/O 16 Bytes – 2 Gigabytes
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memory address range supported by a BAR is 128 bytes for a PCI Express Endpoint and 
16 bytes for a Legacy PCI Express Endpoint.

Disabling Unused Resources

For best results, disable unused base address registers to conserve system resources. A 
base address register is disabled by deselecting unused BARs in the GUI.

PCI Registers
The PCI Registers screen shown in Figure 4-3 is used to customize the IP initial values, 
class code, and Cardbus CIS pointer information.

ID Initial Values

• Vendor ID: Identifies the manufacturer of the device or application. Valid identifiers 
are assigned by the PCI Special Interest Group to guarantee that each identifier is 
unique. The default value, 10EEh, is the Vendor ID for Xilinx. Enter a vendor 
identification number here. FFFFh is reserved.

X-Ref Target - Figure 4-3

Figure 4-3: PCI Registers: Screen 3
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• Device ID: A unique identifier for the application; the default value, which depends 
on the configuration selected, is 70<link speed><link width>h. This field can be any 
value; change this value for the application.

• Revision ID: Indicates the revision of the device or application; an extension of the 
Device ID. The default value is 00h; enter values appropriate for the application.

• Subsystem Vendor ID: Further qualifies the manufacturer of the device or 
application. Enter a Subsystem Vendor ID here; the default value is 10EE. Typically, 
this value is the same as Vendor ID. Setting the value to 0000h can cause compliance 
testing issues.

• Subsystem ID: Further qualifies the manufacturer of the device or application. This 
value is typically the same as the Device ID; the default value depends on the lane 
width and link speed selected. Setting the value to 0000h can cause compliance 
testing issues.

Class Code

The Class Code identifies the general function of a device, and is divided into three 
byte-size fields:

• Base Class: Broadly identifies the type of function performed by the device.

• Sub-Class: More specifically identifies the device function.

• Interface: Defines a specific register-level programming interface, if any, allowing 
device-independent software to interface with the device.

Class code encoding can be found at www.pcisig.com.

Class Code Look-up Assistant

The Class Code Look-up Assistant provides the Base Class, Sub-Class and Interface values 
for a selected general function of a device. This Look-up Assistant tool only displays the 
three values for a selected function. The user must enter the values in Class Code for these 
values to be translated into device settings.

Cardbus CIS Pointer

Used in cardbus systems and points to the Card Information Structure for the cardbus 
card. If this field is non-zero, an appropriate Card Information Structure must exist in the 
correct location. The default value is 0000_0000h; the value range is 
0000_0000h-FFFF_FFFFh.

http://www.xilinx.com
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Configuration Register Settings
The Configuration Registers screens shown in Figure 4-4 and Figure 4-5 show the options 
for the Device Capabilities and Device Capabilities2 Registers, the Block RAM 
Configuration Options, the Link Capabilities Register, Link Control2 Register, and the Link 
Status Register. 
X-Ref Target - Figure 4-4

Figure 4-4: Screen 4: Configuration Settings
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Capabilities Register

• Capability Version: Indicates the PCI-SIG defined PCI Express capability structure 
version number; this value cannot be changed.

• Device Port Type: Indicates the PCI Express logical device type.

• Slot Implemented: Indicates the PCI Express Link associated with this port is 
connected to a slot. Only valid for a Root Port of a PCI Express Root Complex or a 
Downstream Port of a PCI Express Switch.

• Capabilities Register: Displays the value of the Capabilities register presented by the 
integrated block, and is not editable.

X-Ref Target - Figure 4-5

Figure 4-5: Screen 5: Configuration Settings
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Device Capabilities Register

• Max Payload Size: Indicates the maximum payload size that the device/function can 
support for TLPs.

• Extended Tag Field: Indicates the maximum supported size of the Tag field as a 
Requester. When selected, indicates 8-bit Tag field support. When deselected, 
indicates 5-bit Tag field support.

• Extended Tag Default: When this field is checked, indicates the default value of bit 8 
of the Device Control register is set to 1 to support the Extended Tag Enable Default 
ECN.

• Phantom Functions: Indicates the support for use of unclaimed function numbers to 
extend the number of outstanding transactions allowed by logically combining 
unclaimed function numbers (called Phantom Functions) with the Tag identifier. See 
Section 2.2.6.2 of the PCI Express Base Specification, rev. 2.1 for a description of Tag 
Extensions. This field indicates the number of most significant bits of the function 
number portion of Requester ID that are logically combined with the Tag identifier.

• Acceptable L0s Latency: Indicates the acceptable total latency that an Endpoint can 
withstand due to the transition from L0s state to the L0 state.

• Acceptable L1 Latency: Indicates the acceptable latency that an Endpoint can 
withstand due to the transition from L1 state to the L0 state.

• Device Capabilities Register: Displays the value of the Device Capabilities register 
presented by the integrated block and is not editable.

Block RAM Configuration Options

• Buffering Optimized for Bus Mastering Applications: Causes the device to advertise 
to its Link Partner credit settings that are optimized for Bus Mastering applications.

• Performance Level: Selects the Performance Level settings, which determines the 
Receiver and Transmitter Sizes. The table displayed specifies the Receiver and 
Transmitter settings - number of TLPs buffered in the Transmitter, the Receiver Size, 
the Credits advertised by the Core to the Link Partner and the Number of Block RAMs 
required for the configuration, corresponding to the Max Payload Size selected, for 
each of the Performance Level options.

• Finite Completions: If selected, causes the device to advertise to the Link Partner the 
actual amount of space available for Completions in the Receiver. For an Endpoint, 
this is not compliant to the PCI Express Base Specification, rev. 2.1, as Endpoints are 
required to advertise an infinite amount of completion space.

Device Capabilities 2 Register

• Completion Timeout Disable Supported: Indicates support for Completion Timeout 
Disable mechanism

• Completion Timeout Ranges Supported: Indicates Device Function support for the 
optional Completion Timeout mechanism. It is strongly recommended that the 
Completion Timeout mechanism not expire in less than 10 ms.

• Device Capabilities2 Register: Displays the value of the Device Capabilities2 
Register sent to the Core and is not editable.

• UR Atomic: If checked, the core automatically responds to Atomic Operation requests 
with an Unsupported Request. If unchecked, the core passes Atomic Operations TLPs 
to the user.
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• 32-bit AtomicOp Completer Support: Indicates 32-bit AtomicOp Completer support.

• 64-bit AtomicOp Completer Support: Indicates 64-bit AtomicOp Completer support.

• 128-bit CAS Completer Support: Indicates 128-bit Compare And Swap completer 
support.

• TPH Completer Supported: Indicates the level of support for TPH completer.

Link Capabilities Register

This section is used to set the Link Capabilities register.

• Supported Link Speed: Indicates the supported link speed of the given PCI Express 
Link. This value is set to the Link Speed specified in the first GUI screen and is not 
editable.

• ASPM Optionality: When checked, this field disables ASPM.

• Maximum Link Width: This value is set to the initial lane width specified in the first 
GUI screen and is not editable.

• DLL Link Active Reporting Capability: Indicates the optional Capability of 
reporting the DL_Active state of the Data Link Control and Management State 
Machine. 

• Link Capabilities Register: Displays the value of the Link Capabilities register sent to 
the core and is not editable.

Link Control Register

• Read Completion Boundary: Indicates the Read Completion Boundary for the Root 
Port.

• Link Control Register: Displays the value of the Link Control Register sent to the core 
and is not editable.

Link Control 2 Register

• Target Link Speed: Sets an upper limit on the link operational speed. This is used to 
set the target Compliance Mode speed. The value is set to the supported link speed 
and can be edited only if the link speed is set to 5.0 Gb/s.

• Hardware Autonomous Speed Disable: When checked, this field disables the 
hardware from changing the link speed for device specific reasons other than 
attempting to correct unreliable link operation by reducing link speed.

• De-emphasis: Sets the level of de-emphasis for an Upstream component, when the 
Link is operating at 5.0 Gb/s. This feature is not editable.

• Link Control 2 Register: Displays the value of the Link Control 2 Register sent to the 
core and is not editable.

Link Status Register

• Enable Slot Clock Configuration: Indicates that the Endpoint uses the 
platform-provided physical reference clock available on the connector. Must be 
cleared if the Endpoint uses an independent reference clock.
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Interrupt Capabilities
The Interrupt Settings screen shown in Figure 4-6 sets the Legacy Interrupt Settings, MSI 
Capabilities, and MSI-X Capabilities.

Legacy Interrupt Settings

• Enable INTX: Enables the ability of the PCI Express function to generate INTx 
interrupts.

• Interrupt PIN: Indicates the mapping for Legacy Interrupt messages. A setting of 
“None” indicates no Legacy Interrupts are used.

Note: Only INT A is supported.

MSI Capabilities

• Enable MSI Capability Structure: Indicates that the MSI Capability structure exists.

• 64 bit Address Capable: Indicates that the function is capable of sending a 64-bit 
Message Address.

X-Ref Target - Figure 4-6

Figure 4-6: Screen 6: Interrupt Capabilities
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• Multiple Message Capable: Selects the number of MSI vectors to request from the 
Root Complex.

• Per Vector Masking Capable: Indicates that the function supports MSI per-vector 
Masking.

MSI-X Capabilities

• Enable MSIx Capability Structure: Indicates that the MSI-X Capability structure 
exists. 

Note: This Capability Structure needs at least one Memory BAR to be configured.

• MSIx Table Settings: Defines the MSI-X Table Structure.

• Table Size: Specifies the MSI-X Table Size.

• Table Offset: Specifies the Offset from the Base Address Register that points to the 
Base of the MSI-X Table.

• BAR Indicator: Indicates the Base Address Register in the Configuration Space that 
is used to map the function’s MSI-X Table, onto Memory Space. For a 64-bit Base 
Address Register, this indicates the lower DWORD.

• MSIx Pending Bit Array (PBA) Settings: Defines the MSI-X Pending Bit Array (PBA) 
Structure.

• PBA Offset: Specifies the Offset from the Base Address Register that points to the 
Base of the MSI-X PBA.

• PBA BAR Indicator: Indicates the Base Address Register in the Configuration 
Space that is used to map the function’s MSI-X PBA, onto Memory Space.
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Power Management Registers
The Power Management Registers screen shown in Figure 4-7 includes settings for the 
Power Management Registers, power consumption and power dissipation options.

• Device Specific Initialization: This bit indicates whether special initialization of this 
function is required (beyond the standard PCI configuration header) before the 
generic class device driver is able to use it. When selected, this option indicates that 
the function requires a device specific initialization sequence following transition to 
the D0 uninitialized state. See section 3.2.3 of the PCI Bus Power Management Interface 
Specification Revision 1.2.

• D1 Support: When selected, this option indicates that the function supports the D1 
Power Management State. See section 3.2.3 of the PCI Bus Power Management Interface 
Specification Revision 1.2.

• D2 Support: When selected, this option indicates that the function supports the D2 
Power Management State. See section 3.2.3 of the PCI Bus Power Management Interface 
Specification Revision 1.2.

X-Ref Target - Figure 4-7

Figure 4-7: Power Management Registers: Screen 7
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• PME Support From: When this option is selected, it indicates the power states in 
which the function can assert cfg_pm_wake. See section 3.2.3 of the PCI Bus Power 
Management Interface Specification Revision 1.2.

• No Soft Reset: Checking this box indicates that if the device transitions from D3hot to 
D0 because of a Power State Command, it does not perform an internal reset and 
Configuration context is preserved. Disabling this option is not supported.

Power Consumption

The 7 Series FPGAs Integrated Block for PCI Express always reports a power budget of 
0W. For information about power consumption, see section 3.2.6 of the PCI Bus Power 
Management Interface Specification Revision 1.2.

Power Dissipated

The 7 Series FPGAs Integrated Block for PCI Express always reports a power dissipation of 
0W. For information about power dissipation, see section 3.2.6 of the PCI Bus Power 
Management Interface Specification Revision 1.2.
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PCI Express Extended Capabilities
The PCIe Extended Capabilities screen shown in Figure 4-8 includes settings for Device 
Serial Number Capability, Virtual Channel Capability, Vendor Specific Capability, and 
optional user-defined Configuration capabilities.

Device Serial Number Capability

• Device Serial Number Capability: An optional PCIe Extended Capability containing 
a unique Device Serial Number. When this Capability is enabled, the DSN identifier 
must be presented on the Device Serial Number input pin of the port. This Capability 
must be turned on to enable the Virtual Channel and Vendor Specific Capabilities

X-Ref Target - Figure 4-8

Figure 4-8: Screen 8: PCIe Extended Capabilities
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Virtual Channel Capability

• Virtual Channel Capability: An optional PCIe Extended Capability which allows the 
user application to be operated in TCn/VC0 mode. Checking this allows Traffic Class 
filtering to be supported.

• Reject Snoop Transactions (Root Port Configuration Only): When enabled, any 
transactions for which the No Snoop attribute is applicable, but is not set in the TLP 
header, can be rejected as an Unsupported Request. 

Vendor Specific Capability

• Vendor Specific Capability: An optional PCIe Extended Capability that allows PCI 
Express component vendors to expose Vendor Specific Registers. When checked, 
enables Xilinx specific Loopback Control.

User-Defined Configuration Capabilities: Endpoint Configuration Only

• PCI Configuration Space Enable: Allows the user application to add/implement PCI 
Legacy capability registers. This option should be selected if the user application 
implements a legacy capability configuration space. This option enables the routing of 
Configuration Requests to addresses outside the built-in PCI-Compatible 
Configuration Space address range to the AXI4-Stream interface.

• PCI Configuration Space Pointer: Sets the starting Dword aligned address of the user 
definable PCI Compatible Configuration Space. The available DWORD address range 
is 2Ah - 3Fh.

• PCI Express Extended Configuration Space Enable: Allows the user application to 
add/implement PCI Express Extended capability registers. This option should be 
selected if the user application implements such an extended capability configuration 
space. This enables the routing of Configuration Requests to addresses outside the 
built-in PCI Express Extended Configuration Space address range to the User 
Application.

• PCI Configuration Space Pointer: Sets the starting DWORD aligned address of the 
PCI Express Extended Configuration Space implemented by the user application. This 
action enables routing of Configuration Requests with DWORD addresses greater 
than or equal to the value set in the user application. The available address range 
depends on the PCIe Extended Capabilities selected. For more information, see 
Chapter 5, Designing with the Core.
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AER Capability

• Enable AER Capability: An optional PCIe Extended Capability that allows Advanced 
Error Reporting.

• Multiheader: Indicates support for multiple-header buffering for the AER header log 
field. (Not supported for the 7 Series FPGAs Integrated Block for PCI Express.)

• Permit Root Error Update: If TRUE, permits the AER Root Status and Error Source ID 
registers to be updated. If FALSE, these registers are forced to 0.

• ECRC Check Capable: Indicates the core can check ECRC.

• Optional Error Support: Indicates which option error conditions in the Uncorrectable 
and Correctable Error Mask/Severity registers are supported. If an error box is 
unchecked, the corresponding bit in the Mask/Severity register is hardwired to 0. 

X-Ref Target - Figure 4-9

Figure 4-9: Optional Extended Capabilities: Screen 9
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RBAR Capability

• Enable RBAR Capability: An optional PCIe Extended Capability that allows 
Resizable BARs.

• Number of RBARs: Number of resizeable BARs in the Cap Structure, which depends 
on the number of BARs enabled.

• BARn Size Supported: RBAR Size Supported vector for RBAR Capability Register (0 
through 5)

• BARn Index Value: Sets the index of the resizeable BAR from among the enabled 
BARs

• RBARn Init Value: RBAR Initial Value for the RBAR Control BAR Size field. 

ECRC

• Receive ECRC Check: Enables ECRC checking of received TLPs. 

• 0 = Do not check

• 1 = Always check

• 3 = Check if enabled by the ECRC check enable bit of the AER Capability 
Structure

• Received ECRC Check Trim: Enables TD bit clear and ECRC trim on received TLPs.

• Disable RX Poisoned Resp: Disables the core from sending a message and setting 
status bits due to receiving a Poisoned TLP.
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Pinout Selection
The Pinout Selection screen shown in Figure 4-10 includes options for pinouts specific to 
Xilinx Development Boards and PCIe Block Location.

• Xilinx Development Boards: Selects the Xilinx Development Board to enable the 
generation of Xilinx Development Board specific constraints files.

• PCIe Block Location Selection: Selects from the PCIe Blocks available to enable 
generation of location specific constraint files and pinouts. When options “X0Y0 & 
X0Y1” or “X0Y2 & X0Y3” are selected, constraints files for both PCIe Block locations 
are generated, and the constraints file for the X0Y0 or X0Y3 location is used.

This option is not available if a Xilinx Development Board is selected. 

X-Ref Target - Figure 4-10

Figure 4-10: Screen 10: Pinout Selection
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Advanced Settings
The Advanced Settings screens shown in Figure 4-11 and Figure 4-12 include settings for 
Transaction Layer, Link Layer, Physical Layer, DRP Ports, and Reference Clock Frequency 
options.
X-Ref Target - Figure 4-11

Figure 4-11: Screen 11: Advanced Settings 1

UG477_c4_11_012511

http://www.xilinx.com


7 Series FPGAs Integrated Block for PCIe www.xilinx.com 93
UG477 March 1, 2011

Customizing the Core using the CORE Generator Software

Transaction Layer Module

• Enable Message Routing: Controls if message TLPs are also received on the 
AXI4-Stream interface.

• Endpoint: 

• Unlock and PME_Turn_Off Messages

• Root Port: 

• Error Messages - Error Correctable, Error Non-Fatal, Error Fatal

• Assert/Deassert INT Messages - INTA, INTB, INTC, INTD

• Power Management Messages - PM_PME, PME_TO_ACK

• Receive Non-Posted Request (Non-Posted Flow Control)

• The rx_np_req signal prevents the user application from buffering Non-Posted 
TLPs. When rx_np_req is asserted, one Non-Posted TLP is requested from the 
integrated block. This signal cannot be used in conjunction with rx_np_ok. Every 
time that rx_np_req is asserted, one TLP is presented on the receive interface; 
whereas, every time that rx_np_ok is deasserted, the user application needs to 
buffer up to two additional Non-Posted TLPs.

X-Ref Target - Figure 4-12

Figure 4-12: Screen 12: Advanced Settings 2
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• Pipeline Registers for Transaction Block RAM Buffers: Selects the Pipeline registers 
enabled for the Transaction Buffers. Pipeline registers can be enabled on either the 
Write path or both the Read and Write paths of the Transaction Block RAM buffers.

Link Layer Module

• Override ACK/NAK Latency Timer: Checking this box enables the user to override 
the ACK/NAK latency timer values set in the device. Use of this feature could cause 
the ACK timeout values to be non-compliant to the PCI Express Base Specification, rev. 
2.1. This setting can be used to perform advanced debugging operations. Any 
modifications to default attributes must be made only if directed by Xilinx Technical 
Support.

• ACK Latency Timer Override Function: This setting determines how the override 
value is used by the device with respect to the ACK/NAK Latency Timer Value in the 
device. Options are “Absolute”, “Add”, and “Subtract”. The first two settings could 
cause the ACK timeout values to be non-compliant with the PCI Express Base 
Specification, rev. 2.1.

• ACK Latency Timer Override Value: This setting determines the ACK/NAK latency 
timer value used by the device depending on if the ACK Latency Timer Override 
Function enabled. The built-in table value depends on the Negotiated Link Width and 
Programmed MPS of the device.

• Override Replay Timer: Checking this box enables the user to override the replay 
timer values set in the device. Use of this feature could cause the replay timeout 
values to be non-compliant to the PCI Express Base Specification, rev. 2.1. This setting 
can be used to perform advanced debugging operations. Any modifications to default 
attributes must be made only if directed by Xilinx Technical Support.

• Replay Timer Override Function: This setting determines how the override value is 
used by the device with respect to the replay timer value in the device. Options are 
“Absolute”, “Add”, and “Subtract”. The first two settings could cause the replay 
timeout values to be non-compliant with the PCI Express Base Specification, rev. 2.1.

• Replay Timer Override Value: This setting determines the replay timer value used by 
the device depending on if the Replay Timer Override Function enabled. The built-in 
table value depends on the Negotiated Link Width and Programmed MPS of the 
device. The user must ensure that the final timeout value does not overflow the 15-bit 
timeout value.

Advanced Physical Layer

• Enable Lane Reversal: When checked, enables the Lane Reversal feature.

• Force No Scrambling: Used for diagnostic purposes only and should never be 
enabled in a working design. Setting this bit results in the data scramblers being 
turned off so that the serial data stream can be analyzed.

• Upconfigure Capable: When unchecked, the port is advertised as “Not Upconfigure 
Capable” during Link Training.

• Disable TX ASPM L0s: Recommended for a link that interconnects a 7 series FPGA to 
any Xilinx component. This prevents the device transmitter from entering the L0s 
state.

• Link Number: Specifies the link number advertised by the device in TS1 and TS2 
ordered sets during Link training. Used in downstream facing mode only.

http://www.xilinx.com


7 Series FPGAs Integrated Block for PCIe www.xilinx.com 95
UG477 March 1, 2011

Customizing the Core using the CORE Generator Software

• ATS

• UR_INV_REQ: When this box is checked, the core handles received ATS 
Invalidate request messages as unsupported requests. When this box is 
unchecked, the core passes received ATS Invalidate request messages to the user.

• UR_PRS_RESPONSE: When this box is checked, the core handles received ATS 
Page Request Group Response messages as unsupported requests. When this box 
is unchecked, the core passes received ATS PRG Response messages to the user.

Debug Ports

• PCIe DRP Ports: Checking this box enables the generation of DRP ports for the PCIe 
Hard Block, giving users dynamic control over the PCIe Hard Block attributes. This 
setting can be used to perform advanced debugging. Any modifications to the PCIe 
default attributes must be made only if directed by Xilinx Technical Support.

Reference Clock Frequency

Selects the frequency of the reference clock provided on sys_clk. For important information 
about clocking the 7 Series FPGA Integrated Block for PCI Express, see Clocking and Reset 
of the Integrated Block Core, page 190.

Silicon Revision

Selects the silicon revision.
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Designing with the Core

This chapter provides design instructions for the 7 Series FPGAs Integrated Block for 
PCI Express® user interface and assumes knowledge of the PCI Express Transaction Layer 
Packet (TLP) header fields. Header fields are defined in PCI Express Base Specification v2.1, 
in the “Transaction Layer Specification” chapter. 

This chapter includes these design guidelines: 

• Designing with the Transaction Layer Interface

• Designing with the Physical Layer Control and Status Interface

• Design with Configuration Space Registers and Configuration Interface

• Power Management

• Generating Interrupt Requests

• Link Training: 2-Lane, 4-Lane, and 8-Lane Components

• Lane Reversal

• Clocking and Reset of the Integrated Block Core

• Using the Dynamic Reconfiguration Port Interface
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Designing with the Transaction Layer Interface

Designing with the 64-Bit Transaction Layer Interface

TLP Format on the AXI4-Stream Interface

Data is transmitted and received in Big-Endian order as required by the PCI Express Base 
Specification. See the “Transaction Layer Specification” chapter of the PCI Express Base 
Specification for detailed information about TLP packet ordering. Figure 5-1 represents a 
typical 32-bit addressable Memory Write Request TLP (as illustrated in the “Transaction 
Layer Specification” chapter of the specification).
.

When using the AXI4-Stream interface, packets are arranged on the entire 64-bit datapath. 
Figure 5-2 shows the same example packet on the AXI4-Stream interface. Byte 0 of the 
packet appears on s_axis_tx_tdata[31:24] (transmit) or m_axis_rx_tdata[31:24] (receive) of 
the first QWORD, byte 1 on s_axis_tx_tdata[23:16] or m_axis_rx_tdata[23:16], and so forth. 
Byte 8 of the packet then appears on s_axis_tx_tdata[31:24] or m_axis_rx_tdata[31:24] of 
the second QWORD. The Header section of the packet consists of either three or four 
DWORDs, determined by the TLP format and type as described in section 2.2 of the 
PCI Express Base Specification.

X-Ref Target - Figure 5-1

Figure 5-1: PCI Express Base Specification Byte Order
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Figure 5-2: Endpoint Integrated Block Byte Order
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Packets sent to the core for transmission must follow the formatting rules for Transaction 
Layer Packets (TLPs) as specified in the “Transaction Layer Specification” chapter of the 
PCI Express Base Specification. The User Application is responsible for ensuring its packets’ 
validity. The core does not check that a packet is correctly formed and this can result in 
transferring a malformed TLP. The exact fields of a given TLP vary depending on the type 
of packet being transmitted.

Transmitting Outbound Packets

Basic TLP Transmit Operation

The 7 Series FPGAs Integrated Block for PCI Express core automatically transmits these 
types of packets:

• Completions to a remote device in response to Configuration Space requests.

• Error-message responses to inbound requests that are malformed or unrecognized by 
the core.

Note: Certain unrecognized requests, for example, unexpected completions, can only be 
detected by the User Application, which is responsible for generating the appropriate response.

The User Application is responsible for constructing these types of outbound packets:

• Memory, Atomic Ops, and I/O Requests to remote devices.

• Completions in response to requests to the User Application, for example, a Memory 
Read Request.

• Completions in response to user-implemented Configuration Space requests, when 
enabled. These requests include PCI™ legacy capability registers beyond address BFh 
and PCI Express extended capability registers beyond address 1FFh. 

Note: For important information about accessing user-implemented Configuration Space while 
in a low-power state, see Power Management, page 182. 

When configured as an Endpoint, the 7 Series FPGAs Integrated Block for PCI Express core 
notifies the User Application of pending internally generated TLPs that arbitrate for the 
transmit datapath by asserting tx_cfg_req (1b). The User Application can choose to give 
priority to core-generated TLPs by asserting tx_cfg_gnt (1b) permanently, without regard 
to tx_cfg_req. Doing so prevents User-Application-generated TLPs from being transmitted 
when a core-generated TLP is pending. Alternatively, the User Application can reserve 
priority for a User-Application-generated TLP over core-generated TLPs, by deasserting 
tx_cfg_gnt (0b) until the user transaction is complete. When the user transaction is 
complete, the User Application can assert tx_cfg_gnt (1b) for at least one clock cycle to 
allow the pending core-generated TLP to be transmitted. Users must not delay asserting 
tx_cfg_gnt indefinitely, because this might cause a completion timeout in the Requester. 
See the PCI Express Base Specification for more information on the Completion Timeout 
Mechanism.

The integrated block does not do any filtering on the Base/Limit registers (Root Port only). 
The user is responsible for determining if filtering is required. These registers can be read 
out of the Type 1 Configuration Header space via the Configuration interface (see Design 
with Configuration Space Registers and Configuration Interface, page 158).

Table 2-9, page 33 defines the transmit User Application signals. To transmit a TLP, the 
User Application must perform this sequence of events on the transmit Transaction 
interface: 

1. The User Application logic asserts s_axis_tx_tvalid and presents the first TLP QWORD 
on s_axis_tx_tdata[63:0]. If the core is asserting s_axis_tx_tready, the QWORD is 
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accepted immediately; otherwise, the User Application must keep the QWORD 
presented until the core asserts s_axis_tx_tready.

2. The User Application asserts s_axis_tx_tvalid and presents the remainder of the TLP 
QWORDs on s_axis_tx_tdata[63:0] for subsequent clock cycles (for which the core 
asserts s_axis_tx_tready).

3. The User Application asserts s_axis_tx_tvalid and s_axis_tx_tlast together with the last 
QWORD data. If all eight data bytes of the last transfer are valid, they are presented on 
s_axis_tx_tdata[63:0] and s_axis_tx_tstrb is driven to 0xFF; otherwise, the four 
remaining data bytes are presented on s_axis_tx_tdata[31:0], and s_axis_tx_tstrb is 
driven to 0x0F.

4. At the next clock cycle, the User Application deasserts s_axis_tx_tvalid to signal the 
end of valid transfers on s_axis_tx_tdata[63:0].

Figure 5-3 illustrates a 3-DW TLP header without a data payload; an example is a 32-bit 
addressable Memory Read request. When the User Application asserts s_axis_tx_tlast, it 
also places a value of 0x0F on s_axis_tx_tstrb, notifying the core that only 
s_axis_tx_tdata[31:0] contains valid data.
X-Ref Target - Figure 5-3

Figure 5-3: TLP 3-DW Header without Payload
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Figure 5-4 illustrates a 4-DW TLP header without a data payload; an example is a 64-bit 
addressable Memory Read request. When the User Application asserts s_axis_tx_tlast, it 
also places a value of 0xFF on s_axis_tx_tstrb, notifying the core that s_axis_tx_tdata[63:0] 
contains valid data.

Figure 5-5 illustrates a 3-DW TLP header with a data payload; an example is a 32-bit 
addressable Memory Write request. When the User Application asserts s_axis_tx_tlast, it 
also puts a value of 0xFF on s_axis_tx_tstrb, notifying the core that s_axis_tx_tdata[63:0] 
contains valid data. 

X-Ref Target - Figure 5-4

Figure 5-4: TLP with 4-DW Header without Payload

X-Ref Target - Figure 5-5

Figure 5-5: TLP with 3-DW Header with Payload
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Figure 5-6 illustrates a 4-DW TLP header with a data payload; an example is a 64-bit 
addressable Memory Write request. When the User Application asserts s_axis_tx_tlast, it 
also places a value of 0x0F on s_axis_tx_tstrb, notifying the core that only 
s_axis_tx_tdata[31:0] contains valid data. 

Presenting Back-to-Back Transactions on the Transmit Interface

The User Application can present back-to-back TLPs on the transmit AXI4-Stream 
interface to maximize bandwidth utilization. Figure 5-7 illustrates back-to-back TLPs 
presented on the transmit interface. The User Application keeps s_axis_tx_tvalid asserted 
and presents a new TLP on the next clock cycle after asserting s_axis_tx_tlast for the 
previous TLP.

Source Throttling on the Transmit Datapath

The Transaction interface lets the User Application throttle back if it has no data to present 
on s_axis_tx_tdata[63:0]. When this condition occurs, the User Application deasserts 
s_axis_tx_tvalid, which instructs the core AXI4-Stream interface to disregard data 
presented on s_axis_tx_tdata[63:0]. Figure 5-8 illustrates the source throttling mechanism, 

X-Ref Target - Figure 5-6

Figure 5-6: TLP with 4-DW Header with Payload

X-Ref Target - Figure 5-7

Figure 5-7: Back-to-Back Transaction on the Transmit Interface
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where the User Application does not have data to present every clock cycle, and for this 
reason must deassert s_axis_tx_tvalid during these cycles.

Destination Throttling of the Transmit Datapath

The core AXI4-Stream interface throttles the transmit User Application if there is no space 
left for a new TLP in its transmit buffer pool. This can occur if the link partner is not 
processing incoming packets at a rate equal to or greater than the rate at which the User 
Application is presenting TLPs. Figure 5-9 illustrates the deassertion of s_axis_tx_tready to 
throttle the User Application when the internal transmit buffers of the core are full. If the 
core needs to throttle the User Application, it does so after the current packet has 
completed. If another packet starts immediately after the current packet, the throttle occurs 
immediately after tlast.

If the core transmit AXI4-Stream interface accepts the start of a TLP by asserting 
s_axis_tx_tready, it is guaranteed to accept the complete TLP with a size up to the value 
contained in the Max_Payload_Size field of the PCI Express Device Capability Register 
(offset 04H). To stay compliant to the PCI Express Base Specification users should not violate 
the Max_Payload_Size field of the PCI Express Device Control Register (offset 08H). The 
core transmit AXI4-Stream interface deasserts s_axis_tx_tready only under these 
conditions:

• After it has accepted the TLP completely and has no buffer space available for a new 
TLP.

X-Ref Target - Figure 5-8

Figure 5-8: Source Throttling on the Transmit Interface

X-Ref Target - Figure 5-9

Figure 5-9: Destination Throttling on the Transmit Interface

UG477_c5_08_101410

user_clk_out

s_axis_tx_tdata[63:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_asix_tx_tstrb[7:0] FFh

UG477_c5_09_101410

user_clock_out

s_axis_tx_tdata
                [63:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

tx_buf_av[5:0] 0d 1d 0d 1d 0d

TLP1 TLP2

New Buffer Available New Buffer Available

http://www.xilinx.com


104 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

• When the core is transmitting an internally generated TLP (Completion TLP because 
of a Configuration Read or Write, error Message TLP or error response as requested 
by the User Application on the cfg_err interface), after it has been granted use of the 
transmit datapath by the User Application, by assertion of tx_cfg_gnt. The core 
subsequently asserts s_axis_tx_tready after transmitting the internally generated TLP.

• When the Power State field in Power Management Control/Status Register (offset 
0x4) of the PCI Power Management Capability Structure is changed to a non-D0 state. 
When this occurs, any ongoing TLP is accepted completely and s_axis_tx_tready is 
subsequently deasserted, disallowing the User Application from initiating any new 
transactions for the duration that the core is in the non-D0 power state

On deassertion of s_axis_tx_tready by the core, the User Application needs to hold all 
control and data signals until the core asserts s_axis_tx_tready.

Discontinuing Transmission of Transaction by Source

The core AXI4-Stream interface lets the User Application terminate transmission of a TLP 
by asserting (tx_src_dsc) s_axis_tx_tuser[3]. Both s_axis_tx_tvalid and s_axis_tx_tready 
must be asserted together with tx_src_dsc for the TLP to be discontinued. The signal 
tx_src_dsc must not be asserted at the beginning of a new packet. It can be asserted on any 
cycle after the first beat of a new packet has been accepted by the core up to and including 
the assertion of s_axis_tx_tlast. Asserting src_dsc has no effect if no TLP transaction is in 
progress on the transmit interface. Figure 5-10 illustrates the User Application 
discontinuing a packet using tx_src_dsc. Asserting src_dsc with s_axis_tx_tlast is optional.

If streaming mode is not used, (tx_str) s_axis_tx_tuser[2] = 0b, and the packet is 
discontinued, then the packet is discarded before being transmitted on the serial link. If 
streaming mode is used (tx_str = 1b), the packet is terminated with the EDB symbol on the 
serial link.

Discarding of Transaction by Destination

The core transmit AXI4-Stream interface discards a TLP for three reasons:

• PCI Express Link goes down.

• Presented TLP violates the Max_Payload_Size field of the PCI Express Device 
Capability Register (offset 04H). It is the user’s responsibility to not violate the 
Max_Payload_Size field of the Device Control Register (offset 08H).

• (tx_str) s_axis_tx_tuser[2] is asserted and data is not presented on consecutive clock 
cycles, that is, s_axis_tx_tvalid is deasserted in the middle of a TLP transfer.

X-Ref Target - Figure 5-10

Figure 5-10: Source Driven Transaction Discontinue on the Transmit Interface
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When any of these occur, the transmit AXI4-Stream interface continues to accept the 
remainder of the presented TLP and asserts tx_terr_drop no later than the second clock 
cycle following the s_axis_tx_tlast of the discarded TLP. Figure 5-11 illustrates the core 
signaling that a packet was discarded using tx_terr_drop.

Packet Data Poisoning on the Transmit AXI4-Stream Interface

The User Application uses either of these mechanisms to mark the data payload of a 
transmitted TLP as poisoned:

• Set EP = 1 in the TLP header. This mechanism can be used if the payload is known to 
be poisoned when the first DWORD of the header is presented to the core on the 
AXI4-Stream interface.

• Assert (tx_err_fwd) s_axis_tx_tuser[1] for at least one valid data transfer cycle any 
time during the packet transmission, as shown in Figure 5-12. This causes the core to 
set EP = 1 in the TLP header when it transmits the packet onto the PCI Express fabric. 
This mechanism can be used if the User Application does not know whether a packet 
could be poisoned at the start of packet transmission. Use of terr_fwd is not 
supported for packets when (tx_str) s_axis_tx_tuser[2] is asserted (streamed transmit 
packets). In streaming mode, users can optionally discontinue the packet if it becomes 
corrupted. See Discontinuing Transmission of Transaction by Source, page 104 for 
details on discontinuing packets.

When ECRC is being used, instead of setting the EP bit of the TLP to forward an error, the 
User Application should nullify TLPs with errors by asserting the 
src_dsc(s_axis_tx_tuser[3]) block input for the TLP and report the error using the cfg_err 
interface.

X-Ref Target - Figure 5-11

Figure 5-11: Discarding of Transaction by Destination of Transmit Interface

UG477_c5_11_110410

user_clk_out

s_axis_tx_tdata[63:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[7:0]

(tx_src_dsc)s_axis_tx_tuser[3]

tx_terr_drop

H1H0 D0H2 --D1 H1H0 D0H2 --D1

FFh 0Fh FFh 0Fh

Dropped TLP Valid TLP

http://www.xilinx.com


106 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Streaming Mode for Transactions on the Transmit Interface

The 7 Series FPGAs Integrated Block for PCI Express core allows the User Application to 
enable Streaming (cut-through) mode for transmission of a TLP, when possible, to reduce 
latency of operation. To enable this feature, the User Application must hold (tx_str) 
s_axis_tx_tuser[2] asserted for the entire duration of the transmitted TLP. The User 
Application must also present valid frames on every clock cycle until the final cycle of the 
TLP. In other words, the User Application must not deassert s_axis_tx_tvalid for the 
duration of the presented TLP. Source throttling of the transaction while in streaming 
mode of operation causes the transaction to be dropped (tx_terr_drop is asserted) and a 
nullified TLP to be signaled on the PCI Express link. Figure 5-13 illustrates the streaming 
mode of operation, where the first TLP is streamed and the second TLP is dropped because 
of source throttling.

X-Ref Target - Figure 5-12

Figure 5-12: Packet Data Poisoning on the Transmit Interface
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Figure 5-13: Streaming Mode on the Transmit Interface
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Using ECRC Generation

The integrated block supports automatic ECRC generation. To enable this feature, the User 
Application must assert (tx_ecrc_gen) s_axis_tx_tuser[0] at the beginning of a TLP on the 
transmit AXI4-Stream interface. This signal can be asserted through the duration of the 
packet, if desired. If the outgoing TLP does not already have a digest, the core generates 
and appends one and sets the TD bit. There is a single-clock cycle deassertion of 
s_axis_tx_tready at the end-of-packet to allow for insertion of the digest. Figure 5-14 
illustrates ECRC generation operation.

Receiving Inbound Packets

Basic TLP Receive Operation

Table 2-10, page 36 defines the receive AXI4-Stream interface signals. This sequence of 
events must occur on the receive AXI4-Stream interface for the Endpoint core to present a 
TLP to the User Application logic:

1. When the User Application is ready to receive data, it asserts m_axis_rx_tready. 

2. When the core is ready to transfer data, the core asserts m_axis_rx_tvalid and presents 
the first complete TLP QWORD on m_axis_rx_tdata[63:0]. 

3. The core keeps m_axis_rx_tvalid asserted, and presents TLP QWORDs on 
m_axis_rx_tdata[63:0] on subsequent clock cycles (provided the User Application 
logic asserts m_axis_rx_tready).

4. The core then asserts m_axis_rx_tvalid with m_axis_rx_tlast and presents either the 
last QWORD on s_axis_tx_tdata[63:0] and a value of 0xFF on m_axis_rx_tstrb or the 
last DWORD on s_axis_tx_tdata[31:0] and a value of 0x0F on m_axis_rx_tstrb.

5. If no further TLPs are available at the next clock cycle, the core deasserts 
m_axis_rx_tvalid to signal the end of valid transfers on m_axis_rx_tdata[63:0].

Note: The User Application should ignore any assertions of m_axis_rx_tlast, m_axis_rx_tstrb, and 
m_axis_rx_tdata unless m_axis_rx_tvalid is concurrently asserted. Signal m_axis_rx_tvalid never 
deasserts mid-packet.

X-Ref Target - Figure 5-14

Figure 5-14: ECRC Generation
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Figure 5-15 shows a 3-DW TLP header without a data payload; an example is a 32-bit 
addressable Memory Read request. When the core asserts m_axis_rx_tlast, it also places a 
value of 0x0F on m_axis_rx_tstrb, notifying the user that only m_axis_rx_tdata[31:0] 
contains valid data.

Figure 5-16 shows a 4-DW TLP header without a data payload; an example is a 64-bit 
addressable Memory Read request. When the core asserts m_axis_rx_tlast, it also places a 
value of 0xFF on m_axis_rx_tstrb, notifying the user that m_axis_rx_tdata[63:0] contains 
valid data.

X-Ref Target - Figure 5-15

Figure 5-15: TLP 3-DW Header without Payload

X-Ref Target - Figure 5-16

Figure 5-16: TLP 4-DW Header without Payload
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Figure 5-17 shows a 3-DW TLP header with a data payload; an example is a 32-bit 
addressable Memory Write request. When the core asserts m_axis_rx_tlast, it also places a 
value of 0xFF on m_axis_rx_tstrb, notifying the user that m_axis_rx_tdata[63:0] contains 
valid data.

Figure 5-18 shows a 4-DW TLP header with a data payload; an example is a 64-bit 
addressable Memory Write request. When the core asserts m_axis_rx_tlast, it also places a 
value of 0x0F on m_axis_rx_tstrb, notifying the user that only m_axis_rx_tdata[31:0] 
contains valid data.

X-Ref Target - Figure 5-17

Figure 5-17: TLP 3-DW Header with Payload

X-Ref Target - Figure 5-18

Figure 5-18: TLP 4-DW Header with Payload
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Throttling the Datapath on the Receive AXI4-Stream Interface

The User Application can stall the transfer of data from the core at any time by deasserting 
m_axis_rx_tready. If the user deasserts m_axis_rx_tready while no transfer is in progress 
and if a TLP becomes available, the core asserts m_axis_rx_tvalid and presents the first 
TLP QWORD on m_axis_rx_tdata[63:0]. The core remains in this state until the user asserts 
m_axis_rx_tready to signal the acceptance of the data presented on m_axis_rx_tdata[63:0]. 
At that point, the core presents subsequent TLP QWORDs as long as m_axis_rx_tready 
remains asserted. If the user deasserts m_axis_rx_tready during the middle of a transfer, 
the core stalls the transfer of data until the user asserts m_axis_rx_tready again. There is no 
limit to the number of cycles the user can keep m_axis_rx_tready deasserted. The core 
pauses until the user is again ready to receive TLPs.

Figure 5-19 illustrates the core asserting m_axis_rx_tvalid along with presenting data on 
m_axis_rx_tdata[63:0]. The User Application logic inserts wait states by deasserting 
m_axis_rx_tready. The core does not present the next TLP QWORD until it detects 
m_axis_rx_tready assertion. The User Application logic can assert or deassert 
m_axis_rx_tready as required to balance receipt of new TLP transfers with the rate of TLP 
data processing inside the application logic.

Receiving Back-to-Back Transactions on the Receive Interface

The User Application logic must be designed to handle presentation of back-to-back TLPs 
on the receive AXI4-Stream interface by the core. The core can assert m_axis_rx_tvalid for 
a new TLP at the clock cycle after m_axis_rx_tlast assertion for the previous TLP. 
Figure 5-20 illustrates back-to-back TLPs presented on the receive interface.

X-Ref Target - Figure 5-19

Figure 5-19: User Application Throttling Receive TLP
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Figure 5-20: Receive Back-to-Back Transactions
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If the User Application cannot accept back-to-back packets, it can stall the transfer of the 
TLP by deasserting m_axis_rx_tready as discussed in the Throttling the Datapath on the 
Receive AXI4-Stream Interface section. Figure 5-21 shows an example of using 
m_axis_rx_tready to pause the acceptance of the second TLP.

Packet Re-ordering on Receive Interface

Transaction processing in the core receiver is fully compliant with the PCI transaction 
ordering rules, described in Chapter 2 of the PCI Express Base Specification. The transaction 
ordering rules allow Posted and Completion TLPs to bypass blocked Non-Posted TLPs. 

The 7 Series FPGAs Integrated Block for PCI Express provides two mechanisms for User 
Applications to manage their Receiver Non-Posted Buffer space. The first of the two 
mechanisms, Receive Non-Posted Throttling, is the use of rx_np_ok to prevent the 7 Series 
FPGAs Integrated Block for PCI Express core from presenting more than two Non-Posted 
requests after deassertion of the rx_np_ok signal. The second mechanism, Receive Request 
for Non-Posted, allows user-controlled Flow Control of the Non-Posted queue, using the 
rx_np_req signal. 

The Receive Non-Posted Throttling mechanism assumes that the User Application 
normally has space in its receiver for non-Posted TLPs and the User Application would 
throttle the core specifically for Non-Posted requests. The Receive Request for Non-Posted 
mechanism assumes that the User Application requests the core to present a Non-Posted 
TLP as and when it has space in its receiver. The two mechanisms are mutually exclusive, 
and only one can be active for a design. This option must be selected while generating and 
customizing the core. When the Receive Non-Posted Request option is selected in the 
Advanced Settings, the Receive Request for Non-Posted mechanism is enabled and any 
assertion/deassertion of rx_np_ok is ignored and vice-versa. The two mechanisms are 
described in further detail in the next subsections.

X-Ref Target - Figure 5-21

Figure 5-21: User Application Throttling Back-to-Back TLPs
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Receive Non-Posted Throttling (Receive Non-Posted Request Disabled)

If the User Application can receive Posted and Completion Transactions from the core, but 
is not ready to accept Non-Posted Transactions, the User Application can deassert 
rx_np_ok, as shown in Figure 5-22. The User Application must deassert rx_np_ok at least 
two clock cycles before m_axis_rx_tlast of the second-to-last Non-Posted TLP the user can 
accept. While rx_np_ok is deasserted, received Posted and Completion Transactions pass 
Non-Posted Transactions. After the User Application is ready to accept Non-Posted 
Transactions, it must reassert rx_np_ok. Previously bypassed Non-Posted Transactions are 
presented to the User Application before other received TLPs. There is no limit as to how 
long rx_np_ok can be deasserted, however users must take care to not deassert rx_np_ok 
for extended periods, because this can cause a completion timeout in the Requester. See the 
PCI Express Base Specification for more information on the Completion Timeout Mechanism.

Packet re-ordering allows the User Application to optimize the rate at which Non-Posted 
TLPs are processed, while continuing to receive and process Posted and Completion TLPs 
in a non-blocking fashion. The rx_np_ok signaling restrictions require that the User 
Application be able to receive and buffer at least three Non-Posted TLPs. This algorithm 
describes the process of managing the Non-Posted TLP buffers:

Consider that Non-Posted_Buffers_Available denotes the size of Non-Posted buffer 
space available to the User Application. The size of the Non-Posted buffer space is 
greater than three Non-Posted TLPs. Non-Posted_Buffers_Available is decremented 
when Non-Posted TLP is accepted for processing from the core, and is incremented 
when Non-Posted TLP is drained for processing by the User Application.

For every clock cycle do {
if (Non-Posted_Buffers_Available <= 3) {
if (Valid transaction Start-of-Frame accepted by user application) {
Extract TLP Format and Type from the 1st TLP DW
if (TLP type == Non-Posted) {
Deassert rx_np_ok on the following clock cycle
- or -
Other optional user policies to stall NP transactions

} else {
}

}
} else { // Non-Posted_Buffers_Available > 3
Assert rx_np_ok on the following clock cycle.

}
}

X-Ref Target - Figure 5-22

Figure 5-22: Receive Interface Non-Posted Throttling
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Receive Request for Non-Posted (Receive Non-Posted Request Enabled)

The 7 Series FPGAs Integrated Block for PCI Express allows the User Application to 
control Flow Control Credit return for the Non-Posted queue using the rx_np_req signal. 
When the User Application has space in its receiver to receive a Non-Posted Transaction, it 
must assert rx_np_req for one clock cycle for every Non-Posted Transaction that the User 
Application can accept. This enables the integrated block to present one Non-Posted 
transaction from its receiver queues to the Core Transaction interface, as shown in 
Figure 5-23 and return one Non-Posted Credit to the connected Link partner.

The 7 Series FPGAs Integrated Block for PCI Express maintains a count of up to 
12 Non-Posted Requests from the User Application. In other words, the core remembers 
assertions of rx_np_req even if no Non-Posted TLPs are present in the receive buffer and 
presents received Non-Posted TLPs to the user, if requests have been previously made by 
the User Application. If the core has no outstanding requests from the User Application 
and received Non-Posted TLPs are waiting in the receive buffer, received Posted and 
Completion Transactions pass the waiting Non-Posted Transactions. After the user is ready 
to accept a Non-Posted TLP, asserting rx_np_req for one or more cycles causes that number 
of waiting Non-Posted TLPs to be delivered to the user at the next available TLP boundary. 
In other words, any Posted or Completion TLP currently on the user application interface 
finishes before waiting Non-Posted TLPs are presented to the user application. If there are 
no Posted or Completion TLPs being presented to the user and a Non-Posted TLP is 
waiting, assertion of rx_np_req causes the Non-Posted TLP to be presented to the user. 
TLPs are delivered to the User Application in order except when the user is throttling 
Non-Posted TLPs, allowing Posted and Completion TLPs to pass. When the user starts 
accepting Non-Posted TLPs again, ordering is still maintained with any subsequent Posted 
or Completion TLPs. If the User Application can accept all Non-Posted Transactions as 
they are received and does not care about controlling the Flow Control Credit return for the 
Non-Posted queue, the user should keep this signal asserted.

X-Ref Target - Figure 5-23

Figure 5-23: Receive Interface Request for Non-Posted Transaction

user_clk_out

m_axis_rx_tdata[63:0]

m_axis_rx_tready

m_axis_rx_tvalid

m_axis_rx_tlast

rx_np_req

H1H0 D0H2 D2D1 D4D3 H1H0 --H2 H1H0 D0H2 D2D1 H1H0 --H2 H1H0 --H2

Posted TLP1 Non-Posted TLP2 Posted/Cpl TLP3 Non-Posted TLP4 Non-Posted TLP5

UG477_c5_75_020311

http://www.xilinx.com


114 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Packet Data Poisoning and TLP Digest on the Receive AXI4-Stream Interface

To simplify logic within the User Application, the core performs automatic pre-processing 
based on values of TLP Digest (TD) and Data Poisoning (EP) header bit fields on the 
received TLP. 

All received TLPs with the Data Poisoning bit in the header set (EP = 1) are presented to 
the user. The core asserts the (rx_err_fwd) m_axis_rx_tuser[1] signal for the duration of 
each poisoned TLP, as illustrated in Figure 5-24.

If the TLP Digest bit field in the TLP header is set (TD = 1), the TLP contains an End-to-End 
CRC (ECRC). The core performs these operations based on how the user configured the 
core during core generation: 

• If the Trim TLP Digest option is on, the core removes and discards the ECRC field 
from the received TLP and clears the TLP Digest bit in the TLP header.

• If the Trim TLP Digest option is off, the core does not remove the ECRC field from the 
received TLP and presents the entire TLP including TLP Digest to the User 
Application receiver interface.

See Chapter 4, Generating and Customizing the Core, for more information about how to 
enable the Trim TLP Digest option during core generation.

X-Ref Target - Figure 5-24

Figure 5-24: Receive Transaction Data Poisoning
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ECRC Error on the 64-Bit Receive AXI4-Stream Interface

The 7 Series FPGAs Integrated Block for PCI Express core checks the ECRC on incoming 
transaction packets, when ECRC checking is enabled in the core. When it detects an ECRC 
error in a transaction packet, the core signals this error to the user by simultaneously 
asserting m_axis_rx_tuser[0] (rx_ecrc_err) and m_axis_rx_tlast as illustrated in 
Figure 5-25.

Packet Base Address Register Hit on the Receive AXI4-Stream Interface

The 7 Series FPGAs Integrated Block for PCI Express in Root Port configuration does not 
perform any BAR decoding/filtering.

The 7 Series FPGAs Integrated Block for PCI Express in Endpoint configuration decodes 
incoming Memory and I/O TLP request addresses to determine which Base Address 
Register (BAR) in the core's Type0 configuration space is being targeted, and indicates the 
decoded base address on (rx_bar_hit[7:0]) m_axis_rx_tuser[9:2]. For each received 
Memory or I/O TLP, a minimum of one and a maximum of two (adjacent) bit(s) are set to 
1b. If the received TLP targets a 32-bit Memory or I/O BAR, only one bit is asserted. If the 
received TLP targets a 64-bit Memory BAR, two adjacent bits are asserted. If the core 
receives a TLP that is not decoded by one of the BARs (that is, a misdirected TLP), then the 
core drops it without presenting it to the user and it automatically generates an 
Unsupported Request message. Even if the core is configured for a 64-bit BAR, the system 
might not always allocate a 64-bit address, in which case only onerxbar_hit[7:0] signal is 
asserted. Overlapping BAR apertures are not allowed.

Table 5-1 illustrates mapping between rx_bar_hit[7:0] and the BARs, and the 
corresponding byte offsets in the core Type0 configuration header.

X-Ref Target - Figure 5-25

Figure 5-25: ECRC Error on 64-Bit Receive AXI4-Stream Interface
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For a Memory or I/O TLP Transaction on the receive interface, (rx_bar_hit[7:0]) 
m_axis_rx_tuser[9:2] is valid for the entire TLP, starting with the assertion of 
m_axis_rx_tvalid, as shown in Figure 5-26. When receiving non-Memory and non-I/O 
transactions, signal rx_bar_hit[7:0] is undefined.

The (rx_bar_hit[7:0]) m_axis_rx_tuser[9:2] signal enables received Memory and I/O 
transactions to be directed to the appropriate destination apertures within the User 
Application. By utilizing rx_bar_hit[7:0], application logic can inspect only the lower order 
Memory and I/O address bits within the address aperture to simplify decoding logic.

5 7 5 24h

6 8 Expansion ROM BAR 30h

0 9 Reserved –

X-Ref Target - Figure 5-26

Figure 5-26: BAR Target Determination Using rx_bar_hit
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Packet Transfer During Link-Down Event on Receive AXI4-Stream Interface

The loss of communication with the link partner is signaled by deassertion of user_lnk_up. 
When user_lnk_up is deasserted, it effectively acts as a Hot Reset to the entire core. For this 
reason, all TLPs stored inside the core or being presented to the receive interface are 
irrecoverably lost. A TLP in progress on the Receive AXI4-Stream interface is presented to 
its correct length, according to the Length field in the TLP header. However, the TLP is 
corrupt and should be discarded by the User Application. Figure 5-27 illustrates the packet 
transfer discontinue scenario.
X-Ref Target - Figure 5-27

Figure 5-27: Receive Transaction Discontinue
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Designing with the 128-Bit Transaction Layer Interface
Note: The Transaction interface width and frequency never change with a lane width/speed 
upconfigure or downconfigure.

TLP Format in the AXI4-Stream Interface

Data is transmitted and received in Big-Endian order as required by the PCI Express Base 
Specification. See Chapter 2 of the PCI Express Base Specification for detailed information 
about TLP packet ordering. Figure 5-28 represents a typical 32-bit addressable Memory 
Write Request TLP (as illustrated in Chapter 2 of the specification).

When using the Transaction interface, packets are arranged on the entire 128-bit datapath. 
Figure 5-29 shows the same example packet on the AXI4-Stream interface. PCIe Byte 0 of 
the packet appears on s_axis_tx_tdata[31:24] (transmit) or m_axis_rx_tdata[31:24] (receive) 
of the first DWORD, byte 1 on s_axis_tx_tdata[23:16] or m_axis_rx_tdata[23:16], and so 
forth. The Header section of the packet consists of either three or four DWORDs, 
determined by the TLP format and type as described in section 2.2 of the PCI Express Base 
Specification.

Packets sent to the core for transmission must follow the formatting rules for Transaction 
Layer Packets (TLPs) as specified in Chapter 2 of the PCI Express Base Specification. The 
User Application is responsible for ensuring its packets’ validity. The core does not check 
that a packet is correctly formed and this can result in transferring a malformed TLP. The 
exact fields of a given TLP vary depending on the type of packet being transmitted.

X-Ref Target - Figure 5-28

Figure 5-28: PCI Express Base Specification Byte Order
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X-Ref Target - Figure 5-29

Figure 5-29: Endpoint Integrated Block Byte Order
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Transmitting Outbound Packets

Basic TLP Transmit Operation

The 7 Series FPGAs Integrated Block for PCI Express core automatically transmits these 
types of packets:

• Completions to a remote device in response to Configuration Space requests.

• Error-message responses to inbound requests that are malformed or unrecognized by 
the core.

Note: Certain unrecognized requests, for example, unexpected completions, can only be 
detected by the User Application, which is responsible for generating the appropriate response.

The User Application is responsible for constructing these types of outbound packets:

• Memory, Atomic Ops, and I/O Requests to remote devices.

• Completions in response to requests to the User Application, for example, a Memory 
Read Request.

When configured as an Endpoint, the 7 Series FPGAs Integrated Block for PCI Express 
core notifies the User Application of pending internally generated TLPs that arbitrate 
for the transmit datapath by asserting tx_cfg_req (1b). The User Application can 
choose to give priority to core-generated TLPs by asserting tx_cfg_gnt (1b) 
permanently, without regard to tx_cfg_req. Doing so prevents 
User-Application-generated TLPs from being transmitted when a core-generated TLP 
is pending. Alternatively, the User Application can reserve priority for a 
User-Application-generated TLP over core-generated TLPs, by deasserting tx_cfg_gnt 
(0b) until the user transaction is complete. After the user transaction is complete, the 
User Application can assert tx_cfg_gnt (1b) for at least one clock cycle to allow the 
pending core-generated TLP to be transmitted. Users must not delay asserting 
tx_cfg_gnt indefinitely, because this might cause a completion timeout in the 
Requester. See the PCI Express Base Specification for more information on the 
Completion Timeout Mechanism.

• The integrated block does not do any filtering on the Base/Limit registers (Root Port 
only). The user is responsible for determining if filtering is required. These registers 
can be read out of the Type 1 Configuration Header space via the Configuration 
interface (see Design with Configuration Space Registers and Configuration Interface, 
page 158).

Table 2-9, page 33 defines the transmit User Application signals. To transmit a TLP, the 
User Application must perform this sequence of events on the transmit AXI4-Stream 
interface: 

1. The User Application logic asserts s_axis_tx_tvalid, and presents the first TLP 
Double-Quad Word (DQWORD = 128 bits) on s_axis_tx_tdata[127:0]. If the core is 
asserting s_axis_tx_tready, the DQWORD is accepted immediately; otherwise, the 
User Application must keep the DQWORD presented until the core asserts 
s_axis_tx_tready.

2. The User Application asserts s_axis_tx_tvalid and presents the remainder of the TLP 
DQWORDs on s_axis_tx_tdata[127:0] for subsequent clock cycles (for which the core 
asserts s_axis_tx_tready).
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3. The User Application asserts s_axis_tx_tvalid and s_axis_tx_tlast together with the last 
DQWORD data. The user must ensure that the strobe field is selected for the final data 
cycle to create a packet of length equivalent to the length field in the packet header. For 
more information on the s_axis_tx_tstrb[15:0] signaling, refer to Table 5-2 and 
Table 5-3.

4. At the next clock cycle, the User Application deasserts s_axis_tx_tvalid to signal the 
end of valid transfers on s_axis_tx_tdata[127:0].

This section uses the notation Hn and Dn to denote Header QWn and Data QWn, 
respectively. Table 5-2 lists the possible single-cycle packet signaling where s_axis_tx_tlast 
is asserted in the same cycle. 

Table 5-3 lists the possible signaling for ending a multicycle packet. If a packet ends in the 
lower QW of the data bus, the next packet cannot start in the upper QW of that beat. All 
packets must start in the lowest DW of the data bus in a new beat. Signal 
s_axis_tx_tstrb[15:0] indicates which DWORD of the data bus contains EOF.

Table 5-2: TX: EOF Scenarios, Single Cycle

s_axis_tx_tdata[127:0]

H3 H2 H1 H0  -- H2 H1 H0 D0 H2 H1 H0

s_axis_tx_tlast 1 1 1

s_axis_tx_tstrb[15:0] 0xFFFF 0x0FFF 0xFFFF

Table 5-3: TX: EOF Scenarios, Multicycle

s_axis_tx_tdata[127:0]

D3 D2 D1 D0 -- D2 D1 D0 -- -- D1 D0 -- -- -- D0 

s_axis_tx_tlast 1 1 1 1

s_axis_tx_tstrb[15:0] 0xFFFF 0x0FFF 0x00FF 0x000F
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Figure 5-30 illustrates a 3-DW TLP header without a data payload; an example is a 32-bit 
addressable Memory Read request. When the User Application asserts s_axis_tx_tlast, it 
also places a value of 0x0FFF on s_axis_tx_tstrb[15:0], notifying the core that only 
s_axis_tx_tdata[95:0] contains valid data.

Figure 5-31 illustrates a 4-DW TLP header without a data payload; an example is a 64-bit 
addressable Memory Read request. When the User Application asserts s_axis_tx_tlast, it 
also places a value of 0xFFFF on s_axis_tx_tstrb[15:0] notifying the core that 
s_axis_tx_tdata[127:0] contains valid data and the EOF occurs in the upper-most DW.

X-Ref Target - Figure 5-30

Figure 5-30: TLP 3-DW Header without Payload

X-Ref Target - Figure 5-31

Figure 5-31: TLP with 4-DW Header without Payload
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Figure 5-32 illustrates a 3-DW TLP header with a data payload; an example is a 32-bit 
addressable Memory Write request. When the User Application asserts s_axis_tx_tlast, it 
also puts a value of 0x0FFF on s_axis_tx_tstrb[15:0] notifying the core that 
s_axis_tx_tdata[95:0] contains valid data and the EOF occurs in DWORD 2.

Figure 5-33 illustrates a 4-DW TLP header with a data payload. When the User Application 
asserts s_axis_tx_tlast, it also places a value of 0x00FF on s_axis_tx_tstrb[15:0], notifying 
the core that only s_axis_tx_tdata[63:0] contains valid data.

X-Ref Target - Figure 5-32

Figure 5-32: TLP with 3-DW Header with Payload

X-Ref Target - Figure 5-33

Figure 5-33: TLP with 4-DW Header with Payload
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Presenting Back-to-Back Transactions on the Transmit Interface

The User Application can present back-to-back TLPs on the transmit AXI4-Stream 
interface to maximize bandwidth utilization. Figure 5-34 illustrates back-to-back TLPs 
presented on the transmit interface, with the restriction that all TLPs must start in the 
lowest DW of the data bus [31:0]. The User Application keeps s_axis_tx_tvalid asserted 
and presents a new TLP on the next clock cycle after asserting s_axis_tx_tlast for the 
previous TLP.

Source Throttling on the Transmit Datapath

The AXI4-Stream interface lets the User Application throttle back if it has no data to 
present on s_axis_tx_tdata[127:0]. When this condition occurs, the User Application 
deasserts s_axis_tx_tvalid, which instructs the core AXI4-Stream interface to disregard 
data presented on s_axis_tx_tdata[127:0]. Figure 5-35 illustrates the source throttling 
mechanism, where the User Application does not have data to present every clock cycle, 
and therefore must deassert s_axis_tx_tvalid during these cycles.

X-Ref Target - Figure 5-34

Figure 5-34: Back-to-Back Transaction on the Transmit Interface
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X-Ref Target - Figure 5-35

Figure 5-35: Source Throttling on the Transmit Datapath
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Destination Throttling of the Transmit Datapath

The core AXI4-Stream interface throttles the transmit User Application if there is no space 
left for a new TLP in its transmit buffer pool. This can occur if the link partner is not 
processing incoming packets at a rate equal to or greater than the rate at which the User 
Application is presenting TLPs. Figure 5-36 illustrates the deassertion of s_axis_tx_tready 
to throttle the User Application when the core's internal transmit buffers are full. If the core 
needs to throttle the User Application, it does so after the current packet has completed. If 
another packet starts immediately after the current packet, the throttle occurs immediately 
after s_axis_tx_tlast.

If the core transmit AXI4-Stream interface accepts the start of a TLP by asserting 
s_axis_tx_tready, it is guaranteed to accept the complete TLP with a size up to the value 
contained in the Max_Payload_Size field of the PCI Express Device Capability Register 
(offset 04H). To stay compliant to the PCI Express Base Specification users should not violate 
the Max_Payload_Size field of the PCI Express Device Control Register (offset 08H). The 
core transmit AXI4-Stream interface deasserts s_axis_tx_tready only under these 
conditions:

• After it has accepted the TLP completely and has no buffer space available for a new 
TLP.

• When the core is transmitting an internally generated TLP (Completion TLP because 
of a Configuration Read or Write, error Message TLP or error response as requested 
by the User Application on the cfg_err interface), after it has been granted use of the 
transmit datapath by the User Application, by assertion of tx_cfg_gnt, the core 
subsequently asserts s_axis_tx_tready after transmitting the internally generated TLP.

• When the Power State field in the Power Management Control/Status Register (offset 
0x4) of the PCI Power Management Capability Structure is changed to a non-D0 state, 
any ongoing TLP is accepted completely and s_axis_tx_tready is subsequently 
deasserted, disallowing the User Application from initiating any new transactions for 
the duration that the core is in the non-D0 power state.

On deassertion of s_axis_tx_tready by the core, the User Application needs to hold all 
control and data signals until the core asserts s_axis_tx_tready.

X-Ref Target - Figure 5-36

Figure 5-36: Destination Throttling of the Endpoint Transmit Interface
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Discontinuing Transmission of Transaction by Source

The core AXI4-Stream interface lets the User Application terminate transmission of a TLP 
by asserting (tx_src_dsc) s_axis_tx_tuser[3]. Both s_axis_tx_tvalid and s_axis_tx_tready 
must be asserted together with tx_src_dsc for the TLP to be discontinued. The signal 
tx_src_dsc must not be asserted at the beginning of a TLP. It can be asserted on any cycle 
after the first beat of a new TLP up to and including the assertion of s_axis_tx_tlast. 
Asserting tx_src_dsc has no effect if no TLP transaction is in progress on the transmit 
interface. Figure 5-37 illustrates the User Application discontinuing a packet using 
tx_src_dsc. Asserting s_axis_tx_tlast together with tx_src_dsc is optional.

If streaming mode is not used, (tx_str) s_axis_tx_tuser[2] = 0b, and the packet is 
discontinued, then the packet is discarded before being transmitted on the serial link. If 
streaming mode is used (tx_str = 1b), the packet is terminated with the EDB symbol on the 
serial link.
X-Ref Target - Figure 5-37

Figure 5-37: Source Driven Transaction Discontinue on the Transmit Interface
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Discarding of Transaction by Destination

The core transmit AXI4-Stream interface discards a TLP for three reasons:

• The PCI Express Link goes down.

• Presented TLP violates the Max_Payload_Size field of the Device Capability Register 
(offset 04H) for PCI Express. It is the user’s responsibility to not violate the 
Max_Payload_Size field of the Device Control Register (offset 08H).

• (tx_str) s_axis_tx_tuser[2] is asserted and data is not presented on consecutive clock 
cycles, that is, s_axis_tx_tvalid is deasserted in the middle of a TLP transfer.

When any of these occur, the transmit AXI4-Stream interface continues to accept the 
remainder of the presented TLP and asserts tx_terr_drop no later than the third clock cycle 
following the EOF of the discarded TLP. Figure 5-38 illustrates the core signaling that a 
packet was discarded using tx_terr_drop.

X-Ref Target - Figure 5-38

Figure 5-38: Discarding of Transaction by Destination on the Transmit Interface
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Packet Data Poisoning on the Transmit AXI4-Stream Interface

The User Application uses either of these two mechanisms to mark the data payload of a 
transmitted TLP as poisoned:

• Set EP = 1 in the TLP header. This mechanism can be used if the payload is known to 
be poisoned when the first DWORD of the header is presented to the core on the 
AXI4-Stream interface.

• Assert (tx_err_fwd) s_axis_tx_tuser[1] for at least one valid data transfer cycle any 
time during the packet transmission, as shown in Figure 5-39. This causes the core to 
set EP = 1 in the TLP header when it transmits the packet onto the PCI Express fabric. 
This mechanism can be used if the User Application does not know whether a packet 
could be poisoned at the start of packet transmission. Use of tx_err_fwd is not 
supported for packets when (tx_str) s_axis_tx_tuser[2] is asserted (streamed transmit 
packets). In streaming mode, users can optionally discontinue the packet if it becomes 
corrupted. See Discontinuing Transmission of Transaction by Source, page 104 for 
details on discontinuing packets.

X-Ref Target - Figure 5-39

Figure 5-39: Packet Data Poisoning on the Transmit Interface
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Streaming Mode for Transactions on the Transmit Interface

The 7 Series FPGAs Integrated Block for PCI Express core allows the User Application to 
enable Streaming (cut-through) mode for transmission of a TLP, when possible, to reduce 
latency of operation. To enable this feature, the User Application must assert (tx_str) 
s_axis_tx_tuser[2] for the entire duration of the transmitted TLP. In addition, the User 
Application must present valid frames on every clock cycle until the final cycle of the TLP. 
In other words, the User Application must not deassert s_axis_tx_tvalid for the duration of 
the presented TLP. Source throttling of the transaction while in streaming mode of 
operation causes the transaction to be dropped (tx_terr_drop is asserted) and a nullified 
TLP to be signaled on the PCI Express link. Figure 5-40 illustrates the streaming mode of 
operation, where the first TLP is streamed and the second TLP is dropped because of 
source throttling.

X-Ref Target - Figure 5-40

Figure 5-40: Streaming Mode on the Transmit Interface
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Using ECRC Generation (128-Bit Interface)

The integrated block supports automatic ECRC generation. To enable this feature, the User 
Application must assert (tx_ecrc_gen) s_axis_tx_tuser[0] at the beginning of a TLP on the 
transmit AXI4-Stream interface. This signal can be asserted through the duration of the 
packet, if desired. If the outgoing TLP does not already have a digest, the core generates 
and appends one and sets the TD bit. There is a single-clock cycle deassertion of 
s_axis_tx_tready at the end of packet to allow for insertion of the digest. Figure 5-41 
illustrates ECRC generation operation.

Receiving Inbound Packets

Basic TLP Receive Operation

Table 2-10, page 36 defines the receive AXI4-Stream interface signals. This sequence of 
events must occur on the receive AXI4-Stream interface for the Endpoint core to present a 
TLP to the User Application logic:

1. When the User Application is ready to receive data, it asserts m_axis_rx_tready. 

2. When the core is ready to transfer data, the core asserts (rx_is_sof[4]) 
m_axis_rx_tuser[14] and presents the first complete TLP DQWORD on 
m_axis_rx_tdata[127:0]. 

3. The core then deasserts (rx_is_sof[4]) m_axis_rx_tuser[14], keeps m_axis_rx_tvalid 
asserted, and presents TLP DQWORDs on m_axis_rx_tdata[127:0] on subsequent 
clock cycles (provided the User Application logic asserts m_axis_rx_tready). Signal 
(rx_is_eof[4]) m_axis_rx_tuser[21] is asserted to signal the end of a TLP.

4. If no further TLPs are available at the next clock cycle, the core deasserts 
m_axis_rx_tvalid to signal the end of valid transfers on m_axis_rx_tdata[127:0].

Note: The User Application should ignore any assertions of rx_is_sof, rx_is_eof, and 
m_axis_rx_tdata unless m_axis_rx_tvalid is concurrently asserted. Signal m_axis_rx_tvalid never 
deasserts mid-packet.

X-Ref Target - Figure 5-41

Figure 5-41: ECRC Generation Waveforms (128-Bit Interface)
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Signal (rx_is_sof[4:0]) m_axis_rx_tuser[14:0] indicates whether or not a new packet has 
been started in the data stream, and if so, where the first byte of the new packet is located. 
Because new packets are at a minimum of three DWORDs in length for PCI Express, there 
is always, at most, one new packet start for a given clock cycle in the 128-bit interface.

The rx_is_sof[2:0] signal is always deasserted for the 128-bit interface; users can decode 
rx_is_sof[3:2] to determine in which DWORD the EOF occurs:

• rx_is_sof = 5'b10000 - SOF located at byte 0 (DWORD 0)

• rx_is_sof = 5'b11000 - SOF located at byte 8 (DWORD 2)

• rx_is_sof = 5'b0XXXX - SOF not present

Signal (rx_is_eof[4:0]) m_axis_rx_tuser[21:17] indicates whether or not a current packet is 
ending in the data stream, and if so, where the last byte of the current packet is located. 
Because packets are at a minimum of three DWORDs in length for PCI Express, there is 
always, at most, one packet ending for a given clock cycle in the 128-bit interface.

The rx_is_eof[1:0] signal is always asserted for the 128-bit interface; users can decode 
rx_is_eof[3:2] to determine in which DWORD the EOF occurs. These rx_is_eof values are 
valid for PCI Express:

• rx_is_eof = 5'b10011 - EOF located at byte 3 (DWORD 0)

• rx_is_eof = 5'b10111 - EOF located at byte 7 (DWORD 1)

• rx_is_eof = 5'b11011 - EOF located at byte 11 (DWORD 2)

• rx_is_eof = 5'b11111 - EOF located at byte 15 (DWORD 3)

• rx_is_eof = 5'b0XXXX - EOF not present

Table 5-4 through Table 5-7 use the notation Hn and Dn to denote Header DWORD n and 
Data DWORD n, respectively. Table 5-4 list the signaling for all the valid cases where a 
packet can start and end within a single beat (single-cycle TLP). 

Bit Description

rx_is_sof[3:0] Binary encoded byte location of SOF: 4'b0000 = byte 0, 4'b1111 = byte 15

rx_is_sof[4] Assertion indicates a new packet has been started in the current RX data.

Bit Description

rx_is_eof[3:0] Binary encoded byte location of EOF: 4'b0000 = byte 0, 4'b1111 = byte 15

rx_is_eof[4] Assertion indicates a packet is ending in the current RX data.

Table 5-4: Single-Cycle SOF and EOF Scenarios (Header and Header with Data) 

m_axis_rx_tdata[127:0]

H3 H2 H1 H0 -- H2 H1 H0 D0 H2 H1 H0

rx_is_sof[4] 1b 1b 1b

rx_is_sof[3:0] 0000b 0000b 0000b

rx_is_eof[4] 1b 1b 1b

rx_is_eof[3:0] 1111b 1011b 1111b
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Table 5-5 lists the signaling for all multicycle, non-straddled TLP SOF scenarios.

Table 5-6 lists the possible signaling for ending a multicycle packet. If a packet ends in the 
lower QWORD of the data bus, the next packet can start in the upper QWORD of that beat 
(see Straddle cases, Table 5-7). rx_is_eof[3:2] indicates which DW the EOF occurs

Table 5-7 lists the possible signaling for a straddled data transfer beat. A straddled data 
transfer beat occurs when one packet ends in the lower QWORD and a new packet starts in 
the upper QWORD of the same cycle. Straddled data transfers only occur in the receive 
direction.

Table 5-5: Multicycle, Non-Straddled SOF Scenarios 

m_axis_rx_tdata[127:0]

H3 H2 H1 H0(1) D0 H2 H1 H0(2) H1 H0 -- --(3)

rx_is_sof[4] 1b 1b 1b

rx_is_sof[3:0] 0000b 0000b 1000b

rx_is_eof[4] 0b 0b 0b

rx_is_eof[3:0] xxxxb xxxxb xxxxb

Notes: 
1. Data begins on the next clock cycle.
2. Data continues on the next clock cycle.
3. Remainder of header and possible data on the next clock cycle.

Table 5-6: Receive - EOF Scenarios (Data)

m_axis_rx_tdata[127:0]

D3 D2 D1 D0 -- D2 D1 D0  -- -- D1 D0 -- -- -- D0

rx_is_sof[4] 0b 0b 0b 0b

rx_is_sof[3:0] 0000b 0000b 0000b 0000b

rx_is_eof[4] 1b 1b 1b 1b

rx_is_eof[3:0] 1111b 1011b 0111b 0011b

Table 5-7: Receive - Straddle Cases SOF and EOF

m_axis_rx_tdata[127:0]

H1 H0 Dn Dn–1 H1 H0 -- Dn

rx_is_sof[4] 1b 1b

rx_is_sof[3:0] 1000b 1000b

rx_is_eof[4] 1b 1b

rx_is_eof[3:0] 0111b 0011b
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Figure 5-42 shows a 3-DWORD TLP header without a data payload; an example is a 32-bit 
addressable Memory Read request. When the core asserts rx_is_eof[4], it also places a 
value of 1011b on rx_is_eof[3:0], notifying the user that EOF occurs on byte 11 
(DWORD 2) and only m_axis_rx_tdata[95:0] contains valid data.
X-Ref Target - Figure 5-42

Figure 5-42: TLP 3-DWORD Header without Payload
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Figure 5-43 shows a 4-DWORD TLP header without a data payload. When the core asserts 
(rx_is_eof[4]) m_axis_rx_tuser[21], it also places a value of 1111b on (rx_is_eof[3:0]) 
m_axis_rx_tuser[20:17], notifying the user that the EOF occurs on byte 15 (DWORD 3) and 
m_axis_rx_tdata[127:0] contains valid data.
X-Ref Target - Figure 5-43

Figure 5-43: TLP 4-DWORD Header without Payload
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Figure 5-44 shows a 3-DW TLP header with a data payload; an example is a 32-bit 
addressable Memory Write request. When the core asserts (rx_is_eof[4]) 
m_axis_rx_tuser[21], it also places a value of 1111b on (rx_is_eof[3:0]) 
m_axis_rx_tuser[20:17], notifying the user that EOF occurs on byte 15 (DWORD 3) and 
m_axis_rx_tdata[127:0] contains valid data.

Figure 5-45 shows a 4-DWORD TLP header with a data payload; an example is a 64-bit 
addressable Memory Write request. When the core asserts (rx_is_eof[4]) 
m_axis_rx_tuser[21], it also places a value of 0011b on (rx_is_eof[3:0]) 
m_axis_rx_tuser[20:17], notifying the user that EOF occurs on byte 3 (DWORD 0) and only 
m_axis_rx_tdata[31:0] contains valid data.

X-Ref Target - Figure 5-44

Figure 5-44: TLP 3-DWORD Header with Payload

X-Ref Target - Figure 5-45

Figure 5-45: TLP 4-DWORD Header with Payload
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Throttling the Datapath on the Receive Interface

The User Application can stall the transfer of data from the core at any time by deasserting 
m_axis_rx_tready. If the user deasserts m_axis_rx_tready while no transfer is in progress 
and if a TLP becomes available, the core asserts m_axis_rx_tvalid and (rx_is_sof[4]) 
m_axis_rx_tuser[14] and presents the first TLP DQWORD on m_axis_rx_tdata[127:0]. The 
core remains in this state until the user asserts m_axis_rx_tready to signal the acceptance of 
the data presented on m_axis_rx_tdata[127:0]. At that point, the core presents subsequent 
TLP DQWORDs as long as m_axis_rx_tready remains asserted. If the user deasserts 
m_axis_rx_tready during the middle of a transfer, the core stalls the transfer of data until 
the user asserts m_axis_rx_tready again. There is no limit to the number of cycles the user 
can keep m_axis_rx_tready deasserted. The core pauses until the user is again ready to 
receive TLPs.

Figure 5-46 illustrates the core asserting m_axis_rx_tvalid and (rx_is_sof[4]) 
m_axis_rx_tuser[14] along with presenting data on m_axis_rx_tdata[127:0]. The User 
Application logic inserts wait states by deasserting m_axis_rx_tready. The core does not 
present the next TLP DQWORD until it detects m_axis_rx_tready assertion. The User 
Application logic can assert or deassert m_axis_rx_tready as required to balance receipt of 
new TLP transfers with the rate of TLP data processing inside the application logic.

X-Ref Target - Figure 5-46

Figure 5-46: User Application Throttling Receive TLP
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Receiving Back-to-Back Transactions on the Receive Interface

The User Application logic must be designed to handle presentation of back-to-back TLPs 
on the receive AXI4-Stream interface by the core. The core can assert (rx_is_sof[4]) 
m_axis_rx_tuser[14] for a new TLP at the clock cycle after (rx_is_eof[4]) 
m_axis_rx_tuser[21] assertion for the previous TLP. Figure 5-47 illustrates back-to-back 
TLPs presented on the receive interface.

If the User Application cannot accept back-to-back packets, it can stall the transfer of the 
TLP by deasserting m_axis_rx_tready as discussed in the Throttling the Datapath on the 
Receive Interface section. Figure 5-48 shows an example of using m_axis_rx_tready to 
pause the acceptance of the second TLP.

X-Ref Target - Figure 5-47

Figure 5-47: Receive Back-to-Back Transactions
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X-Ref Target - Figure 5-48

Figure 5-48: User Application Throttling Back-to-Back TLPs
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Receiving Straddled Packets on the Receive AXI4-Stream Interface

The User Application logic must be designed to handle presentation of straddled TLPs on 
the receive AXI4-Stream interface by the core. The core can assert (rx_is_sof[4]) 
m_axis_rx_tuser[14] for a new TLP on the same clock cycle as (rx_is_eof[4]) 
m_axis_rx_tuser[21] for the previous TLP, when the previous TLP ends in the lower 
QWORD. Figure 5-49 illustrates straddled TLPs presented on the receive interface.

In Figure 5-49, the first packet is a 3-DWORD packet with 64 bits of data and the second 
packet is a 3-DWORD packet that begins on the lower QWORD portion of the bus. In the 
figure, assertion of (rx_is_eof[4]) m_axis_rx_tuser[21] and(rx_is_eof[3:0]) 
m_axis_rx_tuser[20:17] = 0011b indicates that the EOF of the previous TLP occurs in bits 
[31:0]. 

Packet Re-ordering on the Receive AXI4-Stream Interface

Transaction processing in the core receiver is fully compliant with the PCI transaction 
ordering rules. The transaction ordering rules allow Posted and Completion TLPs to 
bypass blocked Non-Posted TLPs. 

The 7 Series FPGAs Integrated Block for PCI Express provides two mechanisms for User 
Applications to manage their Receiver Non-Posted Buffer space. The first of the two 
mechanisms, Receive Non-Posted Throttling, is the use of rx_np_ok to prevent the 7 Series 
FPGAs Integrated Block for PCI Express core from presenting more than two Non-Posted 
requests after deassertion of the rx_np_ok signal. The second mechanism, Receive Request 
for Non-Posted, allows user-controlled Flow Control of the Non-Posted queue, using the 
rx_np_req signal. 

The Receive Non-Posted Throttling mechanism assumes that the User Application 
normally has space in its receiver for non-Posted TLPs and the User Application would 
throttle the core specifically for Non-Posted requests. The Receive Request for Non-Posted 
mechanism assumes that the User Application requests the core to present a Non-Posted 
TLP as and when it has space in its receiver. The two mechanisms are mutually exclusive, 
and only one can be active for a design. This option must be selected while generating and 
customizing the core. When the Receive Non-Posted Request option is selected in the 
Advanced Settings, the Receive Request for Non-Posted mechanism is enabled and any 
assertion/deassertion of rx_np_ok is ignored and vice-versa. The two mechanisms are 
described in further detail in the next subsections.

X-Ref Target - Figure 5-49

Figure 5-49: Receive Straddled Transactions
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Receive Non-Posted Throttling (Receive Non-Posted Request Disabled)

If the User Application can receive Posted and Completion Transactions from the core, but 
is not ready to accept Non-Posted Transactions, the User Application can deassert 
rx_np_ok, as shown in Figure 5-50. The User Application must deassert rx_np_ok at least 
one clock cycle before (rx_is_eof[4]) m_axis_rx_tuser[21] of the second-to-last Non-Posted 
TLP the user can accept. When rx_np_ok is deasserted, received Posted and Completion 
Transactions pass Non-Posted Transactions. After the User Application is ready to accept 
Non-Posted Transactions, it must reassert rx_np_ok. Previously bypassed Non-Posted 
Transactions are presented to the User Application before other received TLPs.

Packet re-ordering allows the User Application to optimize the rate at which Non-Posted 
TLPs are processed, while continuing to receive and process Posted and Completion TLPs 
in a non-blocking fashion. The rx_np_ok signaling restrictions require that the User 
Application be able to receive and buffer at least three Non-Posted TLPs. This algorithm 
describes the process of managing the Non-Posted TLP buffers:

Consider that Non-Posted_Buffers_Available denotes the size of Non-Posted buffer 
space available to User Application. The size of the Non-Posted buffer space is greater 
than three Non-Posted TLPs. Non-Posted_Buffers_Available is decremented when a 
Non-Posted TLP is accepted for processing from the core, and is incremented when the 
Non-Posted TLP is drained for processing by the User Application.

For every clock cycle do {
if (Non-Posted_Buffers_Available <= 3) {
if (Valid transaction Start-of-Frame accepted by user application) {
Extract TLP Format and Type from the 1st TLP DW
if (TLP type == Non-Posted) {
Deassert rx_np_ok on the following clock cycle
- or -
Other optional user policies to stall NP transactions

} else {
}

}
} else { // Non-Posted_Buffers_Available > 3
Assert rx_np_ok on the following clock cycle.

}
}

X-Ref Target - Figure 5-50

Figure 5-50: Receive Interface Non-Posted Throttling
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Receive Request for Non-Posted (Receive Non-Posted Request Enabled)

The 7 Series FPGAs Integrated Block for PCI Express allows the User Application to 
control Flow Control Credit return for the Non-Posted queue using the rx_np_req signal. 
When the User Application has space in its receiver to receive a Non-Posted Transaction, it 
must assert rx_np_req for one clock cycle for every Non-Posted Transaction that the User 
Application can accept. This enables the integrated block to present one Non-Posted 
transaction from its receiver queues to the Core Transaction interface, as shown in 
Figure 5-51 and return one Non-Posted Credit to the connected Link partner.

The 7 Series FPGAs Integrated Block for PCI Express maintains a count of up to 
12 Non-Posted Requests from the User Application. In other words, the core remembers 
assertions of rx_np_req even if no Non-Posted TLPs are present in the receive buffer and 
presents received Non-Posted TLPs to the user, if requests have been previously made by 
the User Application. If the core has no outstanding requests from the User Application 
and received Non-Posted TLPs are waiting in the receive buffer, received Posted and 
Completion Transactions pass the waiting Non-Posted Transactions. After the user is ready 
to accept a Non-Posted TLP, asserting rx_np_req for one or more cycles causes that number 
of waiting Non-Posted TLPs to be delivered to the user at the next available TLP boundary. 
In other words, any Posted or Completion TLP currently on the user application interface 
finishes before waiting Non-Posted TLPs are presented to the user application. If there are 
no Posted or Completion TLPs being presented to the user and a Non-Posted TLP is 
waiting, assertion of rx_np_req causes the Non-Posted TLP to be presented to the user. 
TLPs are delivered to the User Application in order except when the user is throttling 
Non-Posted TLPs, allowing Posted and Completion TLPs to pass. When the user starts 
accepting Non-Posted TLPs again, ordering is still maintained with any subsequent Posted 
or Completion TLPs. If the User Application can accept all Non-Posted Transactions as 
they are received and does not care about controlling the Flow Control Credit return for the 
Non-Posted queue, the user should keep this signal asserted.

X-Ref Target - Figure 5-51

Figure 5-51: Receive Interface Request for Non-Posted Transaction
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Packet Data Poisoning and TLP Digest on the Receive AXI4-Stream Interface

To simplify logic within the User Application, the core performs automatic pre-processing 
based on values of TLP Digest (TD) and Data Poisoning (EP) header bit fields on the 
received TLP. 

All received TLPs with the Data Poisoning bit in the header set (EP = 1) are presented to 
the user. The core asserts the (rx_err_fwd) m_axis_rx_tuser[1] signal for the duration of 
each poisoned TLP, as illustrated in Figure 5-52.

If the TLP Digest bit field in the TLP header is set (TD = 1), the TLP contains an End-to-End 
CRC (ECRC). The core performs these operations based on how the user configured the 
core during core generation: 

• If the Trim TLP Digest option is on, the core removes and discards the ECRC field 
from the received TLP and clears the TLP Digest bit in the TLP header.

• If the Trim TLP Digest option is off, the core does not remove the ECRC field from the 
received TLP and presents the entire TLP including TLP Digest to the User 
Application receiver interface.

See Chapter 4, Generating and Customizing the Core, for more information about how to 
enable the Trim TLP Digest option during core generation.

X-Ref Target - Figure 5-52

Figure 5-52: Receive Transaction Data Poisoning
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ECRC Error on the 128-Bit Receive AXI4-Stream Interface

The 7 Series FPGAs Integrated Block for PCI Express core checks the ECRC on incoming 
transaction packets, when ECRC checking is enabled in the core. When it detects an ECRC 
error in a transaction packet, the core signals this error to the user by simultaneously 
asserting m_axis_rx_tuser[0] (rx_ecrc_err) and m_axis_rx_tuser[21:17] (rx_is_eof[4:0]), as 
illustrated in Figure 5-53.
X-Ref Target - Figure 5-53

Figure 5-53: ECRC Error on 128-Bit Receive AXI4-Stream Interface
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Packet Base Address Register Hit on the Receive AXI4-Stream Interface

The core decodes incoming Memory and I/O TLP request addresses to determine which 
Base Address Register (BAR) in the core's Type0 configuration space is being targeted, and 
indicates the decoded base address on (rx_bar_hit[7:0]) m_axis_rx_tuser[8:2]. For each 
received Memory or I/O TLP, a minimum of one and a maximum of two (adjacent) bit(s) 
are set to 0. If the received TLP targets a 32-bit Memory or I/O BAR, only one bit is 
asserted. If the received TLP targets a 64-bit Memory BAR, two adjacent bits are asserted. 
If the core receives a TLP that is not decoded by one of the BARs, then the core drops it 
without presenting it to the user, and it automatically generates an Unsupported Request 
message. Even if the core is configured for a 64-bit BAR, the system might not always 
allocate a 64-bit address, in which case only one rx_bar_hit[7:0] signal is asserted.

Table 5-8 illustrates mapping between rx_bar_hit[7:0] and the BARs, and the 
corresponding byte offsets in the core Type0 configuration header.

For a Memory or I/O TLP Transaction on the receive interface, rx_bar_hit[7:0] is valid for 
the entire TLP, starting with the assertion of (rx_is_sof[4]) m_axis_rx_tuser[14], as shown 
in Figure 5-54. For straddled data transfer beats, rx_bar_hit[7:0] corresponds to the new 
packet (the packet corresponding to rx_is_sof[4). When receiving non-Memory and 
non-I/O transactions, rx_bar_hit[7:0] is undefined.

Table 5-8: rx_bar_hit to Base Address Register Mapping 

rx_bar_hit[x] m_axis_rx_tuser[x] BAR Byte Offset

0 2 0 10h

1 3 1 14h

2 4 2 18h

3 5 3 1Ch

4 6 4 20h

5 7 5 24h

6 8 Expansion ROM BAR 30h

7 9 Reserved –
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The (rx_bar_hit[7:0]) m_axis_rx_tuser[9:2] signal enables received Memory and I/O 
transactions to be directed to the appropriate destination apertures within the User 
Application. By utilizing rx_bar_hit[7:0], application logic can inspect only the lower order 
Memory and I/O address bits within the address aperture to simplify decoding logic.

Packet Transfer Discontinue on the Receive AXI4-Stream Interface

The loss of communication with the link partner is signaled by deassertion of user_lnk_up. 
When user_lnk_up is deasserted, it effectively acts as a Hot Reset to the entire core and all 
TLPs stored inside the core or being presented to the receive interface are irrecoverably 
lost. A TLP in progress on the Receive AXI4-Stream interface is presented to its correct 
length, according to the Length field in the TLP header. However, the TLP is corrupt and 
should be discarded by the User Application. Figure 5-55 illustrates packet transfer 
discontinue scenario.

X-Ref Target - Figure 5-54

Figure 5-54: BAR Target Determination Using rx_bar_hit
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Figure 5-55: Receive Transaction Discontinue
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Transaction Processing on the Receive AXI4-Stream Interface
Transaction processing in the 7 Series FPGAs Integrated Block for PCI Express is fully 
compliant with the PCI Express Received TLP handling rules, as specified in the PCI 
Express Base Specification, rev. 2.1.

The 7 Series FPGAs Integrated Block for PCI Express performs checks on received 
Transaction Layer Packets (TLPs) and passes valid TLPs to the User Application. It handles 
erroneous TLPs in the manner indicated in Table 5-9 and Table 5-10. Any errors associated 
with a TLP that are presented to the User Application for which the core does not check 
must be signaled by the User Application logic using the cfg_err_* interface.

Table 5-9 and Table 5-10 describe the packet disposition implemented in the 7 Series 
FPGAs Integrated Block for PCI Express based on received TLP type and condition of 
core/TLP error for the Endpoint and Root Port configurations.

Table 5-9: TLP Disposition on the Receive AXI4-Stream Interface: Endpoint

TLP Type Condition of Core or TLP Error Core Response to TLP

Memory Read

Memory Write

Atomic Ops

I/O Read

I/O Write

BAR Miss Unsupported Request

Received when in Non-D0 PM 
State

Unsupported Request

Neither of the above conditions TLP presented to User Application

Memory Read Locked

Received by a non-Legacy 
PCI Express Endpoint

Unsupported Request

Legacy 
Endpoint

BAR Miss Unsupported Request

Received when in 
Non-D0 PM State

Unsupported Request

Neither of above 
conditions

TLP presented to User Application

Configuration Read/Write Type 0
Internal Config Space

TLP consumed by the core, to read/write 
internal Configuration Space and a 
CplD/Cpl is generated

User-Defined Config Space TLP presented to User Application

Configuration Read/Write Type 1 Received by an Endpoint Unsupported Request

Completion

Completion Locked

Requester ID Miss Unexpected Completion

Received when in Non-D0 PM 
State

Unexpected Completion

Neither of above conditions TLP presented to User Application
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Messages

Set Slot Power Limit Received by an Endpoint

TLP consumed by the core and used to 
program the Captured Slot Power Limit 
Scale/Value fields of the Device Capabilities 
Register

PM_PME

PME_TO_Ack
Received by an Endpoint Unsupported Request

PM_Active_State_NAK

PME_Turn_Off
Received by an Endpoint

TLP consumed by the core and used to 
control Power Management

Unlock

Received by a non-Legacy 
Endpoint

Ignored

Received by a Legacy Endpoint TLP presented to User Application(1)

INTX Received by an Endpoint Fatal Error

Error_Fatal

Error Non-Fatal

Error Correctable

Received by an Endpoint Unsupported Request

Vendor Defined Type 0

Vendor Defined Type 1
Received by an Endpoint TLP presented to User Application(1)

Hot Plug Messages Received by an Endpoint TLP dropped by the core

Notes: 
1. The TLP is indicated on the cfg_msg* interface and also appears on the m_axis_rx_* interface only if enabled in the GUI.

Table 5-9: TLP Disposition on the Receive AXI4-Stream Interface: Endpoint (Cont’d)

TLP Type Condition of Core or TLP Error Core Response to TLP
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Atomic Operations
The 7 Series FPGAs Integrated Block for PCI Express supports both sending and receiving 
Atomic operations (Atomic Ops) as defined in the PCI Express Base Specification v2.1. The 
specification defines three TLP types that allow advanced synchronization mechanisms 
amongst multiple producers and/or consumers. The integrated block treats Atomic Ops 
TLPs as Non-Posted Memory Transactions. The three TLP types are:

• FetchAdd

• Swap

• CAS (Compare And Set)

Applications that request Atomic Ops must create the TLP in the User Application and 
send via the transmit AXI4-Stream interface. Applications that respond (complete) to 
Atomic Ops must receive the TLP from the receive AXI4-Stream interface, create the 
appropriate completion TLP in the User Application, and send the resulting completion 
via the transmit AXI4-Stream interface. 

Table 5-10: TLP Disposition on the Receive AXI4-Stream Interface: Root Port

TLP Type Condition of Core or TLP Error Core Response to TLP

Memory Read

Memory Write

Atomic Ops

I/O Read

I/O Write

BAR Miss
No BAR Filtering in Root Port configuration: 
TLP presented to User Application

Received when in Non-D0 PM 
State Unsupported Request

Neither of the above conditions TLP presented to User Application

Memory Read Locked Received by a Root Port TLP presented to User Application

Configuration Read / Write Type 0 Received by a Root Port Unsupported Request

Configuration Read / Write Type 1 Received by a Root Port Unsupported Request

Completion

Completion Locked
Received by a Root Port TLP presented to User Application

Messages

Set Slot Power Limit Received by a Root Port Unsupported Request

PM_PME

PME_TO_Ack
Received by a Root Port TLP presented to User Application(1)

PM_Active_State_NAK Received by a Root Port Unsupported Request

PME_Turn_Off Received by a Root Port Fatal Error

Unlock Received by a Root Port Fatal Error

INTX Received by a Root Port TLP presented to User Application(1)

Error_Fatal

Error Non-Fatal

Error Correctable

Received by a Root Port TLP presented to User Application(1)

Vendor Defined Type 0

Vendor Defined Type 1
Received by a Root Port TLP presented to User Application(1)

Hot Plug Messages Received by a Root Port TLP dropped by the core

Notes: 
1. The TLP is indicated on the cfg_msg* interface and also appears on the m_axis_rx* interface only if enabled in the GUI.
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Core Buffering and Flow Control

Maximum Payload Size

TLP size is restricted by the capabilities of both link partners. After the link is trained, the 
root complex sets the MAX_PAYLOAD_SIZE value in the Device Control register. This 
value is equal to or less than the value advertised by the core's Device Capability register. 
The advertised value in the Device Capability register of the Integrated Block core is either 
128, 256, 512, or 1024 bytes, depending on the setting in the CORE Generator™ software 
GUI (1024 is not supported for the 8-lane, 5.0 Gb/s 128-bit core). For more information 
about these registers, see section 7.8 of the PCI Express Base Specification. The value of the 
core’s Device Control register is provided to the User Application on the 
cfg_dcommand[15:0] output. See Design with Configuration Space Registers and 
Configuration Interface, page 158 for information about this output. 

Transmit Buffers

The Integrated Block for PCI Express transmit AXI4-Stream interface provides tx_buf_av, 
an instantaneous indication of the number of Max_Payload_Size buffers available for use 
in the transmit buffer pool. Table 5-11 defines the number of transmit buffers available and 
maximum supported payload size for a specific core.

Each buffer can hold one maximum sized TLP. A maximum sized TLP is a TLP with a 
4-DWORD header plus a data payload equal to the MAX_PAYLOAD_SIZE of the core (as 
defined in the Device Capability register) plus a TLP Digest. After the link is trained, the 
root complex sets the MAX_PAYLOAD_SIZE value in the Device Control register. This 
value is equal to or less than the value advertised by the core’s Device Capability register. 
For more information about these registers, see section 7.8 of the PCI Express Base 
Specification. A TLP is held in the transmit buffer of the core until the link partner 
acknowledges receipt of the packet, at which time the buffer is released and a new TLP can 
be loaded into it by the User Application.

For example, if the Capability Max Payload Size selected for the Endpoint core is 256 bytes, 
and the performance level selected is high, there are 29 total transmit buffers. Each of these 
buffers can hold at a maximum one 64-bit Memory Write Request (4-DWORD header) plus 
256 bytes of data (64 DWORDs) plus TLP Digest (one DWORD) for a total of 69 DWORDs. 
This example assumes the root complex sets the MAX_PAYLOAD_SIZE register of the 
Device Control register to 256 bytes, which is the maximum capability advertised by this 
core. For this reason, at any given time, this core could have 29 of these 69 DWORD TLPs 
waiting for transmittal. There is no sharing of buffers among multiple TLPs, so even if user 

Table 5-11: Transmit Buffers Available

Capability Max 
Payload Size 

(Bytes)

Performance Level(1)

Good (Minimize Block RAM Usage) High (Maximize Performance)

128 26 32

256 14 29

512 15 30

1024(2) 15 31

Notes: 
1. Performance level is set through a CORE Generator software GUI selection. 
2. 1024 is not supported for the 8-lane, 5.0 Gb/s, 128-bit core.
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is sending smaller TLPs such as 32-bit Memory Read request with no TLP Digest totaling 
three DWORDs only per TLP, each transmit buffer still holds only one TLP at any time.

The internal transmit buffers are shared between the User Application and the core's 
configuration management module (CMM). Because of this, the tx_buf_av bus can 
fluctuate even if the User Application is not transmitting packets. The CMM generates 
completion TLPs in response to configuration reads or writes, interrupt TLPs at the request 
of the User Application, and message TLPs when needed.

The Transmit Buffers Available indication enables the User Application to completely 
utilize the PCI transaction ordering feature of the core transmitter. The transaction 
ordering rules allow for Posted and Completion TLPs to bypass Non-Posted TLPs. See 
section 2.4 of the PCI Express Base Specification for more information about ordering rules.

The core supports the transaction ordering rules and promotes Posted and Completion 
packets ahead of blocked Non-Posted TLPs. Non-Posted TLPs can become blocked if the 
link partner is in a state where it momentarily has no Non-Posted receive buffers available, 
which it advertises through Flow Control updates. In this case, the core promotes 
Completion and Posted TLPs ahead of these blocked Non-Posted TLPs. However, this can 
only occur if the Completion or Posted TLP has been loaded into the core by the User 
Application. By monitoring the tx_buf_av bus, the User Application can ensure there is at 
least one free buffer available for any Completion or Posted TLP. Promotion of Completion 
and Posted TLPs only occurs when Non-Posted TLPs are blocked; otherwise packets are 
sent on the link in the order they are received from the User Application.

Receiver Flow Control Credits Available

The Integrated Block for PCI Express provides the User Application information about the 
state of the receiver buffer pool queues. This information represents the current space 
available for the Posted, Non-Posted, and Completion queues.

One Header Credit is equal to either a 3- or 4-DWORD TLP Header and one Data Credit is 
equal to 16 bytes of payload data. Table 5-12 provides values on credits available 
immediately after user_lnk_up assertion but before the reception of any TLP. If space 
available for any of the above categories is exhausted, the corresponding credit available 
signals indicate a value of zero. Credits available return to initial values after the receiver 
has drained all TLPs.

Table 5-12: Transaction Receiver Credits Available Initial Values

Credit Category
Performance

Level

Capability Maximum Payload Size

128 Byte 256 Byte 512 Byte 1024 Byte

Non-Posted Header Good
12

High

Non-Posted Data Good
12

High

Posted Header Good
32

High

Posted Data Good 77 77 154 308

High 154 154 308 616
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The User Application can use the fc_ph[7:0], fc_pd[11:0], fc_nph[7:0], fc_npd[11:0], 
fc_cplh[7:0], fc_cpld[11:0], and fc_sel[2:0] signals to efficiently utilize and manage receiver 
buffer space available in the core and the core application. For additional information, see 
Flow Control Credit Information.

Integrated Block for PCI Express Endpoint cores have a unique requirement where the 
User Application must use advanced methods to prevent buffer overflows when 
requesting Non-Posted Read Requests from an upstream component. According to the 
specification, a PCI Express Endpoint is required to advertise infinite storage credits for 
Completion Transactions in its receivers. This means that Endpoints must internally 
manage Memory Read Requests transmitted upstream and not overflow the receiver when 
the corresponding Completions are received. The User Application transmit logic must 
use Completion credit information presented to modulate the rate and size of Memory 
Read requests, to stay within the instantaneous Completion space available in the core 
receiver. For additional information, see Appendix E, Managing Receive-Buffer Space for 
Inbound Completions.

Flow Control Credit Information

Using the Flow Control Credit Signals

The integrated block provides the User Application with information about the state of the 
Transaction Layer transmit and receive buffer credit pools. This information represents the 
current space available, as well as the credit “limit” and “consumed” information for the 
Posted, Non-Posted, and Completion pools.

Table 2-7, page 31 defines the Flow Control Credit signals. Credit status information is 
presented on these signals:

• fc_ph[7:0]

• fc_pd[11:0]

• fc_nph[7:0]

• fc_npd[11:0]

• fc_cplh[7:0]

• fc_cpld[11:0] 

Collectively, these signals are referred to as fc_*. 

The fc_* signals provide information about each of the six credit pools defined in the 
PCI Express Base Specification: Header and Data Credits for Each of Posted, Non-Posted, 
and Completion. 

Completion Header Good
36

High

Completion Data Good 77 77 154 308

High 154 154 308 616

Table 5-12: Transaction Receiver Credits Available Initial Values (Cont’d)

Credit Category
Performance

Level

Capability Maximum Payload Size

128 Byte 256 Byte 512 Byte 1024 Byte
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Six different types of flow control information can be read by the User Application. The 
fc_sel[2:0] input selects the type of flow control information represented by the fc_* 
outputs. The Flow Control Information Types are shown in Table 5-13.

The fc_sel[2:0] input can be changed on every clock cycle to indicate a different Flow 
Control Information Type. There is a two clock-cycle delay between the value of fc_sel[2:0] 
changing and the corresponding Flow Control Information Type being presented on the 
fc_* outputs for the 64-bit interface and a four clock cycle delay for the 128-bit interface. 
Figure 5-56 and Figure 5-57 illustrate the timing of the Flow Control Credits signals for the 
64-bit and 128-bit interfaces, respectively.

The output values of the fc_* signals represent credit values as defined in the PCI Express 
Base Specification. One Header Credit is equal to either a 3- or 4-DWORD TLP Header and 
one Data Credit is equal to 16 bytes of payload data. Initial credit information is available 
immediately after user_lnk_up assertion, but before the reception of any TLP. Table 5-14 
defines the possible values presented on the fc_* signals. Initial credit information varies 
depending on the size of the receive buffers within the integrated block and the Link 
Partner.

Table 5-13: Flow Control Information Types

fc_sel[2:0] Flow Control Information Type

000 Receive Credits Available Space

001 Receive Credits Limit 

010 Receive Credits Consumed

011 Reserved

100 Transmit Credits Available Space

101 Transmit Credit Limit

110 Transmit Credits Consumed

111 Reserved

X-Ref Target - Figure 5-56

Figure 5-56: Flow Control Credits for the 64-Bit Interface

X-Ref Target - Figure 5-57

Figure 5-57: Flow Control Credits for the 128-Bit Interface
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Receive Credit Flow Control Information

Receive Credit Flow Control Information can be obtained by setting fc_sel[2:0] to 000b, 
001b, or 010b. The Receive Credit Flow Control information indicates the current status of 
the receive buffers within the integrated block.

Receive Credits Available Space: fc_sel[2:0] = 000b

Receive Credits Available Space shows the credit space available in the integrated block’s 
Transaction Layer local receive buffers for each credit pool. If space available for any of the 
credit pools is exhausted, the corresponding fc_* signal indicates a value of zero. Receive 
Credits Available Space returns to its initial values after the User Application has drained 
all TLPs from the integrated block.

In the case where infinite credits have been advertised to the Link Partner for a specific 
Credit pool, such as Completion Credits for Endpoints, the User Application should use 
this value along with the methods described in Appendix E, Managing Receive-Buffer 
Space for Inbound Completions, to avoid completion buffer overflow.

Receive Credits Limit: fc_sel[2:0] = 001b

Receive Credits Limit shows the credits granted to the link partner. The fc_* values are 
initialized with the values advertised by the integrated block during Flow Control 
initialization and are updated as a cumulative count as TLPs are read out of the 
Transaction Layer's receive buffers via the AXI4-Stream interface. This value is referred to 
as CREDITS_ALLOCATED within the PCI Express Base Specification.

In the case where infinite credits have been advertised for a specific credit pool, the Receive 
Buffer Credits Limit for that pool always indicates zero credits.

Receive Credits Consumed: fc_sel[2:0] = 010b

Receive Buffer Credits Consumed shows the credits consumed by the link partner (and 
received by the integrated block). The initial fc_* values are always zero and are updated as 
a cumulative count, as packets are received by the Transaction Layers receive buffers. This 
value is referred to as CREDITS_RECEIVED in the PCI Express Base Specification.

Transmit Credit Flow Control Information

Transmit Credit Flow Control Information can be obtained by setting fc_sel[2:0] to 100b, 
101b, or 110b. The Transmit Credit Flow Control information indicates the current status 
of the receive buffers within the Link Partner. 

Transmit Credits Available Space: fc_sel[2:0] = 100b 

Transmit Credits Available Space indicates the available credit space within the receive 
buffers of the Link Partner for each credit pool. If space available for any of the credit pools 
is exhausted, the corresponding fc_* signal indicates a value of zero or negative. Transmit 
Credits Available Space returns to its initial values after the integrated block has 
successfully sent all TLPs to the Link Partner.

Table 5-14: fc_* Value Definition

Header Credit Value Data Credit Value Meaning

00 – 7F 000 – 7FF User credits 

FF-80 FFF-800 Negative credits available(1)

7F 7FF Infinite credits available(1)

Notes: 
1. Only Transmit Credits Available Space indicate Negative or Infinite credits available.
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If the value is negative, more header or data has been written into the integrated block’s 
local transmit buffers than the Link Partner can currently consume. Because the block does 
not allow posted packets to pass completions, a posted packet that is written is not 
transmitted if there is a completion ahead of it waiting for credits (as indicated by a zero or 
negative value). Similarly, a completion that is written is not transmitted if a posted packet 
is ahead of it waiting for credits. The User Application can monitor the Transmit Credits 
Available Space to ensure that these temporary blocking conditions do not occur, and that 
the bandwidth of the PCI Express Link is fully utilized by only writing packets to the 
integrated block that have sufficient space within the Link Partner’s Receive buffer. 
Non-Posted packets can always be bypassed within the integrated block; so, any Posted or 
Completion packet written passes Non-Posted packets waiting for credits. 

The Link Partner can advertise infinite credits for one or more of the three traffic types. 
Infinite credits are indicated to the user by setting the Header and Data credit outputs to 
their maximum value as indicated in Table 5-14.

Transmit Credits Limit: fc_sel[2:0] = 101b

Transmit Credits Limit shows the receive buffer limits of the Link Partner for each credit 
pool. The fc_* values are initialized with the values advertised by the Link Partner during 
Flow Control initialization and are updated as a cumulative count as Flow Control updates 
are received from the Link Partner. This value is referred to as CREDITS_LIMIT in the PCI 
Express Base Specification.

In the case where infinite credits have been advertised for a specific Credit pool, the 
Transmit Buffer Credits Limit always indicates zero credits for that pool.

Transmit Credits Consumed: fc_sel[2:0] = 110b

Transmit Credits Consumed show the credits consumed of the Receive Buffer of the Link 
Partner by the integrated block. The initial value is always zero and is updated as a 
cumulative count, as packets are transmitted to the Link Partner. This value is referred to 
as CREDITS_CONSUMED in the PCI Express Base Specification.
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Designing with the Physical Layer Control and Status Interface
Physical Layer Control and Status enables the User Application to change link width and 
speed in response to data throughput and power requirements.

Design Considerations for a Directed Link Change
These points should be considered during a Directed Link Change:

• Link change operation must be initiated only when user_lnk_up is asserted and the 
core is in the L0 state, as indicated by the signal pl_ltssm_state[5:0].

• Link Width Change should not be used when Lane Reversal is enabled.

• Target Link Width of a Link Width Change operation must be equal to or less than the 
width indicated by pl_initial_link_width output.

• When pl_link_upcfg_cap is set to 1b, the PCI Express link is Upconfigure capable. 
This allows the link width to be varied between the Initial Negotiated Link Width and 
any smaller link width supported by both the Port and link partner (this is for link 
reliability or application reasons).

• If a link is not Upconfigure capable, the Negotiated link width can only be varied to a 
width less than the Negotiated Link Width that is supported by both the link partner 
and device.

• Before initiating a link speed change from 2.5 Gb/s to 5.0 Gb/s, the User Application 
must ensure that the link is 5.0 Gb/s (Gen2) capable (that is, pl_link_gen2_cap is 1b) 
and the Link Partner is also Gen2 capable (pl_link_partner_gen2_capable is 1b).

• A link width change that benefits the application must be initiated only when 
cfg_lcommand[9] (the Hardware Autonomous Width Disable bit) is 0b. In addition, 
for both link speed and/or width change driven by application need, 
pl_directed_link_auton must be driven (1b). If the user wants the option to restore the 
link width and speed to the original (higher) width and speed, the User Application 
should ensure that pl_link_upcfg_cap is 1b.

• If the User Application directs the link to a width not supported by the link partner, 
the resulting link width is the next narrower mutually supported link width. For 
example, an 8-lane link is directed to a 4-lane operation, but the link partner supports 
only 1-lane train down operations. So, this would result in a 1-lane operation. 

• The Endpoint should initiate directed link change only when the device is in D0 
power state (cfg_pmcsr_powerstate[1:0] = 00b).

• A retrain should not be initiated using directed link change pins (Root or Endpoint) or by 
setting the retrain bit (Root only), if the cfg_pcie_link_state = 101b (transitioning to/from 
PPM L1) or 110b (transitioning to PPM L2/L3 Ready).

• To ease timing closure, it is permitted to check for the conditions specified above to be 
all simultaneously true up to 16 user clock cycles before initiating a Directed Link 
Change. These conditions are:

• user_lnk_up == 1'b1

• pl_ltssm_state[5:0] == 6'h16

• cfg_lcommand[9] == 1'b0

• cfg_pmcsr_powerstate[1:0] == 2'b00

• cfg_pcie_link_state[2:0] != either 3'b101 or 3'b110
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Directed Link Width Change
Figure 5-58 shows the directed link width change process that must be implemented by the 
User Application. Here target_link_width[1:0] is the application-driven new link width 
request.
X-Ref Target - Figure 5-58

Figure 5-58: Directed Link Width Change
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Directed Link Speed Change
Figure 5-59 shows the directed link speed change process that must be implemented by the 
User Application. Here target_link_speed is the application-driven new link speed 
request.

Note: A link speed change should not be initiated on a Root Port by driving the 
pl_directed_link_change pin to 10 or 11 unless the attribute RP_AUTO_SPD = 11.
X-Ref Target - Figure 5-59

Figure 5-59: Directed Link Speed Change
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Directed Link Width and Speed Change
Figure 5-60 shows the directed link width and speed change process that must be 
implemented by the User Application. Here target_link_width[1:0] is the 
application-driven new link width request, and target_link_speed is the 
application-driven new link speed request.

Note: A link speed change should not be initiated on a Root Port by driving the 
pl_directed_link_change pin to 10 or 11 unless the attribute RP_AUTO_SPD = 11.
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X-Ref Target - Figure 5-60

Figure 5-60: Directed Link Width and Speed Change
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Design with Configuration Space Registers and Configuration 
Interface

This section describes the use of the Configuration interface for accessing the PCI Express 
Configuration Space Type 0 or Type 1 registers that are part of the Integrated Block core. 
The Configuration interface includes a read/write Configuration Port for accessing the 
registers. In addition, some commonly used registers are mapped directly on the 
Configuration interface for convenience.

Registers Mapped Directly onto the Configuration Interface
The Integrated Block core provides direct access to select command and status registers in 
its Configuration Space. For Endpoints, the values in these registers are typically modified 
by Configuration Writes received from the Root Complex; however, the User Application 
can also modify these values using the Configuration Port. In the Root Port configuration, 
the Configuration Port must always be used to modify these values. Table 5-15 defines the 
command and status registers mapped to the configuration port.

Table 5-15: Command and Status Registers Mapped to the Configuration Port

Port Name Direction Description

cfg_bus_number[7:0] Output Bus Number: Default value after reset is 00h. 
Refreshed whenever a Type 0 Configuration Write 
packet is received.

cfg_device_number[4:0] Output Device Number: Default value after reset is 
00000b. Refreshed whenever a Type 0 
Configuration Write packet is received. 

cfg_function_number[2:0] Output Function Number: Function number of the core, 
hardwired to 000b.

cfg_status[15:0] Output Status Register: Status register from the 
Configuration Space Header. Not supported.

cfg_command[15:0] Output Command Register: Command register from the 
Configuration Space Header.

cfg_dstatus[15:0] Output Device Status Register: Device status register from 
the PCI Express Capability Structure. 

cfg_dcommand[15:0] Output Device Command Register: Device control register 
from the PCI Express Capability Structure. 

cfg_dcommand2[15:0] Output Device Command 2 Register: Device control 2 
register from the PCI Express Capability Structure.

cfg_lstatus[15:0] Output Link Status Register: Link status register from the 
PCI Express Capability Structure. 

cfg_lcommand[15:0] Output Link Command Register: Link control register 
from the PCI Express Capability Structure. 

http://www.xilinx.com


7 Series FPGAs Integrated Block for PCIe www.xilinx.com 159
UG477 March 1, 2011

Design with Configuration Space Registers and Configuration Interface

Device Control and Status Register Definitions

cfg_bus_number[7:0], cfg_device_number[4:0], cfg_function_number[2:0]

Together, these three values comprise the core ID, which the core captures from the 
corresponding fields of inbound Type 0 Configuration Write accesses. The User 
Application is responsible for using this core ID as the Requestor ID on any requests it 
originates, and using it as the Completer ID on any Completion response it sends. This core 
supports only one function; for this reason, the function number is hardwired to 000b.

cfg_status[15:0]

This output bus is not supported. If the user wishes to retrieve this information, this can be 
derived by Read access of the Configuration Space in the 7 Series FPGAs Integrated Block 
for PCI Express via the Configuration Port.

cfg_command[15:0]

This bus reflects the value stored in the Command register in the PCI Configuration Space 
Header. Table 5-16 provides the definitions for each bit in this bus. See the PCI Express Base 
Specification for detailed information.

The User Application must monitor the Bus Master Enable bit (cfg_command[2]) and 
refrain from transmitting requests while this bit is not set. This requirement applies only to 
requests; completions can be transmitted regardless of this bit.

The Memory Address Space Decoder Enable bit (cfg_command[1]) or the I/O Address 
Space Decoder Enable bit (cfg_command[0]) must be set to receive Memory or I/O 
requests. These bits are set by an incoming Configuration Write request from the system 
host.

Table 5-16: Bit Mapping on Header Command Register

Bit Name

cfg_command[15:11] Reserved

cfg_command[10] Interrupt Disable

cfg_command[9] Fast Back-to-Back Transactions Enable (hardwired to 0)

cfg_command[8] SERR Enable

cfg_command[7] IDSEL Stepping/Wait Cycle Control (hardwired to 0)

cfg_command[6] Parity Error Enable - Not Supported

cfg_command[5] VGA Palette Snoop (hardwired to 0)

cfg_command[4] Memory Write and Invalidate (hardwired to 0)

cfg_command[3] Special Cycle Enable (hardwired to 0)

cfg_command[2] Bus Master Enable

cfg_command[1] Memory Address Space Decoder Enable

cfg_command[0] I/O Address Space Decoder Enable
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cfg_dstatus[15:0]

This bus reflects the value stored in the Device Status register of the PCI Express 
Capabilities Structure. Table 5-17 defines each bit in the cfg_dstatus bus. See the 
PCI Express Base Specification for detailed information.

cfg_dcommand[15:0]

This bus reflects the value stored in the Device Control register of the PCI Express 
Capabilities Structure. Table 5-18 defines each bit in the cfg_dcommand bus. See the 
PCI Express Base Specification for detailed information.

Table 5-17: Bit Mapping on PCI Express Device Status Register

Bit Name

cfg_dstatus[15:6] Reserved

cfg_dstatus[5] Transaction Pending

cfg_dstatus[4] AUX Power Detected (hardwired to 0)

cfg_dstatus[3] Unsupported Request Detected

cfg_dstatus[2] Fatal Error Detected

cfg_dstatus[1] Non-Fatal Error Detected

cfg_dstatus[0] Correctable Error Detected

Table 5-18: Bit Mapping of PCI Express Device Control Register

Bit Name

cfg_dcommand[15] Reserved

cfg_dcommand[14:12] Max_Read_Request_Size

cfg_dcommand[11] Enable No Snoop

cfg_dcommand[10] Auxiliary Power PM Enable

cfg_dcommand[9] Phantom Functions Enable

cfg_dcommand[8] Extended Tag Field Enable

cfg_dcommand[7:5](1) Max_Payload_Size

cfg_dcommand[4] Enable Relaxed Ordering

cfg_dcommand[3] Unsupported Request Reporting Enable

cfg_dcommand[2] Fatal Error Reporting Enable

cfg_dcommand[1] Non-Fatal Error Reporting Enable

cfg_dcommand[0] Correctable Error Reporting Enable

Notes: 
1. During L1 negotiation, the user should not trigger a link retrain by writing a 1 to cfg_lcommand[5]. L1 

negotiation can be observed by monitoring the cfg_pcie_link_state port.
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cfg_lstatus[15:0]

This bus reflects the value stored in the Link Status register in the PCI Express Capabilities 
Structure. Table 5-19 defines each bit in the cfg_lstatus bus. See the PCI Express Base 
Specification for details.

cfg_lcommand[15:0]

This bus reflects the value stored in the Link Control register of the PCI Express 
Capabilities Structure. Table 5-20 provides the definition of each bit in cfg_lcommand bus. 
See the PCI Express Base Specification, rev. 2.1 for more details.

Table 5-19: Bit Mapping of PCI Express Link Status Register

Bit Name

cfg_lstatus[15] Link Autonomous Bandwidth Status

cfg_lstatus[14] Link Bandwidth Management Status

cfg_lstatus[13] Data Link Layer Link Active

cfg_lstatus[12] Slot Clock Configuration

cfg_lstatus[11] Link Training

cfg_lstatus[10] Reserved

cfg_lstatus[9:4] Negotiated Link Width

cfg_lstatus[3:0] Current Link Speed

Table 5-20:  Bit Mapping of PCI Express Link Control Register

Bit Name

cfg_lcommand[15:12] Reserved

cfg_lcommand[11] Link Autonomous Bandwidth Interrupt Enable

cfg_lcommand[10] Link Bandwidth Management Interrupt Enable

cfg_lcommand[9] Hardware Autonomous Width Disable

cfg_lcommand[8] Enable Clock Power Management

cfg_lcommand[7] Extended Synch

cfg_lcommand[6] Common Clock Configuration

cfg_lcommand[5] Retrain Link (Reserved for an Endpoint device)

cfg_lcommand[4] Link Disable

cfg_lcommand[3] Read Completion Boundary

cfg_lcommand[2] Reserved

cfg_lcommand[1:0] Active State Link PM Control
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cfg_dcommand2[15:0]

This bus reflects the value stored in the Device Control 2 register of the PCI Express 
Capabilities Structure. Table 5-21 defines each bit in the cfg_dcommand bus. See the 
PCI Express Base Specification for detailed information.

Core Response to Command Register Settings
Table 5-22 and Table 5-23 illustrate the behavior of the 7 Series FPGAs Integrated Block for 
PCI Express based on the Command Register settings when configured as either an 
Endpoint or a Root Port.

Table 5-21: Bit Mapping of PCI Express Device Control 2 Register

Bit Name

cfg_dcommand2[15:5] Reserved

cfg_dcommand2[4] Completion Timeout Disable

cfg_dcommand2[3:0] Completion Timeout Value

Table 5-22: Command Register (0x004): Endpoint

Bit(s) Name Attr Endpoint Core Behavior

0 I/O Space Enable RW The Endpoint does not permit a BAR hit on I/O space 
unless this is enabled.

1 Memory Space Enable RW The Endpoint does not permit a BAR hit on Memory 
space unless this is enabled.

2 Bus Master Enable RW The Endpoint does not enforce this; user could send a 
TLP via AXI4-Stream interface.

5:3 Reserved RO Wired to 0. Not applicable to PCI Express.

6 Parity Error Response RW Enables Master Data Parity Error (Status[8]) to be set.

7 Reserved RO Wired to 0. Not applicable to PCI Express.

8 SERR# Enable RW Can enable Error NonFatal / Error Fatal Message 
generation, and enables Status[14] (“Signaled System 
Error”).

9 Reserved RO Wired to 0. Not applicable to PCI Express.

10 Interrupt Disable RW If set to “1”, the cfg_interrupt* interface is unable to 
cause INTx messages to be sent. 

15:11 Reserved RO Wired to 0. Not applicable to PCI Express.
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Status Register Response to Error Conditions
Table 5-24 throughTable 5-26 illustrate the conditions that cause the Status Register bits to 
be set in the 7 Series FPGAs Integrated Block for PCI Express when configured as either an 
Endpoint or a Root Port.

Table 5-23: Command Register (0x004): Root Port

Bit(s) Name Attr Root Port Core behavior

0 I/O Space Enable RW The Root Port ignores this setting. If disabled, it still 
accepts I/O TLP from the user side and passes 
downstream. User Application logic must enforce not 
sending I/O TLPs downstream if this is unset.

1 Memory Space Enable RW The Root Port ignores this setting. If disabled, it still 
accepts Mem TLPs from the user side and passes 
downstream. User Application logic must enforce not 
sending Mem TLPs downstream if this is unset.

2 Bus Master Enable RW When set to 0, the Root Port responds to target 
transactions such as an Upstream Mem or I/O TLPs as 
a UR (that is, the UR bit is set if enabled or a Cpl w/ UR 
packet is sent if the TLP was Non-Posted). 

When set to 1, all target transactions are passed to the 
user.

5:3 Reserved RO Wired to 0. Not applicable to PCI Express.

6 Parity Error Response RW Enables Master Data Parity Error (Status[8]) to be set.

7 Reserved RO Wired to 0. Not applicable to PCI Express.

8 SERR# Enable RW If enabled, Error Fatal/Error Non-Fatal Messages can 
be forwarded from the AXI4-Stream interface or 
cfg_err*, or internally generated. The Root Port does 
not enforce the requirement that Error Fatal/Error 
Non-Fatal Messages received on the link not be 
forwarded if this bit unset; user logic must do that. 

Note: Error conditions detected internal to the Root 
Port are indicated on cfg_msg* interface.

9 Reserved RO Wired to 0. Not applicable to PCI Express.

10 Interrupt Disable RW Not applicable to Root Port. 

15:11 Reserved RO Wired to 0. Not applicable to PCI Express.

Table 5-24: Status Register (0x006): Endpoint

Bit(s) Name Attr Cause in an Endpoint

2:0 Reserved RO Wired to 0. Not applicable to PCI Express.

3 Interrupt Status RO • Set when interrupt signaled by user.
• Clears when interrupt is cleared by the 

Interrupt handler.

4 Capabilities List RO Wired to 1.

7:5 Reserved RO Wired to 0. Not applicable to PCI Express.
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8 Master Data Parity Error RW1C Set if Parity Error Response is set and a Poisoned 
Cpl TLP is received on the link, or a Poisoned 
Write TLP is sent.

10:9 Reserved RO Wired to 0. Not applicable to PCI Express.

11 Signaled Target Abort RW1C Set if a Completion with status Completer Abort 
is sent upstream by the user via the cfg_err* 
interface.

12 Received Target Abort RW1C Set if a Completion with status Completer Abort 
is received.

13 Received Master Abort RW1C Set if a Completion with status Unsupported 
Request is received.

14 Signaled System Error RW1C Set if an Error Non-Fatal / Error Fatal Message is 
sent, and SERR# Enable (Command[8]) is set.

15 Detected Parity Error RW1C Set if a Poisoned TLP is received on the link.

Table 5-25: Status Register (0x006): Root Port

Bit(s) Name Attr Cause in a Root Port

2:0 Reserved RO Wired to 0. Not applicable to PCI Express.

3 Interrupt Status RO Has no function in the Root Port.

4 Capabilities List RO Wired to 1.

7:5 Reserved RO Wired to 0. Not applicable to PCI Express.

8 Master Data Parity Error RW1C Set if Parity Error Response is set and a Poisoned 
Completion TLP is received on the link.

10:9 Reserved RO Wired to 0. Not applicable to PCI Express.

11 Signaled Target Abort RW1C Never set by the Root Port

12 Received Target Abort RW1C Never set by the Root Port

13 Received Master Abort RW1C Never set by the Root Port

14 Signaled System Error RW1C Set if the Root Port:

• Receives an Error Non-Fatal / Error Fatal 
Message and both SERR# Enable and 
Secondary SERR# enable are set.

• Indicates on the cfg_msg* interface that a Error 
Fatal / Error Non-Fatal Message should be 
generated upstream and SERR# enable is set.

15 Detected Parity Error RW1C Set if a Poisoned TLP is transmitted downstream.

Table 5-24: Status Register (0x006): Endpoint (Cont’d)

Bit(s) Name Attr Cause in an Endpoint
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Accessing Registers through the Configuration Port
Configuration registers that are not directly mapped to the user interface can be accessed 
by configuration-space address using the ports shown in Table 2-14, page 45. Root Ports 
must use the Configuration Port to setup the Configuration Space. Endpoints can also use 
the Configuration Port to read and write; however, care must be taken to avoid adverse 
system side effects.

The User Application must supply the address as a DWORD address, not a byte address. 
To calculate the DWORD address for a register, divide the byte address by four. For 
example: 

• The DWORD address of the Command/Status Register in the PCI Configuration 
Space Header is 01h. (The byte address is 04h.)

• The DWORD address for BAR0 is 04h. (The byte address is 10h.) 

Table 5-26: Secondary Status Register (0x01E): Root Port

Bit(s) Name Attr Cause in a Root Port

7:0 Reserved RO Wired to 0. Not applicable to PCI 
Express.

8 Secondary Master Data Parity Error RW1C Set when the Root Port:

Receives a Poisoned Completion TLP, 
and Secondary Parity Error 
Response==1 

Transmits a Poisoned Write TLP, and 
Secondary Parity Error Response==1

10:9 Reserved RO Wired to 0. Not applicable to PCI 
Express.

11 Secondary Signaled Target Abort RW1C Set when User indicates a 
Completer-Abort via 
cfg_err_cpl_abort

12 Secondary Received Target Abort RW1C Set when the Root Port receives a 
Completion TLP with status 
Completer-Abort.

13 Secondary Received Master Abort RW1C Set when the Root Port receives a 
Completion TLP with status 
Unsupported Request 

14 Secondary Received System Error RW1C Set when the Root Port receives an 
Error Fatal/Error Non-Fatal Message.

15 Secondary Detected Parity Error RW1C Set when the Root Port receives a 
Poisoned TLP.
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To read any register in configuration space, shown in Table 2-2, page 23, the User 
Application drives the register DWORD address onto cfg_dwaddr[9:0]. The core drives the 
content of the addressed register onto cfg_do[31:0]. The value on cfg_do[31:0] is qualified 
by signal assertion on cfg_rd_wr_done. Figure 5-61 illustrates an example with two 
consecutive reads from the Configuration Space.

Configuration Space registers which are defined as “RW” by the PCI Local Bus 
Specification and PCI Express Base Specification are writable via the Configuration 
Management interface. To write a register in this address space, the User Application 
drives the register DWORD address onto cfg_dwaddr[9:0] and the data onto cfg_di[31:0]. 
This data is further qualified by cfg_byte_en[3:0], which validates the bytes of data 
presented on cfg_di[31:0]. These signals should be held asserted until cfg_rd_wr_done is 
asserted. Figure 5-62 illustrates an example with two consecutive writes to the 
Configuration Space, the first write with the User Application writing to all 32 bits of data, 
and the second write with the User Application selectively writing to only bits [23:26].

Note: Writing to the Configuration Space could have adverse system side effects. Users should 
ensure these writes do not negatively impact the overall system functionality.

X-Ref Target - Figure 5-61

Figure 5-61: Example Configuration Space Read Access

X-Ref Target - Figure 5-62

Figure 5-62: Example Configuration Space Write Access

user_clk_out

cfg_mgmt_dwaddr[9:0]

cfg_mgmt_do[31:0]

cfg_mgmt_wr_en

cfg_mgmt_rd_en

cfg_mgmt_rd_wr_done

A0 A1

D0 D1

UG477_c5_57_020311

user_clk_out

cfg_mgmt_dwaddr[9:0]

cfg_mgmt_di[31:0]

cfg_mgmt_byte_en[3:0]

cfg_mgmt_wr_en

cfg_mgmt_rd_en

cfg_mgmt_rd_wr_done

A A

D

0

D

1

1111b 0100b

UG477_c5_58_020311

http://www.xilinx.com


7 Series FPGAs Integrated Block for PCIe www.xilinx.com 167
UG477 March 1, 2011

Design with Configuration Space Registers and Configuration Interface

Optional PCI Express Extended Capabilities
The 7 Series FPGAs Integrated Block for PCI Express optionally implements up to five PCI 
Express Extended Capabilities: Device Serial Number Capability, Virtual Channel 
Capability, Vendor Specific Capability, Advanced Error Reporting Capability, and 
Resizable BAR Capability. Using the CORE Generator software, the user can choose which 
of these to enable. The relative order of the capabilities implemented is always the same. 
The order is:

1. Device Serial Number (DSN) Capability

2. Virtual Channel (VC) Capability

3. Vendor Specific (VSEC) Capability

4. Advanced Error Reporting (AER) Capability

5. Resizable BAR (RBAR) Capability

The Start addresses (Base Pointer address) of the five capability structures vary depending 
on the combination of capabilities enabled in the CORE Generator tool GUI. 

Table 5-27 through Table 5-31 define the start addresses of the five Extended Capability 
Structures, depending on the combination of PCI Express Extended Capabilities selected.

Table 5-27: DSN Base Pointer

DSN Base Pointer

No Capabilities Selected -

DSN Enabled 100h

Table 5-28: VC Capability Base Pointer

VC Capability 
Base Pointer

No Capabilities Selected -

Only VC Capability Enabled 100h

DSN and VC Capability Enabled 10Ch

Table 5-29: VSEC Capability Base Pointer

VSEC Capability 
Base Pointer

No Capabilities Selected -

Only VSEC Capability Enabled 100h

DSN and VSEC Capability Enabled 10Ch

DSN, VC Capability, and VSEC Capability Enabled 128h
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The rest of the PCI Express Extended Configuration Space is optionally available for users 
to implement.

Table 5-30: AER Capability Base Pointer

AER Capability 
Base Pointer

No Capabilities Selected -

Only AER Capability Enabled 100h

DSN and AER Capability Enabled 10Ch

VC Capability and AER Capability Enabled 11Ch

VSEC Capability and AER Capability Enabled 118h

DSN, VC Capability, and AER Capability Enabled 128h

DSN, VSEC Capability, and AER Capability Enabled 124h

VC Capability, VSEC Capability, and AER Capability Enabled 134h

DSN, VC Capability, VSEC Capability, and AER Capability Enabled 140h

Table 5-31: RBAR Capability Base Pointer

RBAR Capability 
Base Pointer

No Capabilities Selected -

Only RBAR Capability Enabled 100h

DSN and RBAR Capability Enabled 10Ch

VC Capability and RBAR Capability Enabled 11Ch

VSEC Capability and RBAR Capability Enabled 118h

AER Capability and RBAR Capability Enabled 138h

DSN, VC Capability, and RBAR Capability Enabled 128h

DSN, VSEC Capability, and RBAR Capability Enabled 124h

DSN, AER Capability, and RBAR Capability Enabled 144h

VC Capability, VSEC Capability, and RBAR Capability Enabled 134h

VC Capability, AER Capability, and RBAR Capability Enabled 154h

VSEC Capability, AER Capability, and RBAR Capability Enabled 150h

DSN, VC Capability, VSEC Capability, and RBAR Capability Enabled 140h

DSN, VC Capability, AER Capability, and RBAR Capability Enabled 160h

DSN, VSEC Capability, AER Capability and RBAR Capability Enabled 15Ch

VC Capability, VSEC Capability, AER Capability, and RBAR Capability 
Enabled

16Ch

DSN, VC Capability, VSEC Capability, AER Capability, and RBAR 
Capability Enabled 178h
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Xilinx Defined Vendor Specific Capability
The 7 Series FPGAs Integrated Block for PCI Express supports Xilinx defined Vendor 
Specific Capability that provides Control and Status for Loopback Master function for both 
the Root Port and Endpoint configurations. It is recommended that Loopback Master 
functionality be used only to perform in-system test of the physical link, when the 
application is not active. User logic is required to control the Loopback Master 
functionality by assessing the VSEC structure via the Configuration interface.

Figure 5-63 shows the VSEC structure in the PCIe Extended Configuration Space 
implemented in the integrated block.
X-Ref Target - Figure 5-63

Figure 5-63: Xilinx Defined Vendor Specific Capability Structure

Loopback Control Register (Offset 08h)

The Loopback Control Register controls Xilinx Defined Loopback specific parameters. 
Table 5-32 shows the bit locations and definitions.

31 0 Byte Offset

Next Capability Offset Capability Version = 1h PCI Express extended capability = 000Bh 00h

VSEC Length = 24 bytes VSEC Rev = 0h VSEC ID = 0h 04h

 Loopback Control Register 08h

Loopback Status Register 0Ch

Loopback Error Count Register 1 10h

Loopback Error Count Register 2 14h

Table 5-32: Loopback Control Register

Bit Location Register Description Attributes

0 Start Loopback: When set to 1b and pl_ltssm_state[5:0] is indicating 
L0 (16H), the block transitions to Loopback Master state and starts 
the loopback test. When set to 0b, the block exits the loopback 
master mode. 

Note: The Start Loopback bit should not be set to 1b during a link 
speed change.

RW

1 Force Loopback: The loopback master can force the slave which 
fails to achieve symbol lock at specified “link speed” and 
“de-emphasis level” to enter the loopback.active state by setting 
this bit to 1b. The start bit must be set to 1b when force is set to 1b.

RW

3:2 Loopback Link Speed: Advertised link speed in the TS1s sent by 
master with loopback bit set to 1b. The master can control the 
loopback link speed by properly controlling these bits. 

RW

4 Loopback De-emphasis: Advertised de-emphasis level in the TS1s 
sent by master. This also sets the De-emphasis level for the loopback 
slave. 

RW
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Loopback Status Register (Offset 0Ch)

The Loopback Status Register provides information about Xilinx Defined Loopback 
specific parameters. Table 5-33 shows the bit locations and definitions.

5 Loopback Modified Compliance: The loopback master generates 
modified compliance pattern when in loopback mode else 
compliance pattern is generated. Only one SKP OS is generated 
instead of two while in modified compliance. 

RW

6 Loopback Suppress SKP OS: When this bit is set to 1b then SKP OS 
are not transmitted by Loopback Master. This bit is ignored when 
send_modified_compliance pattern is set to 0b. 

RW

15:7 Reserved RO

23:16 Reserved RO

31:24 Reserved RO

Table 5-32: Loopback Control Register (Cont’d)

Bit Location Register Description Attributes

Table 5-33: Loopback Status Register

Bit Location Register Description Attributes

0 Loopback Slave: This bit is set by hardware, if the device is 
currently in loopback slave mode. When this bit is set to 1b, the 
Start Loopback bit must not be set to 1b.

RO

1 Loopback Slave Failed: This bit is set by Loopback Master 
hardware, when the master receives no TS1’s while Loopback bit 
set to 1b, within 100 ms of “Loopback.Active”. This bit is never set 
to 1b, when the Force Loopback bit is set to 1b. Setting the Start 
Loopback bit to 1b clears this bit to 0b.

RO

7:2 Reserved RO

15:8 Loopback Tested: These bits are set to 0b, when the Start Loopback 
bit is set to 1b. These bits are set to 1b when loopback test has been 
performed on a given lane and the Loopback_Err_count_n for the 
corresponding lane is valid.

Bit Positions        Lane

8                           Lane 0 Tested 

9                           Lane 1 Tested 

10                         Lane 2 Tested 

11                         Lane 3 Tested 

12                         Lane 4 Tested 

13                         Lane 5 Tested 

14                         Lane 6 Tested 

15                         Lane 7 Tested 

RO

31:16 Reserved RO
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Loopback Error Count Register 1 (Offset 10h)

The Loopback Error Count Register 1 provides information about the Error Count on the 
Physical Lanes 0 - 3, as tested by Xilinx Defined Loopback Control Test. A lane has an error 
count reported as zero if that lane was not tested in loopback. This could be if the lane is 
either not part of a configured port or has not detected a receiver at the other end. 
Table 5-34 shows the bit locations and definitions.

Loopback Error Count Register 2 (Offset 14h)

The Loopback Error Count Register 2 provides information about the Error Count on the 
Physical Lanes 7 - 4, as tested by Xilinx Defined Loopback Control Test. A lane has an error 
count reported as zero if that lane was not tested in loopback. This could be the case the 
lane is either not part of configured port or has not detected a receiver at the other end. 
Table 5-35 shows the bit locations and definitions.

Table 5-34: Loopback Error Count Register 1

Bit Location Register Description Attributes

7:0 Loopback Error Count 0: This specifies the Error Count on Lane 0. 
An error is said to have occurred if there is an 8B/10B error or 
disparity error signaled on the Lane. Setting Loopback Start bit to 
1b clears the error count to 0h. This is only valid when Loopback 
Tested: Lane 0 Tested is set to 1b.

RO

15:8 Loopback Error Count 1: This specifies the Error Count on Lane 1. 
An error is said to have occurred if there is an 8B/10B error or 
disparity error signaled on the Lane. Setting Loopback Start bit to 
1b clears the error count to 0h. This is only valid when Loopback 
Tested: Lane 1 Tested is set to 1b.

RO

23:16 Loopback Error Count 2: This specifies the Error Count on Lane 2. 
An error is said to have occurred if there is an 8B/10B error or 
disparity error signaled on the Lane. Setting Loopback Start bit to 
1b clears the error count to 0h. This is only valid when Loopback 
Tested: Lane 2 Tested is set to 1b.

RO

31:24 Loopback Error Count 3: This specifies the Error Count on Lane 3. 
An error is said to have occurred if there is an 8B/10B error or 
disparity error signaled on the Lane. Setting Loopback Start bit to 
1b clears the error count to 0h. This is only valid when Loopback 
Tested: Lane 3 Tested is set to 1b.

RO

Table 5-35: Loopback Error Count Register 2

Bit Location Register Description Attributes

7:0 Loopback Error Count 4: This specifies the Error Count on Lane 4. 
An error is said to have occurred if there is an 8B/10B error or 
disparity error signaled on the Lane. Setting Loopback Start bit to 
1b clears the error count to 0h. This is only valid when Loopback 
Tested: Lane 4 Tested is set to 1b.

RO

15:8 Loopback Error Count 5: This specifies the Error Count on Lane 5. 
An error is said to have occurred if there is an 8B/10B error or 
disparity error signaled on the Lane. Setting Loopback Start bit to 
1b clears the error count to 0h. This is only valid when Loopback 
Tested: Lane 5 Tested is set to 1b.

RO

http://www.xilinx.com


172 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Advanced Error Reporting Capability
The 7 Series FPGAs Integrated Block for PCI Express implements the Advanced Error 
Reporting (AER) Capability structure as defined in PCI Express Base Specification, rev. 2.1. 
All optional bits defined in the specification are supported. Multiple Header Logging is not 
supported.

When AER is enabled, the core responds to error conditions by setting the appropriate 
Configuration Space bit(s) and sending the appropriate error messages in the manner 
described in PCI Express Base Specification, rev. 2.1.

For additional signaling requirements when AER is enabled, refer to AER Requirements, 
page 182. 

Resizable BAR Capability
The 7 Series FPGAs Integrated Block for PCI Express implements the Resizable BAR 
Capability structure as defined in PCI Express Base Specification, rev. 2.1. For more 
information on the Resizable BAR feature of the integrated block, refer to Resizable BAR 
Implementation-Specific Information (Endpoint Only), page 182.

User-Implemented Configuration Space
The 7 Series FPGAs Integrated Block for PCI Express enables users to optionally 
implement registers in the PCI Configuration Space, the PCI Express Extended 
Configuration Space, or both, in the User Application. The User Application is required to 
return Config Completions for all address within this space. For more information about 
enabling and customizing this feature, see Chapter 4, Generating and Customizing the 
Core.

PCI Configuration Space

If the user chooses to implement registers within 0xA8 to 0xFF in the PCI Configuration 
Space, the start address of the address region they wish to implement can be defined 
during the core generation process. 

The User Application is responsible for generating all Completions to Configuration Reads 
and Writes from the user-defined start address to the end of PCI Configuration Space 
(0xFF). Configuration Reads to unimplemented registers within this range should be 
responded to with a Completion with 0x00000000 as the data, and configuration writes 
should be responded to with a successful Completion. 

23:16 Loopback Error Count 6: This specifies the Error Count on Lane 6. 
An error is said to have occurred if there is an 8B/10B error or 
disparity error signaled on the Lane. Setting Loopback Start bit to 
1b clears the error count to 0h. This is only valid when Loopback 
Tested: Lane 6 Tested is set to 1b.

RO

31:24 Loopback Error Count 7: This specifies the Error Count on Lane 7. 
An error is said to have occurred if there is an 8B/10B error or 
disparity error signaled on the lane. Setting Loopback Start bit to 1b 
clears the error count to 0h. This is only valid when Loopback 
Tested: Lane 7 Tested is set to 1b.

RO

Table 5-35: Loopback Error Count Register 2 (Cont’d)

Bit Location Register Description Attributes
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For example, to implement address range 0xC0 to 0xCF, there are several address ranges 
defined that should be treated differently depending on the access. See Table 5-36 for more 
details on this example.

PCI Express Extended Configuration Space

The starting address of the region in the PCI Express Extended Configuration Space that is 
optionally available for users to implement depends on the PCI Express Extended 
Capabilities that the user has enabled in the 7 Series FPGAs Integrated Block for 
PCI Express.

The 7 Series FPGAs Integrated Block for PCI Express allows the user to select the start 
address of the user-implemented PCI Express Extended Configuration Space, while 
generating and customizing the core. This space must be implemented in the User 
Application. The User Application is required to generate a CplD with 0x00000000 for 
Configuration Read and successful Cpl for Configuration Write to addresses in this 
selected range not implemented in the User Application.

The user can choose to implement a User Configuration Space with a start address not 
adjacent to the last capability structure implemented by the 7 Series FPGAs Integrated 
Block for PCI Express. In such a case, the core returns a completion with 0x00000000 for 
configuration accesses to the region that the user has chosen to not implement. Table 5-37 
further illustrates this scenario.

Table 5-37 illustrates an example Configuration of the PCI Express Extended 
Configuration Space, with these settings:

• DSN Capability Enabled

• VSEC Capability Enabled

• User Implemented PCI Express Extended Configuration Space Enabled

• User Implemented PCI Express Extended Configuration Space Start Address 168h

Table 5-36: Example: User-Implemented Space 0xC0 to 0xCF

Configuration Writes Configuration Reads

0x00 to 0xBF Core responds automatically Core responds automatically

0xC0 to 0xCF User Application responds with 
Successful Completion

User Application responds with 
register contents

0xD0 to 0xFF User Application responds with 
Successful Completion

User Application responds with 
0x00000000

Table 5-37: Example: User-Defined Start Address for Configuration Space

Configuration Space Byte Address

DSN Capability 100h - 108h

VSEC Capability 10Ch - 120h

Reserved Extended Configuration Space

(Core Returns Successful Completion with 0x00000000)
124h - 164h

User-Implemented PCI Express Extended Configuration Space 168h - 47Ch

User-Implemented Reserved PCI Express Extended Configuration Space

(User Application Returns Successful Completion with 0x00000000)
480h - FFFh
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In this configuration, the DSN Capability occupies the registers at 100h-108h, and the 
VSEC Capability occupies registers at addresses 10Ch to 120h.

The remaining PCI Express Extended Configuration Space, starting at address 124h is 
available to the user to implement. For this example, the user has chosen to implement 
registers in the address region starting 168h.

In this scenario, the core returns successful Completions with 0x00000000 for 
Configuration accesses to registers 124h-164h. Table 5-37 also illustrates a case where the 
user only implements the registers from 168h to 47Ch. In this case, the user is responsible 
for returning successful Completions with 0x00000000 for configuration accesses to 
480h-FFFh.

Additional Packet Handling Requirements
The User Application must manage the mechanisms described in this section to ensure 
protocol compliance, because the core does not manage them automatically.

Generation of Completions

The Integrated Block core does not generate Completions for Memory Reads or I/O 
requests made by a remote device. The user is expected to service these completions 
according to the rules specified in the PCI Express Base Specification.

Tracking Non-Posted Requests and Inbound Completions

The integrated block does not track transmitted I/O requests or Memory Reads that have 
yet to be serviced with inbound Completions. The User Application is required to keep 
track of such requests using the Tag ID or other information.

One Memory Read request can be answered by several Completion packets. The User 
Application must accept all inbound Completions associated with the original Memory 
Read until all requested data has been received.

The PCI Express Base Specification requires that an Endpoint advertise infinite Completion 
Flow Control credits as a receiver; the Endpoint can only transmit Memory Reads and I/O 
requests if it has enough space to receive subsequent Completions.

The integrated block does not keep track of receive-buffer space for Completion. Rather, it 
sets aside a fixed amount of buffer space for inbound Completions. The User Application 
must keep track of this buffer space to know if it can transmit requests requiring a 
Completion response. See Appendix E, Managing Receive-Buffer Space for Inbound 
Completions for Inbound Completions for more information.

Handling Message TLPs
By default, the 7 Series FPGAs Integrated Block for PCI Express does not route any 
received messages to the AXI4-Stream interface. It signals the receipt of messages on the 
cfg_msg_* interface. The user can, however, choose to receive these messages, in addition 
to signaling on this interface, by enabling this feature during customization of the core 
through the CORE Generator software.

Root Port Configuration

The Root Port of a PCI Express Root Complex does not send any internally generated 
messages on the PCI Express link, although messages can still be sent via the AXI4-Stream 
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interface, such as a Set Slot Power Limit message. Any errors detected by the Integrated 
Block in Root Port configuration that could cause an error message to be sent are therefore 
signaled to the User Application on the cfg_msg_* interface.

The Integrated Block for PCI Express in Root Port configuration also decodes received 
messages and signals these to the User Application on this interface. When configured as a 
Root Port, the Integrated Block distinguishes between these received messages and error 
conditions detected internally by the asserting the cfg_msg_received signal.

Reporting User Error Conditions
The User Application must report errors that occur during Completion handling using 
dedicated error signals on the core interface, and must observe the Device Power State 
before signaling an error to the core. If the User Application detects an error (for example, 
a Completion Timeout) while the device has been programmed to a non-D0 state, the User 
Application is responsible to signal the error after the device is programmed back to the D0 
state. 

After the User Application signals an error, the core reports the error on the PCI Express 
Link and also sets the appropriate status bit(s) in the Configuration Space. Because status 
bits must be set in the appropriate Configuration Space register, the User Application 
cannot generate error reporting packets on the transmit interface. The type of 
error-reporting packets transmitted depends on whether or not the error resulted from a 
Posted or Non-Posted Request, and if AER is enabled or disabled. User-reported Posted 
errors cause Message packets to be sent to the Root Complex if enabled to do so through 
the Device Control Error Reporting bits and/or the Status SERR Enable bit, and the AER 
Mask bits (if AER enabled). User-reported non-Posted errors cause Completion packets 
with non-successful status to be sent to the Root Complex, unless the error is regarded as 
an Advisory Non-Fatal Error. If AER is enabled, user-reported non-Posted errors can also 
cause Message packets to be sent, if enabled by the AER Mask bits. For more information 
about Advisory Non-Fatal Errors, see Chapter 6 of the PCI Express Base Specification. Errors 
on Non-Posted Requests can result in either Messages to the Root Complex or Completion 
packets with non-Successful status sent to the original Requester.

Error Types

The User Application triggers six types of errors using the signals defined in Table 2-18, 
page 52. 

• End-to-end CRC ECRC Error 

• Unsupported Request Error

• Completion Timeout Error

• Unexpected Completion Error

• Completer Abort Error

• Correctable Error

• Atomic Egress Blocked Error

• Multicast Blocked Error

• Correctable Internal Error

• Malformed Error

• Poisoned Error
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Multiple errors can be detected in the same received packet; for example, the same packet 
can be an Unsupported Request and have an ECRC error. If this happens, only one error 
should be reported. Because all user-reported errors have the same severity, the User 
Application design can determine which error to report. The cfg_err_posted signal, 
combined with the appropriate error reporting signal, indicates what type of 
error-reporting packets are transmitted. The user can signal only one error per clock cycle. 
See Figure 5-64, Figure 5-65, and Figure 5-66, and Table 5-38 and Table 5-39.

The User Application must ensure that the device is in a D0 Power state prior to reporting 
any errors via the cfg_err_ interface. The User Application can ensure this by checking that 
the PMCSR PowerState (cfg_pmcsr_pme_powerstate[1:0]) is set to 2'b00. If the 
PowerState is not set to 2'b00 (the core is in a non-D0 power state) and PME_EN 
cfg_pmcsr_pme_en is asserted (1'b1), then the user can assert (pulse) cfg_pm_wake and 
wait for the Root to set the PMCSR PowerState bits to 2'b00. If the PowerState 
(cfg_pmcsr_pme_powerstate) is not equal to 2'b00 and PME_EN cfg_pmcsr_pme_en is 
deasserted (1'b0), the user must wait for the Root to set the PowerState to 2'b00.

Table 5-38: User-Indicated Error Signaling

User Reported Error Internal Cause AER Enabled Action

None None Don’t care No action is taken.

cfg_err_ur 
&&

cfg_err_posted = 0

RX: 

• Bar Miss (NP 
TLP) 

• Locked TLP
• Type1 Cfg
• Non-Cpl TLP 

during PM mode 
• Poisoned TLP

No
A completion with an 
Unsupported Request 
status is sent.

Yes

A completion with an 
Unsupported Request 
status is sent. If enabled, a 
Correctable Error Message 
is sent.

cfg_err_ur
&&

cfg_err_posted = 1

RX: 

• Bar Miss 
(Posted) TLP

• Locked (Posted) 
TLP

• Posted TLP 
during PM mode  

No
If enabled, a Non-Fatal 
Error Message is sent.

Yes

Depending on the AER 
Severity register, either a 
Non-Fatal or Fatal Error 
Message is sent.

cfg_err_cpl_abort
&&

cfg_err_posted = 0
Poisoned TLP

No

A completion with a 
Completer Abort status is 
sent. If enabled, a Non-Fatal 
Error Message is sent.

Yes

A completion with a 
Completer Abort status is 
sent. If enabled, a 
Correctable Error Message 
is sent.
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cfg_err_cpl_abort
&&

cfg_err_posted = 1
ECRC Error

No

A completion with a 
Completer Abort status is 
sent. If enabled, a Non-Fatal 
Error Message is sent.

Yes

Depending on the AER 
Severity register, either a 
Non-Fatal or Fatal Error 
Message is sent.

cfg_err_cpl_timeout
&&

cfg_err_no_recovery = 0
Poisoned TLP

No
None (considered an 
Advisory Non-Fatal Error).

Yes
If enabled, a Correctable 
Error Message is sent.

cfg_err_cpl_timeout
&&

cfg_err_no_recovery = 1
ECRC Error

No
If enabled, a Non-Fatal 
Error Message is sent.

Yes

Depending on the AER 
Severity register, a 
Non-Fatal or Fatal Error 
Message is sent.

cfg_err_ecrc ECRC Error

No
If enabled, a Non-Fatal 
Error Message is sent.

Yes

Depending on the AER 
Severity register, either a 
Non-Fatal or Fatal Error 
Message is sent.

cfg_err_cor RX: 

• PLM MGT Err
• Replay TO
• Replay Rollover
• Bad DLLP
• Bad TLP 

(crc/seq#)
• Header Log 

Overflow(1)

Don't care

If enabled, a Correctable 
Error Message is sent.cfg_err_internal_cor Yes

cfg_err_cpl_unexpect Poisoned TLP

No None (considered an 
Advisory Non-Fatal Error).

Yes
If enabled, a Correctable 
Error Message is sent.

cfg_err_atomic_egress_
blocked Poisoned TLP

No
None (considered an 
Advisory Non-Fatal Error).

Yes
If enabled, a Correctable 
Error Message is sent.

Table 5-38: User-Indicated Error Signaling (Cont’d)

User Reported Error Internal Cause AER Enabled Action
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Whenever an error is detected in a Non-Posted Request, the User Application deasserts 
cfg_err_posted and provides header information on cfg_err_tlp_cpl_header[47:0] during 
the same clock cycle the error is reported, as illustrated in Figure 5-64. The additional 

cfg_err_malformed

RX:

• Out-of-range 
ACK/NAK

• Malformed TLP
• Buffer Overflow
• FC error

No
If enabled, a Fatal Error 
Message is sent.

Yes

Depending on the AER 
Severity register, either a 
Non-Fatal or Fatal Error 
Message is sent.

cfg_err_mc_blocked ECRC Error

No
If enabled, a Non-Fatal 
Error Message is sent.

Yes

Depending on the AER 
Severity register, either a 
Non-Fatal or Fatal Error 
Message is sent.

cfg_err_poisoned
&&

cfg_err_no_recovery = 0
Poisoned TLP

No
None (considered an 
Advisory Non-Fatal Error).

Yes
If enabled, a Correctable 
Error Message is sent.

cfg_err_poisoned
&&

cfg_err_no_recovery = 1
ECRC Error

No
If enabled, a Non-Fatal 
Error Message is sent.

Yes

Depending on the AER 
Severity register, either a 
Non-Fatal or Fatal Error 
Message is sent.

Notes: 
1. Only when AER is enabled.

Table 5-38: User-Indicated Error Signaling (Cont’d)

User Reported Error Internal Cause AER Enabled Action

Table 5-39: Possible Error Conditions for TLPs Received by the User Application

R
ec

ei
ve

d
 T

L
P

 T
yp

e

Possible Error Condition Error Qualifying Signal Status

Unsupported 
Request 

(cfg_err_ur

Completion 
Abort 

(cfg_err_cpl_
abort)

Correctable 
Error 

(cfg_err_
cor

ECRC Error 
(cfg_err_

ecrc

Unexpected 
Completion 

(cfg_err_cpl_
unexpect)

Value to Drive 
on (cfg_err_

posted)

Drive Data 
on (cfg_err_tlp_
cpl header[47:0])

Memory 
Write

✓ X N/A ✓ X 1 No

Memory 
Read

✓ ✓ N/A ✓ X 0 Yes

I/O ✓ ✓ N/A ✓ X 0 Yes

Completion X X N/A ✓ ✓ 1 No

Notes: 
1. A checkmark indicates a possible error condition for a given TLP type. For example, users can signal Unsupported Request or ECRC Error 

for a Memory Write TLP, if these errors are detected. An X indicates not a valid error condition for a given TLP type. For example, users 
should never signal Completion Abort in response to a Memory Write TLP.
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header information is necessary to construct the required Completion with non-Successful 
status. Additional information about when to assert or deassert cfg_err_posted is provided 
in the remainder of this section.

If an error is detected on a Posted Request, the User Application instead asserts 
cfg_err_posted, but otherwise follows the same signaling protocol. This results in a 
Non-Fatal Message to be sent, if enabled (see Figure 5-65).

If several non-Posted errors are signaled on cfg_err_ur or cfg_err_cpl_abort in a short 
amount of time, it is possible for the core to be unable to buffer them all. If that occurs, then 
cfg_err_cpl_rdy is deasserted and the user must cease signaling those types of errors on the 
same cycle. The user must not resume signaling those types of errors until cfg_err_cpl_rdy 
is reasserted (see Figure 5-66).

The core’s ability to generate error messages can be disabled by the Root Complex issuing 
a configuration write to the Endpoint core’s Device Control register and the PCI Command 
register setting the appropriate bits to 0. For more information about these registers, see 
Chapter 7 of the PCI Express Base Specification. However, error-reporting status bits are 
always set in the Configuration Space whether or not their Messages are disabled.

If AER is enabled, the root complex has fine-grained control over the ability and types of 
error messages generated by the Endpoint core by setting the Severity and Mask Registers 
in the AER Capability Structure. For more information about these registers, see Chapter 7 
of the PCI Express Base Specification, rev. 2.1.

X-Ref Target - Figure 5-64

Figure 5-64: Signaling Unsupported Request for Non-Posted TLP
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Completion Timeouts

The Integrated Block core does not implement Completion timers; for this reason, the User 
Application must track how long its pending Non-Posted Requests have each been 
waiting for a Completion and trigger timeouts on them accordingly. The core has no 
method of knowing when such a timeout has occurred, and for this reason does not filter 
out inbound Completions for expired requests. 

If a request times out, the User Application must assert cfg_err_cpl_timeout, which causes 
an error message to be sent to the Root Complex. If a Completion is later received after a 
request times out, the User Application must treat it as an Unexpected Completion.

Unexpected Completions

The Integrated Block core automatically reports Unexpected Completions in response to 
inbound Completions whose Requestor ID is different than the Endpoint ID programmed 
in the Configuration Space. These completions are not passed to the User Application. The 
current version of the core regards an Unexpected Completion to be an Advisory 
Non-Fatal Error (ANFE), and no message is sent.

X-Ref Target - Figure 5-65

Figure 5-65: Signaling Unsupported Request for Posted TLP
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X-Ref Target - Figure 5-66

Figure 5-66: Signaling Locked Unsupported Request for Locked Non-Posted TLP
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Completer Abort

If the User Application is unable to transmit a normal Completion in response to a 
Non-Posted Request it receives, it must signal cfg_err_cpl_abort. The cfg_err_posted 
signal can also be set to 1 simultaneously to indicate Non-Posted and the appropriate 
request information placed on cfg_err_tlp_cpl_header[47:0]. This sends a Completion with 
non-Successful status to the original Requester, but does not send an Error Message. When 
in Legacy mode if the cfg_err_locked signal is set to 0 (to indicate the transaction causing 
the error was a locked transaction), a Completion Locked with Non-Successful status is 
sent. If the cfg_err_posted signal is set to 0 (to indicate a Posted transaction), no 
Completion is sent, but a Non-Fatal Error Message is sent (if enabled).

Unsupported Request 

If the User Application receives an inbound Request it does not support or recognize, it 
must assert cfg_err_ur to signal an Unsupported Request. The cfg_err_posted signal must 
also be asserted or deasserted depending on whether the packet in question is a Posted or 
Non-Posted Request. If the packet is Posted, a Non-Fatal Error Message is sent out (if 
enabled); if the packet is Non-Posted, a Completion with a non-Successful status is sent to 
the original Requester. When in Legacy mode if the cfg_err_locked signal is set to 0 (to 
indicate the transaction causing the error was a locked transaction), a Completion Locked 
with Unsupported Request status is sent.

The Unsupported Request condition can occur for several reasons, including: 

• An inbound Memory Write packet violates the User Application's programming 
model, for example, if the User Application has been allotted a 4 KB address space but 
only uses 3 KB, and the inbound packet addresses the unused portion. 

Note: If this occurs on a Non-Posted Request, the User Application should use 
cfg_err_cpl_abort to flag the error.

• An inbound packet uses a packet Type not supported by the User Application, for 
example, an I/O request to a memory-only device. 

ECRC Error

When enabled, the Integrated Block core automatically checks the ECRC field for validity. 
If an ECRC error is detected, the core responds by setting the appropriate status bits and an 
appropriate error message is sent, if enabled to do so in the configuration space.

If automatic ECRC checking is disabled, the User Application can still signal an ECRC 
error by asserting cfg_err_ecrc. The User Application should only assert cfg_err_ecrc if 
AER is disabled.
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AER Requirements

Whenever the User Application signals an error using one of the cfg_err_* inputs (for 
example, cfg_err_ecrc_n), it must also log the header of the TLP that caused the error. The 
User Application provides header information on cfg_err_aer_headerlog[127:0] during the 
same clock cycle the error is reported. The User Application must hold the header 
information until cfg_err_aer_headerlog_set is asserted. cfg_err_aer_headerlog_set 
remains asserted until the Uncorrectable Error Status Register bit corresponding to the first 
error pointer is cleared (typically, via system software – see the PCI Express Base 
Specification, v2.1). If cfg_err_aer_headerlog_set is already asserted, there is already a 
header logged. Figure 5-67 illustrates the operation for AER header logging. 

Resizable BAR Implementation-Specific Information (Endpoint Only)

The integrated block can support up to six resizable BARs; however, the BAR Index field of 
the Resizable BAR Capability Registers (0 through 5) must be in ascending order. For 
example, if Bar Index (0) is set to 4 (indicating it points to the BAR[4]), Bar Index (1) can be 
set to 5 and Bar Index (2 - 5) cannot be used and is disabled. In this example, if BAR[4] 
represents a 64-bit BAR (using BAR5 for the upper 32 bits), Bar Index(1) cannot be used.

When the Bar Size field of a Resizable BAR Capability is programmed, any value 
previously programmed in the corresponding BAR is cleared and the number of writable 
bits in that BAR is immediately changed to reflect the new size.

Power Management
The Integrated Block core supports these power management modes:

• Active State Power Management (ASPM)

• Programmed Power Management (PPM)

Implementing these power management functions as part of the PCI Express design 
enables the PCI Express hierarchy to seamlessly exchange power-management messages 
to save system power. All power management message identification functions are 
implemented. The subsections in this section describe the user logic definition to support 
the above modes of power management.

For additional information on ASPM and PPM implementation, see the PCI Express Base 
Specification.

X-Ref Target - Figure 5-67

Figure 5-67: AER Header Logging
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Active State Power Management 
The Active State Power Management (ASPM) functionality is autonomous and 
transparent from a user-logic function perspective. The core supports the conditions 
required for ASPM. The integrated block supports ASPM L0s. 

Programmed Power Management
To achieve considerable power savings on the PCI Express hierarchy tree, the core 
supports these link states of Programmed Power Management (PPM):

• L0: Active State (data exchange state)

• L1: Higher Latency, lower power standby state

• L3: Link Off State

The Programmed Power Management Protocol is initiated by the Downstream 
Component/Upstream Port.

PPM L0 State

The L0 state represents normal operation and is transparent to the user logic. The core 
reaches the L0 (active state) after a successful initialization and training of the PCI Express 
Link(s) as per the protocol.

PPM L1 State

These steps outline the transition of the core to the PPM L1 state:

1. The transition to a lower power PPM L1 state is always initiated by an upstream 
device, by programming the PCI Express device power state to D3-hot (or to D1 or D2 
if they are supported).

2. The device power state is communicated to the user logic through the 
cfg_pmcsr_powerstate[1:0] output.

3. The core then throttles/stalls the user logic from initiating any new transactions on the 
user interface by deasserting s_axis_tx_tready. Any pending transactions on the user 
interface are, however, accepted fully and can be completed later. 

There are two exceptions to this rule:

• The core is configured as an Endpoint and the User Configuration Space is 
enabled. In this situation, the user must refrain from sending new Request TLPs if 
cfg_pmcsr_powerstate[1:0] indicates non-D0, but the user can return Completions 
to Configuration transactions targeting User Configuration space.

• The core is configured as a Root Port. To be compliant in this situation, the user 
should refrain from sending new Requests if cfg_pmcsr_powerstate[1:0] indicates 
non-D0.

4. The core exchanges appropriate power management DLLPs with its link partner to 
successfully transition the link to a lower power PPM L1 state. This action is 
transparent to the user logic.

5. All user transactions are stalled for the duration of time when the device power state is 
non-D0, with the exceptions indicated in step 3.

Note: The user logic, after identifying the device power state as non-D0, can initiate a request 
through the cfg_pm_wake to the upstream link partner to configure the device back to the D0 power 
state. If the upstream link partner has not configured the device to allow the generation of PM_PME 
messages (cfg_pmcsr_pme_en = 0), the assertion of cfg_pm_wake is ignored by the core.
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PPM L3 State

These steps outline the transition of the Endpoint for PCI Express to the PPM L3 state:

1. The core negotiates a transition to the L23 Ready Link State upon receiving a 
PME_Turn_Off message from the upstream link partner.

2. Upon receiving a PME_Turn_Off message, the core initiates a handshake with the user 
logic through cfg_to_turnoff (see Table 5-40) and expects a cfg_turnoff_ok back from 
the user logic.

3. A successful handshake results in a transmission of the Power Management Turn-off 
Acknowledge (PME-turnoff_ack) Message by the core to its upstream link partner.

4. The core closes all its interfaces, disables the Physical/Data-Link/Transaction layers 
and is ready for removal of power to the core.

There are two exceptions to this rule:

• The core is configured as an Endpoint and the User Configuration Space is 
enabled. In this situation, the user must refrain from sending new Request TLPs if 
cfg_pmcsr_powerstate[1:0] indicates non-D0, but the user can return Completions 
to Configuration transactions targeting User Configuration space.

• The core is configured as a Root Port. To be compliant in this situation, the user 
should refrain from sending new Requests if cfg_pmcsr_powerstate[1:0] indicates 
non-D0.

Power-down negotiation follows these steps:

1. Before power and clock are turned off, the Root Complex or the Hot-Plug controller in 
a downstream switch issues a PME_Turn_Off broadcast message.

2. When the core receives this TLP, it asserts cfg_to_turnoff to the User Application and 
starts polling the cfg_turnoff_ok input.

3. When the User Application detects the assertion of cfg_to_turnoff, it must complete 
any packet in progress and stop generating any new packets. After the User 
Application is ready to be turned off, it asserts cfg_turnoff_ok to the core. After 
assertion of cfg_turnoff_ok, the User Application has committed to being turned off.

Table 5-40: Power Management Handshaking Signals

Port Name Direction Description

cfg_to_turnoff Output Asserted if a power-down request TLP is received from 
the upstream device. After assertion, cfg_to_turnoff 
remains asserted until the user asserts cfg_turnoff_ok.

cfg_turnoff_ok Input Asserted by the User Application when it is safe to 
power down.
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4. The core sends a PME_TO_Ack when it detects assertion of cfg_turnoff_ok, as 
displayed in Figure 5-68 (64-bit).

Generating Interrupt Requests
Note: This section is only applicable to the Endpoint Configuration of the 7 Series FPGAs 
Integrated Block for PCI Express.

The Integrated Block core supports sending interrupt requests as either legacy, Message 
MSI, or MSI-X interrupts. The mode is programmed using the MSI Enable bit in the 
Message Control Register of the MSI Capability Structure and the MSI-X Enable bit in the 
MSI-X Message Control Register of the MSI-X Capability Structure. For more information 
on the MSI and MSI-X capability structures, see section 6.8 of the PCI Local Base Specification 
v3.0. 

The state of the MSI Enable and MSI-X Enabled bits are reflected by the 
cfg_interrupt_msienable and cfg_interrupt_msixeable outputs, respectively. Table 5-41 
describes the Interrupt Mode the device has been programmed to, based on the 
cfg_interrupt_msienable and cfg_interrupt_msixenable outputs of the core.

The MSI Enable bit in the MSI control register, the MSI-X Enable bit in the MSI-X Control 
Register, and the Interrupt Disable bit in the PCI Command register are programmed by 
the Root Complex. The User Application has no direct control over these bits.

X-Ref Target - Figure 5-68

Figure 5-68: Power Management Handshaking: 64-Bit
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Table 5-41: Interrupt Modes

cfg_interrupt_msixenable=0 cfg_interrupt_msixenable=1

cfg_interrupt_
msienable=0

Legacy Interrupt (INTx) mode.

The cfg_interrupt interface only 
sends INTx messages.

MSI-X mode. MSI-X interrupts must be 
generated by the user by composing 
MWr TLPs on the transmit 
AXI4-Stream interface; Do not use the 
cfg_interrupt interface.

The cfg_interrupt interface is active 
and sends INTx messages, but the user 
should refrain from doing so.

cfg_interrupt_
msienable=1

MSI mode. The cfg_interrupt 
interface only sends MSI 
interrupts (MWr TLPs).

Undefined. System software is not 
supposed to permit this. 

However, the cfg_interrupt interface is 
active and sends MSI interrupts (MWr 
TLPs) if the user chooses to do so.
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The Internal Interrupt Controller in the 7 Series FPGAs Integrated Block for PCI Express 
core only generates Legacy Interrupts and MSI Interrupts. MSI-X Interrupts need to be 
generated by the User Application and presented on the transmit AXI4-Stream interface. 
The status of cfg_interrupt_msienable determines the type of interrupt generated by the 
internal Interrupt Controller:

If the MSI Enable bit is set to a 1, then the core generates MSI requests by sending Memory 
Write TLPs. If the MSI Enable bit is set to 0, the core generates legacy interrupt messages as 
long as the Interrupt Disable bit in the PCI Command Register is set to 0:

• cfg_command[10] = 0: INTx interrupts enabled

• cfg_command[10] = 1: INTx interrupts disabled (request are blocked by the core)

• cfg_interrupt_msienable = 0: Legacy Interrupt

• cfg_interrupt_msienable = 1: MSI

Regardless of the interrupt type used (Legacy or MSI), the user initiates interrupt requests 
through the use of cfg_interrupt and cfg_interrupt_rdy as shown in Table 5-42.

The User Application requests interrupt service in one of two ways, each of which are 
described next. 

Table 5-42: Interrupt Signalling

Port Name Direction Description

cfg_interrupt Input Assert to request an interrupt. Leave asserted until the 
interrupt is serviced. 

cfg_interrupt_rdy Output Asserted when the core accepts the signaled interrupt request. 
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Legacy Interrupt Mode
• As shown in Figure 5-69, the User Application first asserts cfg_interrupt and 

cfg_interrupt_assert to assert the interrupt. The User Application should select a 
specific interrupt (INTA) using cfg_interrupt_di[7:0] as shown in Table 5-43.

• The core then asserts cfg_interrupt_rdy to indicate the interrupt has been accepted. 
On the following clock cycle, the User Application deasserts cfg_interrupt and, if the 
Interrupt Disable bit in the PCI Command register is set to 0, the core sends an assert 
interrupt message (Assert_INTA).

• After the User Application has determined that the interrupt has been serviced, it 
asserts cfg_interrupt while deasserting cfg_interrupt_assert to deassert the interrupt. 
The appropriate interrupt must be indicated via cfg_interrupt_di[7:0].

• The core then asserts cfg_interrupt_rdy to indicate the interrupt deassertion has been 
accepted. On the following clock cycle, the User Application deasserts cfg_interrupt 
and the core sends a deassert interrupt message (Deassert_INTA).

MSI Mode
• As shown in Figure 5-69, the User Application first asserts cfg_interrupt. Additionally 

the User Application supplies a value on cfg_interrupt_di[7:0] if Multi-Vector MSI is 
enabled.

• The core asserts cfg_interrupt_rdy to signal that the interrupt has been accepted and 
the core sends a MSI Memory Write TLP. On the following clock cycle, the User 
Application deasserts cfg_interrupt if no further interrupts are to be sent.

X-Ref Target - Figure 5-69

Figure 5-69: Requesting Interrupt Service: MSI and Legacy Mode
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Table 5-43: Legacy Interrupt Mapping

cfg_interrupt_di[7:0] value Legacy Interrupt

00h INTA

01h - FFh Not Supported
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The MSI request is either a 32-bit addressable Memory Write TLP or a 64-bit addressable 
Memory Write TLP. The address is taken from the Message Address and Message Upper 
Address fields of the MSI Capability Structure, while the payload is taken from the 
Message Data field. These values are programmed by system software through 
configuration writes to the MSI Capability structure. When the core is configured for 
Multi-Vector MSI, system software can permit Multi-Vector MSI messages by 
programming a non-zero value to the Multiple Message Enable field.

The type of MSI TLP sent (32-bit addressable or 64-bit addressable) depends on the value 
of the Upper Address field in the MSI capability structure. By default, MSI messages are 
sent as 32-bit addressable Memory Write TLPs. MSI messages use 64-bit addressable 
Memory Write TLPs only if the system software programs a non-zero value into the Upper 
Address register.

When Multi-Vector MSI messages are enabled, the User Application can override one or 
more of the lower-order bits in the Message Data field of each transmitted MSI TLP to 
differentiate between the various MSI messages sent upstream. The number of lower-order 
bits in the Message Data field available to the User Application is determined by the lesser 
of the value of the Multiple Message Capable field, as set in the CORE Generator software, 
and the Multiple Message Enable field, as set by system software and available as the 
cfg_interrupt_mmenable[2:0] core output. The core masks any bits in cfg_interrupt_di[7:0] 
which are not configured by system software via Multiple Message Enable.

This pseudo-code shows the processing required:

// Value MSI_Vector_Num must be in range: 0 ≤ MSI_Vector_Num ≤ 
(2^cfg_interrupt_mmenable)-1

if (cfg_interrupt_msienable) { // MSI Enabled
if (cfg_interrupt_mmenable > 0) { // Multi-Vector MSI Enabled
cfg_interrupt_di[7:0] = {Padding_0s, MSI_Vector_Num};

} else { // Single-Vector MSI Enabled
cfg_interrupt_di[7:0] = Padding_0s;

}
} else {

// Legacy Interrupts Enabled
}

For example:

1. If cfg_interrupt_mmenable[2:0] == 000b, that is, 1 MSI Vector Enabled, 
then cfg_interrupt_di[7:0] = 00h;

2. if cfg_interrupt_mmenable[2:0] == 101b, that is, 32 MSI Vectors Enabled, 
then cfg_interrupt_di[7:0] = {{000b}, {MSI_Vector#}};

where MSI_Vector# is a 5-bit value and is allowed to be 00000b ≤ MSI_Vector# ≤ 11111b.

If Per-Vector Masking is enabled, the user must first verify that the vector being signaled is 
not masked in the Mask register. This is done by reading this register on the Configuration 
interface (the core does not look at the Mask register). 

MSI-X Mode
The 7 Series FPGAs Integrated Block for PCI Express optionally supports the MSI-X 
Capability Structure. The MSI-X vector table and the MSI-X Pending Bit Array need to be 
implemented as part of the user’s logic, by claiming a BAR aperture.

If the cfg_interrupt_msixenable output of the core is asserted, the User Application should 
compose and present the MSI-X interrupts on the transmit AXI4-Stream interface.
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Link Training: 2-Lane, 4-Lane, and 8-Lane Components
The 2-lane, 4-lane, and 8-lane Integrated Block for PCI Express can operate at less than the 
maximum lane width as required by the PCI Express Base Specification. Two cases cause core 
to operate at less than its specified maximum lane width, as defined in these subsections.

Link Partner Supports Fewer Lanes
When the 2-lane core is connected to a device that implements only 1 lane, the 2-lane core 
trains and operates as a 1-lane device using lane 0.

When the 4-lane core is connected to a device that implements 1 lane, the 4-lane core trains 
and operates as a 1-lane device using lane 0, as shown in Figure 5-70. Similarly, if the 4-lane 
core is connected to a 2-lane device, the core trains and operates as a 2-lane device using 
lanes 0 and 1. 

When the 8-lane core is connected to a device that only implements 4 lanes, it trains and 
operates as a 4-lane device using lanes 0-3. Additionally, if the connected device only 
implements 1 or 2 lanes, the 8-lane core trains and operates as a 1- or 2-lane device.

Lane Becomes Faulty
If a link becomes faulty after training to the maximum lane width supported by the core 
and the link partner device, the core attempts to recover and train to a lower lane width, if 
available. If lane 0 becomes faulty, the link is irrecoverably lost. If any or all of lanes 1–7 
become faulty, the link goes into recovery and attempts to recover the largest viable link 
with whichever lanes are still operational. 

For example, when using the 8-lane core, loss of lane 1 yields a recovery to 1-lane operation 
on lane 0, whereas the loss of lane 6 yields a recovery to 4-lane operation on lanes 0-3. After 
recovery occurs, if the failed lane(s) becomes alive again, the core does not attempt to 
recover to a wider link width. The only way a wider link width can occur is if the link 
actually goes down and it attempts to retrain from scratch.

The user_clk_out clock output is a fixed frequency configured in the CORE Generator 
software GUI. user_clk_out does not shift frequencies in case of link recovery or training 
down.

X-Ref Target - Figure 5-70

Figure 5-70: Scaling of 4-Lane Endpoint Block from 4-Lane to 1-Lane Operation
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Lane Reversal
The integrated Endpoint block supports limited lane reversal capabilities and therefore 
provides flexibility in the design of the board for the link partner. The link partner can 
choose to lay out the board with reversed lane numbers and the integrated Endpoint block 
continues to link train successfully and operate normally. The configurations that have 
lane reversal support are x8 and x4 (excluding downshift modes). Downshift refers to the 
link width negotiation process that occurs when link partners have different lane width 
capabilities advertised. As a result of lane width negotiation, the link partners negotiate 
down to the smaller of the two advertised lane widths. Table 5-44 describes the several 
possible combinations including downshift modes and availability of lane reversal 
support.

Clocking and Reset of the Integrated Block Core

Reset
The 7 Series FPGAs Integrated Block for PCI Express core uses sys_reset to reset the 
system, an asynchronous, active-Low reset signal asserted during the PCI Express 
Fundamental Reset. Asserting this signal causes a hard reset of the entire core, including 
the GTX transceivers. After the reset is released, the core attempts to link train and resume 
normal operation. In a typical Endpoint application, for example, an add-in card, a 
sideband reset signal is normally present and should be connected to sys_reset. For 
Endpoint applications that do not have a sideband system reset signal, the initial hardware 
reset should be generated locally. Three reset events can occur in PCI Express: 

• Cold Reset. A Fundamental Reset that occurs at the application of power. The signal 
sys_reset is asserted to cause the cold reset of the core. 

• Warm Reset. A Fundamental Reset triggered by hardware without the removal and 
re-application of power. The sys_reset signal is asserted to cause the warm reset to the 
core.

• Hot Reset: In-band propagation of a reset across the PCI Express Link through the 
protocol. In this case, sys_reset is not used. In the case of Hot Reset, the 
received_hot_reset signal is asserted to indicate the source of the reset.

Table 5-44: Lane Reversal Support

Endpoint Block
Advertised
Lane Width

Negotiated
Lane
Width

Lane Number Mapping
(Endpoint Link Partner)

Lane
Reversal

SupportedEndpoint Link Partner

x8 x8 Lane 0 ... Lane 7 Lane 7 ... Lane 0 Yes

x8 x4 Lane 0 ... Lane 3 Lane 7 ... Lane 4 No(1)

x8 x2 Lane 0 ... Lane 3 Lane 7 ... Lane 6 No(1)

x4 x4 Lane 0 ... Lane 3 Lane 3 ... Lane 0 Yes

x4 x2 Lane 0 ... Lane 1 Lane 3 ... Lane 2 No(1)

x2 x2 Lane 0 ... Lane 1 Lane 1... Lane 0 Yes

x2 x1 Lane 0 ... Lane 1 Lane 1 No(1)

Notes: 
1. When the lanes are reversed in the board layout and a downshift adapter card is inserted between the 

Endpoint and link partner, Lane 0 of the link partner remains unconnected (as shown by the lane 
mapping in Table 5-44) and therefore does not link train.
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The User Application interface of the core has an output signal called user_reset_out. This 
signal is deasserted synchronously with respect to user_clk_out. Signal user_reset_out is 
asserted as a result of any of these conditions: 

• Fundamental Reset: Occurs (cold or warm) due to assertion of sys_reset.

• PLL within the Core Wrapper: Loses lock, indicating an issue with the stability of the 
clock input. 

• Loss of Transceiver PLL Lock: Any transceiver loses lock, indicating an issue with the 
PCI Express Link.

The user_reset_out signal deasserts synchronously with user_clk_out after all of the above 
conditions are resolved, allowing the core to attempt to train and resume normal 
operation.

Important Note: Systems designed to the PCI Express electro-mechanical specification 
provide a sideband reset signal, which uses 3.3V signaling levels—see the FPGA device 
data sheet to understand the requirements for interfacing to such signals.

Clocking
The Integrated Block input system clock signal is called sys_clk. The core requires a 
100 MHz, 125 MHz, or 250 MHz clock input. The clock frequency used must match the 
clock frequency selection in the CORE Generator software GUI. For more information, see 
Answer Record 18329. 

In a typical PCI Express solution, the PCI Express reference clock is a Spread Spectrum 
Clock (SSC), provided at 100 MHz. In most commercial PCI Express systems, SSC cannot 
be disabled. For more information regarding SSC and PCI Express, see section 4.3.1.1.1 of 
the PCI Express Base Specification. 

Synchronous and Non-Synchronous Clocking

There are two ways to clock the PCI Express system: 

• Using synchronous clocking, where a shared clock source is used for all devices. 

• Using non-synchronous clocking, where each device has its own clock source. ASPM 
must not be used in systems with non-synchronous clocking.

Important Note: Xilinx recommends that designers use synchronous clocking when 
using the core. All add-in card designs must use synchronous clocking due to the 
characteristics of the provided reference clock. For devices using the Slot clock, the 
“Slot Clock Configuration” setting in the Link Status Register must be enabled in the 
CORE Generator software GUI. See the 7 Series FPGAs GTX Transceivers User Guide 
(UG476) and device data sheet for additional information regarding reference clock 
requirements. 

For synchronous clocked systems, each link partner device shares the same clock 
source. Figure 5-71 and Figure 5-73 show a system using a 100 MHz reference clock. 
When using the 125 MHz or the 250 MHz reference clock option, an external PLL must 
be used to do a multiply of 5/4 and 5/2 to convert the 100 MHz clock to 125 MHz and 
250 MHz respectively, as illustrated in Figure 5-72 and Figure 5-74. See Answer Record 
18329 for more information about clocking requirements.

Further, even if the device is part of an embedded system, if the system uses 
commercial PCI Express root complexes or switches along with typical motherboard 
clocking schemes, synchronous clocking should still be used as shown in Figure 5-71 
and Figure 5-72.
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Figure 5-71 through Figure 5-74 illustrate high-level representations of the board 
layouts. Designers must ensure that proper coupling, termination, and so forth are 
used when laying out the board.

X-Ref Target - Figure 5-71

Figure 5-71: Embedded System Using 100 MHz Reference Clock

X-Ref Target - Figure 5-72

Figure 5-72: Embedded System Using 125/250 MHz Reference Clock
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X-Ref Target - Figure 5-73

Figure 5-73: Open System Add-In Card Using 100 MHz Reference Clock

X-Ref Target - Figure 5-74

Figure 5-74: Open System Add-In Card Using 125/250 MHz Reference Clock
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Using the Dynamic Reconfiguration Port Interface
The Dynamic Reconfiguration Port (DRP) interface allows read and write access to the 
FPGA configuration memory bits of the integrated block instantiated as part of the core. 
These configuration memory bits are represented as attributes of the PCIE_2_1 library 
element. 

The DRP interface is a standard interface found on many integrated IP blocks in Xilinx 
devices. For detailed information about how the DRP interface works with the FPGA 
configuration memory, see the 7 Series FPGAs Configuration User Guide (UG470). 

Writing and Reading the DRP Interface
The interface is a processor-friendly synchronous interface with an address bus (drp_addr) 
and separated data buses for reading (drp_do) and writing (drp_di) configuration data to 
the PCIE_2_1 block. An enable signal (drp_en), a read/write signal (drp_we), and a 
ready/valid signal (drp_rdy) are the control signals that implement read and write 
operations, indicate operation completion, or indicate the availability of data. Figure 5-75 
shows a write cycle, and Figure 5-76 shows a read cycle.
X-Ref Target - Figure 5-75

Figure 5-75: DRP Interface Write Cycle

X-Ref Target - Figure 5-76

Figure 5-76: DRP Interface Read Cycle
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Other Considerations for the DRP Interface
Updating attribute values through the DRP port is only supported while the core is in reset 
with sys_reset asserted. Behavior of the core is undefined if attributes are updated 
on-the-fly with sys_rst deasserted. Reading attributes through the DRP port is 
independent of sys_rst.

Attributes larger than 16 bits span two drp_daddr addresses, for example BAR0[31:0] 
requires two accesses to read or write the attribute. Additionally, some attributes share a 
single drp_daddr address. The user should employ a read-modify-write approach so that 
shared-address attributes are not modified unintentionally.

There are a number of attributes that should not be modified via DRP, because these 
attributes need to be set in an aligned manner with the rest of the design. For example, 
changing the memory latency attributes on the PCIE_2_1 block without changing the 
actual number of pipeline registers attached to the block RAM causes a functional failure. 
These attributes are included in this category: 

• DEV_CAP_MAX_PAYLOAD_SUPPORTED 

• VC0_TX_LASTPACKET 

• TL_TX_RAM_RADDR_LATENCY 

• TL_TX_RAM_RDATA_LATENCY 

• TL_TX_RAM_WRITE_LATENCY 

• VC0_RX_LIMIT 

• TL_RX_RAM_RADDR_LATENCY 

• TL_RX_RAM_RDATA_LATENCY 

• TL_RX_RAM_WRITE_LATENCY 

DRP Address Map

Table 5-45 defines the DRP address map for the PCIE_2_1 library element attributes. Some 
attributes span two addresses, for example, BAR0. In addition, some addresses contain 
multiple attributes; for example, address 0x004 contains both AER_CAP_NEXTPTR[11:0] 
and AER_CAP_ON.

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes

Attribute Name
Address 

drp_daddr[8:0]

Data Bits 
drp_di[15:0] or 
drp_do[15:0]

AER_CAP_ECRC_CHECK_CAPABLE 0x000 [0]

AER_CAP_ECRC_GEN_CAPABLE 0x000 [1]

AER_CAP_ID[15:0] 0x001 [15:0]

AER_CAP_PERMIT_ROOTERR_UPDATE 0x002 [0]

AER_CAP_VERSION[3:0] 0x002 [4:1]

AER_BASE_PTR[11:0] 0x003 [11:0]

AER_CAP_NEXTPTR[11:0] 0x004 [11:0]

AER_CAP_ON 0x004 [12]

AER_CAP_OPTIONAL_ERR_SUPPORT[15:0] 0x005 [15:0]
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AER_CAP_OPTIONAL_ERR_SUPPORT[23:16] 0x006 [7:0]

AER_CAP_MULTIHEADER 0x006 [8]

BAR0[15:0] 0x007 [15:0]

BAR0[31:16] 0x008 [15:0]

BAR1[15:0] 0x009 [15:0]

BAR1[31:16] 0x00a [15:0]

BAR2[15:0] 0x00b [15:0]

BAR2[31:16] 0x00c [15:0]

BAR3[15:0] 0x00d [15:0]

BAR3[31:16] 0x00e [15:0]

BAR4[15:0] 0x00f [15:0]

BAR4[31:16] 0x010 [15:0]

BAR5[15:0] 0x011 [15:0]

BAR5[31:16] 0x012 [15:0]

EXPANSION_ROM[15:0] 0x013 [15:0]

EXPANSION_ROM[31:16] 0x014 [15:0]

CAPABILITIES_PTR[7:0] 0x015 [7:0]

CARDBUS_CIS_POINTER[15:0] 0x016 [15:0]

CARDBUS_CIS_POINTER[31:16] 0x017 [15:0]

CLASS_CODE[15:0] 0x018 [15:0]

CLASS_CODE[23:16] 0x019 [7:0]

CMD_INTX_IMPLEMENTED 0x019 [8]

CPL_TIMEOUT_DISABLE_SUPPORTED 0x019 [9]

CPL_TIMEOUT_RANGES_SUPPORTED[3:0] 0x019 [13:10]

DEV_CAP2_ARI_FORWARDING_SUPPORTED 0x019 [14]

DEV_CAP2_ATOMICOP_ROUTING_SUPPORTED 0x019 [15]

DEV_CAP2_ATOMICOP32_COMPLETER_SUPPORTED 0x01a [0]

DEV_CAP2_ATOMICOP64_COMPLETER_SUPPORTED 0x01a [1]

DEV_CAP2_CAS128_COMPLETER_SUPPORTED 0x01a [2]

DEV_CAP2_NO_RO_ENABLED_PRPR_PASSING 0x01a [3]

DEV_CAP2_LTR_MECHANISM_SUPPORTED 0x01a [4]

DEV_CAP2_TPH_COMPLETER_SUPPORTED[1:0] 0x01a [6:5]

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name
Address 

drp_daddr[8:0]

Data Bits 
drp_di[15:0] or 
drp_do[15:0]
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DEV_CAP2_EXTENDED_FMT_FIELD_SUPPORTED 0x01a [7]

DEV_CAP2_ENDEND_TLP_PREFIX_SUPPORTED 0x01a [8]

DEV_CAP2_MAX_ENDEND_TLP_PREFIXES[1:0] 0x01a [10:9]

ENDEND_TLP_PREFIX_FORWARDING_SUPPORTED 0x01a [11]

DEV_CAP_ENABLE_SLOT_PWR_LIMIT_SCALE 0x01a [12]

DEV_CAP_ENABLE_SLOT_PWR_LIMIT_VALUE 0x01a [13]

DEV_CAP_ENDPOINT_L0S_LATENCY[2:0] 0x01b [2:0]

DEV_CAP_ENDPOINT_L1_LATENCY[2:0] 0x01b [5:3]

DEV_CAP_EXT_TAG_SUPPORTED 0x01b [6]

DEV_CAP_FUNCTION_LEVEL_RESET_CAPABLE 0x01b [7]

DEV_CAP_MAX_PAYLOAD_SUPPORTED[2:0] 0x01b [10:8]

DEV_CAP_PHANTOM_FUNCTIONS_SUPPORT[1:0] 0x01b [12:11]

DEV_CAP_ROLE_BASED_ERROR 0x01b [13]

DEV_CAP_RSVD_14_12[2:0] 0x01c [2:0]

DEV_CAP_RSVD_17_16[1:0] 0x01c [4:3]

DEV_CAP_RSVD_31_29[2:0] 0x01c [7:5]

DEV_CONTROL_AUX_POWER_SUPPORTED 0x01c [8]

DEV_CONTROL_EXT_TAG_DEFAULT 0x01c [9]

DSN_BASE_PTR[11:0] 0x01d [11:0]

DSN_CAP_ID[15:0] 0x01e [15:0]

DSN_CAP_NEXTPTR[11:0] 0x01f [11:0]

DSN_CAP_ON 0x01f [12]

DSN_CAP_VERSION[3:0] 0x020 [3:0]

EXT_CFG_CAP_PTR[5:0] 0x020 [9:4]

EXT_CFG_XP_CAP_PTR[9:0] 0x021 [9:0]

HEADER_TYPE[7:0] 0x022 [7:0]

INTERRUPT_PIN[7:0] 0x022 [15:8]

INTERRUPT_STAT_AUTO 0x023 [0]

IS_SWITCH 0x023 [1]

LAST_CONFIG_DWORD[9:0] 0x023 [11:2]

LINK_CAP_ASPM_SUPPORT[1:0] 0x023 [13:12]

LINK_CAP_CLOCK_POWER_MANAGEMENT 0x023 [14]

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name
Address 

drp_daddr[8:0]

Data Bits 
drp_di[15:0] or 
drp_do[15:0]
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LINK_CAP_DLL_LINK_ACTIVE_REPORTING_CAP 0x023 [15]

LINK_CAP_L0S_EXIT_LATENCY_COMCLK_GEN1[2:0] 0x024 [2:0]

LINK_CAP_L0S_EXIT_LATENCY_COMCLK_GEN2[2:0] 0x024 [5:3]

LINK_CAP_L0S_EXIT_LATENCY_GEN1[2:0] 0x024 [8:6]

LINK_CAP_L0S_EXIT_LATENCY_GEN2[2:0] 0x024 [11:9]

LINK_CAP_L1_EXIT_LATENCY_COMCLK_GEN1[2:0] 0x024 [14:12]

LINK_CAP_L1_EXIT_LATENCY_COMCLK_GEN2[2:0] 0x025 [2:0]

LINK_CAP_L1_EXIT_LATENCY_GEN1[2:0] 0x025 [5:3]

LINK_CAP_L1_EXIT_LATENCY_GEN2[2:0] 0x025 [8:6]

LINK_CAP_LINK_BANDWIDTH_NOTIFICATION_CAP 0x025 [9]

LINK_CAP_MAX_LINK_SPEED[3:0] 0x025 [13:10]

LINK_CAP_ASPM_OPTIONALITY 0x025 [14]

LINK_CAP_RSVD_23 0x025 [15]

LINK_CAP_SURPRISE_DOWN_ERROR_CAPABLE 0x026 [0]

LINK_CONTROL_RCB 0x026 [1]

LINK_CTRL2_DEEMPHASIS 0x026 [2]

LINK_CTRL2_HW_AUTONOMOUS_SPEED_DISABLE 0x026 [3]

LINK_CTRL2_TARGET_LINK_SPEED[3:0] 0x026 [7:4]

LINK_STATUS_SLOT_CLOCK_CONFIG 0x026 [8]

MPS_FORCE 0x026 [9]

MSI_BASE_PTR[7:0] 0x027 [7:0]

MSI_CAP_64_BIT_ADDR_CAPABLE 0x027 [8]

MSI_CAP_ID[7:0] 0x028 [7:0]

MSI_CAP_MULTIMSG_EXTENSION 0x028 [8]

MSI_CAP_MULTIMSGCAP[2:0] 0x028 [11:9]

MSI_CAP_NEXTPTR[7:0] 0x029 [7:0]

MSI_CAP_ON 0x029 [8]

MSI_CAP_PER_VECTOR_MASKING_CAPABLE 0x029 [9]

MSIX_BASE_PTR[7:0] 0x02a [7:0]

MSIX_CAP_ID[7:0] 0x02a [15:8]

MSIX_CAP_NEXTPTR[7:0] 0x02b [7:0]

MSIX_CAP_ON 0x02b [8]

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name
Address 

drp_daddr[8:0]

Data Bits 
drp_di[15:0] or 
drp_do[15:0]
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MSIX_CAP_PBA_BIR[2:0] 0x02b [11:9]

MSIX_CAP_PBA_OFFSET[15:0] 0x02c [15:0]

MSIX_CAP_PBA_OFFSET[28:16] 0x02d [12:0]

MSIX_CAP_TABLE_BIR[2:0] 0x02d [15:13]

MSIX_CAP_TABLE_OFFSET[15:0] 0x02e [15:0]

MSIX_CAP_TABLE_OFFSET[28:16] 0x02f [12:0]

MSIX_CAP_TABLE_SIZE[10:0] 0x030 [10:0]

PCIE_BASE_PTR[7:0] 0x031 [7:0]

PCIE_CAP_CAPABILITY_ID[7:0] 0x031 [15:8]

PCIE_CAP_CAPABILITY_VERSION[3:0] 0x032 [3:0]

PCIE_CAP_DEVICE_PORT_TYPE[3:0] 0x032 [7:4]

PCIE_CAP_NEXTPTR[7:0] 0x032 [15:8]

PCIE_CAP_ON 0x033 [0]

PCIE_CAP_RSVD_15_14[1:0] 0x033 [2:1]

PCIE_CAP_SLOT_IMPLEMENTED 0x033 [3]

PCIE_REVISION[3:0] 0x033 [7:4]

PM_BASE_PTR[7:0] 0x033 [15:8]

PM_CAP_AUXCURRENT[2:0] 0x034 [2:0]

PM_CAP_D1SUPPORT 0x034 [3]

PM_CAP_D2SUPPORT 0x034 [4]

PM_CAP_DSI 0x034 [5]

PM_CAP_ID[7:0] 0x034 [13:6]

PM_CAP_NEXTPTR[7:0] 0x035 [7:0]

PM_CAP_ON 0x035 [8]

PM_CAP_PME_CLOCK 0x035 [9]

PM_CAP_PMESUPPORT[4:0] 0x035 [14:10]

PM_CAP_RSVD_04 0x035 [15]

PM_CAP_VERSION[2:0] 0x036 [2:0]

PM_CSR_B2B3 0x036 [3]

PM_CSR_BPCCEN 0x036 [4]

PM_CSR_NOSOFTRST 0x036 [5]

PM_DATA_SCALE0[1:0] 0x036 [7:6]

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name
Address 

drp_daddr[8:0]

Data Bits 
drp_di[15:0] or 
drp_do[15:0]
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PM_DATA_SCALE1[1:0] 0x036 [9:8]

PM_DATA_SCALE2[1:0] 0x036 [11:10]

PM_DATA_SCALE3[1:0] 0x036 [13:12]

PM_DATA_SCALE4[1:0] 0x036 [15:14]

PM_DATA_SCALE5[1:0] 0x037 [1:0]

PM_DATA_SCALE6[1:0] 0x037 [3:2]

PM_DATA_SCALE7[1:0] 0x037 [5:4]

PM_DATA0[7:0] 0x037 [13:6]

PM_DATA1[7:0] 0x038 [7:0]

PM_DATA2[7:0] 0x038 [15:8]

PM_DATA3[7:0] 0x039 [7:0]

PM_DATA4[7:0] 0x039 [15:8]

PM_DATA5[7:0] 0x03a [7:0]

PM_DATA6[7:0] 0x03a [15:8]

PM_DATA7[7:0] 0x03b [7:0]

RBAR_BASE_PTR[11:0] 0x03c [11:0]

RBAR_CAP_NEXTPTR[11:0] 0x03d [11:0]

RBAR_CAP_ON 0x03d [12]

RBAR_CAP_ID[15:0] 0x03e [15:0]

RBAR_CAP_VERSION[3:0] 0x03f [3:0]

RBAR_NUM[2:0] 0x03f [6:4]

RBAR_CAP_SUP0[15:0] 0x040 [15:0]

RBAR_CAP_SUP0[31:16] 0x041 [15:0]

RBAR_CAP_SUP1[15:0] 0x042 [15:0]

RBAR_CAP_SUP1[31:16] 0x043 [15:0]

RBAR_CAP_SUP2[15:0] 0x044 [15:0]

RBAR_CAP_SUP2[31:16] 0x045 [15:0]

RBAR_CAP_SUP3[15:0] 0x046 [15:0]

RBAR_CAP_SUP3[31:16] 0x047 [15:0]

RBAR_CAP_SUP4[15:0] 0x048 [15:0]

RBAR_CAP_SUP4[31:16] 0x049 [15:0]

RBAR_CAP_SUP5[15:0] 0x04a [15:0]

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name
Address 

drp_daddr[8:0]

Data Bits 
drp_di[15:0] or 
drp_do[15:0]

http://www.xilinx.com


7 Series FPGAs Integrated Block for PCIe www.xilinx.com 201
UG477 March 1, 2011

Using the Dynamic Reconfiguration Port Interface

RBAR_CAP_SUP5[31:16] 0x04b [15:0]

RBAR_CAP_INDEX0[2:0] 0x04c [2:0]

RBAR_CAP_INDEX1[2:0] 0x04c [5:3]

RBAR_CAP_INDEX2[2:0] 0x04c [8:6]

RBAR_CAP_INDEX3[2:0] 0x04c [11:9]

RBAR_CAP_INDEX4[2:0] 0x04c [14:12]

RBAR_CAP_INDEX5[2:0] 0x04d [2:0]

RBAR_CAP_CONTROL_ENCODEDBAR0[4:0] 0x04d [7:3]

RBAR_CAP_CONTROL_ENCODEDBAR1[4:0] 0x04d [12:8]

RBAR_CAP_CONTROL_ENCODEDBAR2[4:0] 0x04e [4:0]

RBAR_CAP_CONTROL_ENCODEDBAR3[4:0] 0x04e [9:5]

RBAR_CAP_CONTROL_ENCODEDBAR4[4:0] 0x04e [14:10]

RBAR_CAP_CONTROL_ENCODEDBAR5[4:0] 0x04f [4:0]

ROOT_CAP_CRS_SW_VISIBILITY 0x04f [5]

SELECT_DLL_IF 0x04f [6]

SLOT_CAP_ATT_BUTTON_PRESENT 0x04f [7]

SLOT_CAP_ATT_INDICATOR_PRESENT 0x04f [8]

SLOT_CAP_ELEC_INTERLOCK_PRESENT 0x04f [9]

SLOT_CAP_HOTPLUG_CAPABLE 0x04f [10]

SLOT_CAP_HOTPLUG_SURPRISE 0x04f [11]

SLOT_CAP_MRL_SENSOR_PRESENT 0x04f [12]

SLOT_CAP_NO_CMD_COMPLETED_SUPPORT 0x04f [13]

SLOT_CAP_PHYSICAL_SLOT_NUM[12:0] 0x050 [12:0]

SLOT_CAP_POWER_CONTROLLER_PRESENT 0x050 [13]

SLOT_CAP_POWER_INDICATOR_PRESENT 0x050 [14]

SLOT_CAP_SLOT_POWER_LIMIT_SCALE[1:0] 0x051 [1:0]

SLOT_CAP_SLOT_POWER_LIMIT_VALUE[7:0] 0x051 [9:2]

SSL_MESSAGE_AUTO 0x051 [10]

VC_BASE_PTR[11:0] 0x052 [11:0]

VC_CAP_NEXTPTR[11:0] 0x053 [11:0]

VC_CAP_ON 0x053 [12]

VC_CAP_ID[15:0] 0x054 [15:0]

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name
Address 

drp_daddr[8:0]

Data Bits 
drp_di[15:0] or 
drp_do[15:0]
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VC_CAP_REJECT_SNOOP_TRANSACTIONS 0x055 [0]

VSEC_BASE_PTR[11:0] 0x055 [12:1]

VSEC_CAP_HDR_ID[15:0] 0x056 [15:0]

VSEC_CAP_HDR_LENGTH[11:0] 0x057 [11:0]

VSEC_CAP_HDR_REVISION[3:0] 0x057 [15:12]

VSEC_CAP_ID[15:0] 0x058 [15:0]

VSEC_CAP_IS_LINK_VISIBLE 0x059 [0]

VSEC_CAP_NEXTPTR[11:0] 0x059 [12:1]

VSEC_CAP_ON 0x059 [13]

VSEC_CAP_VERSION[3:0] 0x05a [3:0]

USER_CLK_FREQ[2:0] 0x05a [6:4]

CRM_MODULE_RSTS[6:0] 0x05a [13:7]

LL_ACK_TIMEOUT[14:0] 0x05b [14:0]

LL_ACK_TIMEOUT_EN 0x05b [15]

LL_ACK_TIMEOUT_FUNC[1:0] 0x05c [1:0]

LL_REPLAY_TIMEOUT[14:0] 0x05d [14:0]

LL_REPLAY_TIMEOUT_EN 0x05d [15]

LL_REPLAY_TIMEOUT_FUNC[1:0] 0x05e [1:0]

PM_ASPML0S_TIMEOUT[14:0] 0x05f [14:0]

PM_ASPML0S_TIMEOUT_EN 0x05f [15]

PM_ASPML0S_TIMEOUT_FUNC[1:0] 0x060 [1:0]

PM_ASPM_FASTEXIT 0x060 [2]

DISABLE_LANE_REVERSAL 0x060 [3]

DISABLE_SCRAMBLING 0x060 [4]

ENTER_RVRY_EI_L0 0x060 [5]

INFER_EI[4:0] 0x060 [10:6]

LINK_CAP_MAX_LINK_WIDTH[5:0] 0x061 [5:0]

LTSSM_MAX_LINK_WIDTH[5:0] 0x061 [11:6]

N_FTS_COMCLK_GEN1[7:0] 0x062 [7:0]

N_FTS_COMCLK_GEN2[7:0] 0x062 [15:8]

N_FTS_GEN1[7:0] 0x063 [7:0]

N_FTS_GEN2[7:0] 0x063 [15:8]

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name
Address 

drp_daddr[8:0]

Data Bits 
drp_di[15:0] or 
drp_do[15:0]
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ALLOW_X8_GEN2 0x064 [0]

PL_AUTO_CONFIG[2:0] 0x064 [3:1]

PL_FAST_TRAIN 0x064 [4]

UPCONFIG_CAPABLE 0x064 [5]

UPSTREAM_FACING 0x064 [6]

EXIT_LOOPBACK_ON_EI 0x064 [7]

DNSTREAM_LINK_NUM[7:0] 0x064 [15:8]

DISABLE_ASPM_L1_TIMER 0x065 [0]

DISABLE_BAR_FILTERING 0x065 [1]

DISABLE_ID_CHECK 0x065 [2]

DISABLE_RX_TC_FILTER 0x065 [3]

DISABLE_RX_POISONED_RESP 0x065 [4]

ENABLE_MSG_ROUTE[10:0] 0x065 [15:5]

ENABLE_RX_TD_ECRC_TRIM 0x066 [0]

TL_RX_RAM_RADDR_LATENCY 0x066 [1]

TL_RX_RAM_RDATA_LATENCY[1:0] 0x066 [3:2]

TL_RX_RAM_WRITE_LATENCY 0x066 [4]

TL_TFC_DISABLE 0x066 [5]

TL_TX_CHECKS_DISABLE 0x066 [6]

TL_RBYPASS 0x066 [7]

DISABLE_PPM_FILTER 0x066 [8]

DISABLE_LOCKED_FILTER 0x066 [9]

USE_RID_PINS 0x066 [10]

DISABLE_ERR_MSG 0x066 [11]

PM_MF 0x066 [12]

TL_TX_RAM_RADDR_LATENCY 0x066 [13]

TL_TX_RAM_RDATA_LATENCY[1:0] 0x066 [15:14]

TL_TX_RAM_WRITE_LATENCY 0x067 [0]

VC_CAP_VERSION[3:0] 0x067 [4:1]

VC0_CPL_INFINITE 0x067 [5]

VC0_RX_RAM_LIMIT[12:0] 0x068 [12:0]

VC0_TOTAL_CREDITS_CD[10:0] 0x069 [10:0]

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name
Address 

drp_daddr[8:0]

Data Bits 
drp_di[15:0] or 
drp_do[15:0]
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VC0_TOTAL_CREDITS_CH[6:0] 0x06a [6:0]

VC0_TOTAL_CREDITS_NPH[6:0] 0x06a [13:7]

VC0_TOTAL_CREDITS_NPD[10:0] 0x06b [10:0]

VC0_TOTAL_CREDITS_PD[10:0] 0x06c [10:0]

VC0_TOTAL_CREDITS_PH[6:0] 0x06d [6:0]

VC0_TX_LASTPACKET[4:0] 0x06d [11:7]

RECRC_CHK[1:0] 0x06d [13:12]

RECRC_CHK_TRIM 0x06d [14]

TECRC_EP_INV 0x06d [15]

CFG_ECRC_ERR_CPLSTAT[1:0] 0x06e [1:0]

UR_INV_REQ 0x06e [2]

UR_PRS_RESPONSE 0x06e [3]

UR_ATOMIC 0x06e [4]

UR_CFG1 0x06e [5]

TRN_DW 0x06e [6]

TRN_NP_FC 0x06e [7]

USER_CLK2_DIV2 0x06e [8]

RP_AUTO_SPD[1:0] 0x06e [10:9]

RP_AUTO_SPD_LOOPCNT[4:0] 0x06e [15:11]

TEST_MODE_PIN_CHAR 0x06f [0]

SPARE_BIT0 0x06f [1]

SPARE_BIT1 0x06f [2]

SPARE_BIT2 0x06f [3]

SPARE_BIT3 0x06f [4]

SPARE_BIT4 0x06f [5]

SPARE_BIT5 0x06f [6]

SPARE_BIT6 0x06f [7]

SPARE_BIT7 0x06f [8]

SPARE_BIT8 0x06f [9]

SPARE_BYTE0[7:0] 0x070 [7:0]

SPARE_BYTE1[7:0] 0x070 [15:8]

SPARE_BYTE2[7:0] 0x071 [7:0]

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name
Address 

drp_daddr[8:0]

Data Bits 
drp_di[15:0] or 
drp_do[15:0]
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SPARE_BYTE3[7:0] 0x071 [15:8]

SPARE_WORD0[15:0] 0x072 [15:0]

SPARE_WORD0[31:16] 0x073 [15:0]

SPARE_WORD1[15:0] 0x074 [15:0]

SPARE_WORD1[31:16] 0x075 [15:0]

SPARE_WORD2[15:0] 0x076 [15:0]

SPARE_WORD2[31:16] 0x077 [15:0]

SPARE_WORD3[15:0] 0x078 [15:0]

SPARE_WORD3[31:16] 0x079 [15:0]

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name
Address 

drp_daddr[8:0]

Data Bits 
drp_di[15:0] or 
drp_do[15:0]
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Core Constraints

The 7 Series FPGAs Integrated Block for PCI Express® solution requires the specification 
of timing and other physical implementation constraints to meet specified performance 
requirements for PCI Express. These constraints are provided with the Endpoint and Root 
Port solutions in a User Constraints File (UCF). Pinouts and hierarchy names in the 
generated UCF correspond to the provided example design.

To achieve consistent implementation results, a UCF containing these original, unmodified 
constraints must be used when a design is run through the Xilinx tools. For additional 
details on the definition and use of a UCF or specific constraints, see the Xilinx® Libraries 
Guide and/or Development System Reference Guide.

Constraints provided with the Integrated Block solution have been tested in hardware and 
provide consistent results. Constraints can be modified, but modifications should only be 
made with a thorough understanding of the effect of each constraint. Additionally, support 
is not provided for designs that deviate from the provided constraints.

Contents of the User Constraints File
Although the UCF delivered with each core shares the same overall structure and sequence 
of information, the content of each core’s UCF varies. The sections that follow define the 
structure and sequence of information in a generic UCF. 

Part Selection Constraints: Device, Package, and Speed Grade
The first section of the UCF specifies the exact device for the implementation tools to 
target, including the specific part, package, and speed grade. In some cases, device-specific 
options can be included. The device in the UCF reflects the device chosen in the 
CORE Generator™ software project.

User Timing Constraints
The User Timing constraints section is not populated; it is a placeholder for the designer to 
provide timing constraints on user-implemented logic.

User Physical Constraints
The User Physical constraints section is not populated; it is a placeholder for the designer 
to provide physical constraints on user-implemented logic. 
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Core Pinout and I/O Constraints
The Core Pinout and I/O constraints section contains constraints for I/Os belonging to the 
core's System (SYS) and PCI Express (PCI_EXP) interfaces. It includes location constraints 
for pins and I/O logic as well as I/O standard constraints.

Core Physical Constraints
Physical constraints are used to limit the core to a specific area of the device and to specify 
locations for clock buffering and other logic instantiated by the core.

Core Timing Constraints
This Core Timing constraints section defines clock frequency requirements for the core and 
specifies which nets the timing analysis tool should ignore. 

Required Modifications
Several constraints provided in the UCF utilize hierarchical paths to elements within the 
integrated block. These constraints assume an instance name of core for the core. If a 
different instance name is used, replace core with the actual instance name in all 
hierarchical constraints. 

For example:

Using xilinx_pcie_ep as the instance name, the physical constraint 

INST 
"core/pcie_2_1_i/pcie_gt_i/pipe_wrapper_i/pipe_lane[0].pipe_common.qpll_wrapper_i/
gtxe2_common_i" 
LOC = GTXE1_X0Y15;

becomes

INST 
"xilinx_pci_ep/pcie_2_1_i/pcie_gt_i/pipe_wrapper_i/pipe_lane[0].pipe_common.qpll_
wrapper_i/gtxe2_common_i" 
LOC = GTXE1_X0Y15;

The provided UCF includes blank sections for constraining user-implemented logic. While 
the constraints provided adequately constrain the Integrated Block core itself, they cannot 
adequately constrain user-implemented logic interfaced to the core. Additional constraints 
must be implemented by the designer.

Device Selection
The device selection portion of the UCF informs the implementation tools which part, 
package, and speed grade to target for the design. Because Integrated Block cores are 
designed for specific part and package combinations, this section should not be modified 
by the designer.

The device selection section always contains a part selection line, but can also contain part 
or package-specific options. An example part selection line:

CONFIG PART = XC7V285T-FFG1761-1
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Core I/O Assignments
This section controls the placement and options for I/Os belonging to the core’s System 
(SYS) interface and PCI Express (PCI_EXP) interface. NET constraints in this section 
control the pin location and I/O options for signals in the SYS group. Locations and 
options vary depending on which derivative of the core is used and should not be changed 
without fully understanding the system requirements. 

For example: 

NET "sys_rt_n" IOSTANDARD = LVCMOS18| PULLUP | NODELAY;
INST  "refclk_ibuf" LOC = IBUFDS_GT2_X0Y7;

See Clocking and Reset of the Integrated Block Core, page 190 for detailed information 
about reset and clock requirements. 

For GTX transceiver pinout information, see the “Placement Information by Package” 
appendix in the 7 Series FPGAs GTX Transceivers User Guide (UG476). 

INST constraints are used to control placement of signals that belong to the PCI_EXP 
group. These constraints control the location of the transceiver(s) used, which implicitly 
controls pin locations for the transmit and receive differential pair. 

For example: 

INST "core/pcie_2_1_i/pcie_gt_i/gtx_v6_i/GTXD[0].GTX" 
LOC = GTXE1_X0Y15;

Core Physical Constraints
Physical constraints are included in the constraints file to control the location of clocking 
and other elements and to limit the core to a specific area of the FPGA logic. Specific 
physical constraints are chosen to match each supported device and package 
combination—it is very important to leave these constraints unmodified.

Physical constraints example: 

INST "core/*"  AREA_GROUP = "AG_core" ;
AREA_GROUP "AG_core"   RANGE = SLICE_X136Y147:SLICE_X155Y120 ;
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Core Timing Constraints
Timing constraints are provided for all integrated block solutions, although they differ 
based on core configuration. In all cases they are crucial and must not be modified, except 
to specify the top-level hierarchical name. Timing constraints are divided into two 
categories:

• TIG constraints. Used on paths where specific delays are unimportant, to instruct the 
timing analysis tools to refrain from issuing Unconstrained Path warnings.

• Frequency constraints. Group clock nets into time groups and assign properties and 
requirements to those groups. 

TIG constraints example: 

NET "sys_reset" TIG;

Clock constraints example: 

First, the input reference clock period is specified, which can be 100 MHz, 125 MHz, or 
250 MHz (selected in the CORE Generator™ software GUI). 

NET "sys_clk_c"               TNM_NET = "SYSCLK" ;
TIMESPEC "TS_SYSCLK" = PERIOD "SYSCLK" 100.00 MHz HIGH 50 % PRIORITY 
100;  # OR

Next, the internally generated clock net and period are specified, which can be 100 MHz, 
125 MHz, or 250 MHz. (Both clock constraints must be specified as 100 MHz, 125 MHz, or 
250 MHz.)

NET "core/pcie_clocking_i/clk_125" TNM_NET = "CLK_125" ;
TIMESPEC "TS_CLK_125" = PERIOD "CLK_125" TS_SYSCLK*1.25 HIGH 50 % 
PRIORITY 1;

Relocating the Integrated Block Core
While Xilinx does not provide technical support for designs whose system clock input, 
GTXE transceivers, or block RAM locations are different from the provided examples, it is 
possible to relocate the core within the FPGA. The locations selected in the provided 
examples are the recommended pinouts. These locations have been chosen based on the 
proximity to the PCIe® block, which enables meeting 250 MHz timing, and because they 
are conducive to layout requirements for add-in card design. If the core is moved, the 
relative location of all transceivers and clocking resources should be maintained to ensure 
timing closure.
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Supported Core Pinouts
Table 6-1 defines the supported core pinouts for the available 7 series part and package 
combinations. The CORE Generator software provides a UCF for the selected part and 
package that matches the table contents.

Table 6-1: Supported Core Pinouts

Package Device
PCIe Block 
Location

X1 X2 X4 X8

FBG484

XC7K30T

XC7K70T

XC7K160T

X0Y0

Lane 0 X0Y3 X0Y3 X0Y3

Not 
Supported

Lane 1 X0Y2 X0Y2

Lane 2 X0Y1

Lane 3 X0Y0

FBG676

XC7K70T

XC7K160T

XC7K325T

XC7K410T

X0Y0

Lane 0 X0Y7 X0Y7 X0Y7 X0Y7

Lane 1 X0Y6 X0Y6 X0Y6

FFG676

XC7K160T

XC7K325T

XC7K410T

Lane 2 X0Y5 X0Y5

FBG900
XC7K325T

Lane 3 X0Y4 X0Y4
XC7K410T

FFG900
XC7K325T

XC7K410T

Lane 4 X0Y3

Lane 5 X0Y2

FFG1761

XC7V585T

XC7V855T

XC7V1500T

Lane 6 X0Y1

Lane 7 X0Y0

FFG484 XC7V285T

X0Y0

Lane 0 X0Y11 X0Y11 X0Y11 X0Y11

FFG784
XC7V285T

XC7V450
Lane 1 X0Y10 X0Y10 X0Y10

FFG1157
XC7V285T

XC7V450T
Lane 2 X0Y9 X0Y9

FFG1158 XC7V485T Lane 3 X0Y8 X0Y8

FFG1761
XC7V285T

XC7V450T

Lane 4 X0Y7

Lane 5 X0Y6

FFG1929 XC7V485T
Lane 6 X0Y5

Lane 7 X0Y4
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FFG1157

XC7V585T

XC7V855T

XC7V1500T

X0Y1

Lane 0 X0Y19 X0Y19 X0Y19 X0Y19

FFG1761

XC7V585T

XC7V855T

XC7V1500T

Lane 1 X0Y18 X0Y18 X0Y18

FFG1925 XC7V2000T

Lane 2 X0Y17 X0Y17

Lane 3 X0Y16 X0Y16

Lane 4 X0Y15

Lane 5 X0Y14

Lane 6 X0Y13

Lane 7 X0Y12

FFG1157
XC7V285T

XC7V450T

X0Y1

Lane 0 X0Y23 X0Y23 X0Y23 X0Y23

Lane 1 X0Y22 X0Y22 X0Y22

FFG1158 XC7V485T
Lane 2 X0Y21 X0Y21

Lane 3 X0Y20 X0Y20

FFG1761
XC7V285T

XC7V450T

Lane 4 X0Y19

Lane 5 X0Y18

FFG1929 XC7V485T
Lane 6 X0Y17

Lane 7 X0Y16

FFG1157

XC7V585T

XC7V855T

XC7V1500T

X0Y2

Lane 0 X0Y31 X0Y31 X0Y31 X0Y31

Lane 1 X0Y30 X0Y30 X0Y30

Lane 2 X0Y29 X0Y29

Lane 3 X0Y28 X0Y28

FFG1761

XC7V585T

XC7V855T

XC7V1500T

Lane 4 X0Y27

Lane 5 X0Y26

Lane 6 X0Y25

Lane 7 X0Y24FFG1925 XC7V2000T

Table 6-1: Supported Core Pinouts (Cont’d)

Package Device
PCIe Block 
Location

X1 X2 X4 X8

http://www.xilinx.com


7 Series FPGAs Integrated Block for PCIe www.xilinx.com 213
UG477 March 1, 2011

Supported Core Pinouts

FFG1157

XC7V485T X1Y0

Lane 0 X1Y11 X1Y11 X1Y11 X1Y11

Lane 1 X1Y10 X1Y10 X1Y10

FFG1158
Lane 2 X1Y9 X1Y9

Lane 3 X1Y8 X1Y8

FFG1761
Lane 4 X1Y7

Lane 5 X1Y6

FFG1929
Lane 6 X1Y5

Lane 7 X1Y4

FFG1158

XC7V485T X1Y1

Lane 0 X1Y23 X1Y23 X1Y23 X1Y23

Lane 1 X1Y22 X1Y22 X1Y22

Lane 2 X1Y21 X1Y21

FFG1761
Lane 3 X1Y20 X1Y20

Lane 4 X1Y19

FFG1929

Lane 5 X1Y18

Lane 6 X1Y17

Lane 7 X1Y16

Table 6-1: Supported Core Pinouts (Cont’d)

Package Device
PCIe Block 
Location

X1 X2 X4 X8
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Chapter 7

FPGA Configuration

This chapter discusses how to configure the 7 series FPGA so that the device can link up 
and be recognized by the system. This information is provided for the user to choose the 
correct FPGA configuration method for the system and verify that it works as expected. 

This chapter discusses how specific requirements of the PCI Express Base Specification and 
PCI Express Card Electromechanical Specification apply to FPGA configuration. Where 
appropriate, Xilinx recommends that the user read the actual specifications for detailed 
information. This chapter is divided into four sections:

• Configuration Terminology. Defines terms used in this chapter.

• Configuration Access Time. Several specification items govern when an Endpoint 
device needs to be ready to receive configuration accesses from the host (Root 
Complex). 

• Board Power in Real-World Systems. Understanding real-world system constraints 
related to board power and how they affect the specification requirements. 

• Recommendations. Describes methods for FPGA configuration and includes sample 
problem analysis for FPGA configuration timing issues.

Configuration Terminology
In this chapter, these terms are used to differentiate between FPGA configuration and 
configuration of the PCI Express® device:

• Configuration of the FPGA. FPGA configuration is used.

• Configuration of the PCI Express device. After the link is active, configuration is used.

Configuration Access Time
In standard systems for PCI Express, when the system is powered up, configuration 
software running on the processor starts scanning the PCI Express bus to discover the 
machine topology. 

The process of scanning the PCI Express hierarchy to determine its topology is referred to 
as the enumeration process. The root complex accomplishes this by initiating configuration 
transactions to devices as it traverses and determines the topology. 
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All PCI Express devices are expected to have established the link with their link partner 
and be ready to accept configuration requests during the enumeration process. As a result, 
there are requirements as to when a device needs to be ready to accept configuration 
requests after power up; if the requirements are not met, this occurs: 

• If a device is not ready and does not respond to configuration requests, the root 
complex does not discover it and treats it as non-existent. 

• The operating system does not report the device's existence and the user's application 
is not able to communicate with the device. 

Choosing the appropriate FPGA configuration method is key to ensuring the device is able 
to communicate with the system in time to achieve link up and respond to the 
configuration accesses.

Configuration Access Specification Requirements
Two PCI Express specification items are relevant to configuration access: 

1. Section 6.6 of PCI Express Base Specification, rev 1.1 states “A system must guarantee 
that all components intended to be software visible at boot time are ready to receive 
Configuration Requests within 100 ms of the end of Fundamental Reset at the Root 
Complex.” For detailed information about how this is accomplished, see the 
specification; it is beyond the scope of this discussion. 

Xilinx compliance to this specification is validated by the PCI Express-CV tests. The 
PCI Special Interest Group (PCI-SIG) provides the PCI Express Configuration Test 
Software to verify the device meets the requirement of being able to receive 
configuration accesses within 100 ms of the end of the fundamental reset. The 
software, available to any member of the PCI-SIG, generates several resets using the 
in-band reset mechanism and PERST# toggling to validate robustness and compliance 
to the specification. 

2. Section 6.6 of PCI Express Base Specification v1.1 defines three parameters necessary 
“where power and PERST# are supplied.” The parameter TPVPERL applies to FPGA 
configuration timing and is defined as:

TPVPERL - PERST# must remain active at least this long after power becomes valid.

The PCI Express Base Specification does not give a specific value for TPVPERL – only its 
meaning is defined. The most common form factor used by designers with the 
Integrated Block core is an ATX-based form factor. The PCI Express Card 
Electromechanical Specification focuses on requirements for ATX-based form factors. 
This applies to most designs targeted to standard desktop or server type 
motherboards. Figure 7-1 shows the relationship between Power Stable and PERST#.

http://www.pcisig.com
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Section 2.6.2 of the PCI Express Card Electromechanical Specification, v1.1 defines TPVPREL as 
a minimum of 100 ms, indicating that from the time power is stable the system reset is 
asserted for at least 100 ms (as shown in Table 7-1).
 

From Figure 7-1 and Table 7-1, it is possible to obtain a simple equation to define the FPGA 
configuration time as follows:

FPGA Configuration Time ≤ TPWRVLD + TPVPERL Equation 7-1

Given that TPVPERL is defined as 100 ms minimum, this becomes:

FPGA Configuration Time ≤ TPWRVLD + 100 ms Equation 7-2

Note: Although TPWRVLD is included in Equation 7-2, it has yet to be defined in this discussion 
because it depends on the type of system in use. The Board Power in Real-World Systems section 
defines TPWRVLD for both ATX-based and non ATX-based systems.

FPGA configuration time is only relevant at cold boot; subsequent warm or hot resets do 
not cause reconfiguration of the FPGA. If the design appears to be having issues due to 
FPGA configuration, the user should issue a warm reset as a simple test, which resets the 
system, including the PCI Express link, but keeps the board powered. If the issue does not 
appear, the issue could be FPGA configuration time related.

X-Ref Target - Figure 7-1

Figure 7-1: Power Up

Table 7-1: TPVPERL Specification

Symbol Parameter Min Max Units

TPVPERL Power stable to 
PERST# inactive

100 ms

3.3 VAUX

3.3V/12V

PERST#

UG477_c7_01_021611

PCI Express Link Inactive Active

Power Stable

100 ms

TPVPERL
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Board Power in Real-World Systems
Several boards are used in PCI Express systems. The ATX Power Supply Design 
specification, endorsed by Intel, is used as a guideline and for this reason followed in the 
majority of mother boards and 100% of the time if it is an Intel-based motherboard. The 
relationship between power rails and power valid signaling is described in the ATX 12V 
Power Supply Design Guide. Figure 7-2, redrawn here and simplified to show the 
information relevant to FPGA configuration, is based on the information and diagram 
found in section 3.3 of the ATX 12V Power Supply Design Guide. For the entire diagram and 
definition of all parameters, see the ATX 12V Power Supply Design Guide.

Figure 7-2 shows that power stable indication from Figure 7-1 for the PCI Express system is 
indicated by the assertion of PWR_OK. PWR_OK is asserted High after some delay when 
the power supply has reached 95% of nominal. 

Figure 7-2 shows that power is valid before PWR_OK is asserted High. This is represented 
by T3 and is the PWR_OK delay. The ATX 12V Power Supply Design Guide defines PWR_OK 
as 100 ms < T3 < 500 ms, indicating that from the point at which the power level reaches 
95% of nominal, there is a minimum of at least 100 ms but no more than 500 ms of delay 
before PWR_OK is asserted. Remember, according to the PCI Express Card Electromechanical 
Specification, the PERST# is guaranteed to be asserted a minimum of 100 ms from when 
power is stable indicated in an ATX system by the assertion of PWR_OK. 

Again, the FPGA configuration time equation is:

FPGA Configuration Time ≤ TPWRVLD + 100 ms Equation 7-3

TPWRVLD is defined as PWR_OK delay period; that is, TPWRVLD represents the amount of 
time that power is valid in the system before PWR_OK is asserted. This time can be added 
to the amount of time the FPGA has to configure. The minimum values of T2 and T4 are 
negligible and considered zero for purposes of these calculations. For ATX-based 

X-Ref Target - Figure 7-2

Figure 7-2: ATX Power Supply

UG477_c7_02_101810

VAC

PS_ON#

O/Ps

PWR_OK

+12 VDC

+5 VDC
+3.3 VDC

T1

T2
T3

T4
T1 = Power On Time (T1 < 500 ms)
T2 = Rise Time (0.1 ms <= T2 <= 20 ms)
T3 = PWR_OK Delay (100 ms < T3 < 500 ms)
T4 = PWR_OK Rise Time (T4 <= 10 ms)

95%

10%

http://www.formfactors.org/developer/specs/ATX12V_PSDG_2_2_public_br2.pdf
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motherboards, which represent the majority of real-world motherboards in use, TPWRVLD 
can be defined as:

100 ms ≤ TPWRVLD ≤ 500 ms Equation 7-4

This provides these requirements for FPGA configuration time in both ATX and 
non-ATX-based motherboards:

• FPGA Configuration Time ≤ 200 ms (for ATX based motherboard)

• FPGA Configuration Time ≤ 100 ms (for non-ATX based motherboard)

The second equation for the non-ATX based motherboards assumes a TPWRVLD value of 
0 ms because it is not defined in this context. Designers with non-ATX based motherboards 
should evaluate their own power supply design to obtain a value for TPWRVLD.

This chapter assumes that the FPGA power (VCCINT) is stable before or at the same time 
that PWR_OK is asserted. If this is not the case, then additional time must be subtracted 
from the available time for FPGA configuration. Xilinx recommends to avoid designing 
add-in cards with staggered voltage regulators with long delays.

Hot Plug Systems
Hot Plug systems generally employ the use of a Hot-Plug Power Controller located on the 
system motherboard. Many discrete Hot-Plug Power Controllers extend TPVPERL beyond 
the minimum 100 ms. Add-in card designers should consult the Hot-Plug Power 
Controller data sheet to determine the value of TPVPERL. If the Hot-Plug Power Controller 
is unknown, then a TPVPERL value of 100 ms should be assumed.

Recommendations
For minimum FPGA configuration time, Xilinx recommends the BPI configuration mode 
with a parallel NOR flash, which supports high-speed synchronous read operation. In 
addition, an external clock source can be supplied to the external master configuration 
clock (EMCCLK) pin to ensure a consistent configuration clock frequency for all 
conditions. See the 7 Series FPGAs Configuration User Guide (UG470), for descriptions of the 
BPI configuration mode and EMCCLK pin. This section discusses these recommendations 
and includes sample analysis of potential issues that might arise during FPGA 
configuration.

FPGA Configuration Times for 7 Series Devices
During power up, the FPGA configuration sequence is performed in four steps:

1. Wait for power on reset (POR) for all voltages (VCCINT, VCCAUX, and VCCO_0) in the 
FPGA to trip, referred to as POR Trip Time.

2. Wait for completion (deassertion) of INIT_B to allow the FPGA to initialize before 
accepting a bitstream transfer.

Note: As a general rule, steps 1 and 2 require ≤ 50 ms 

3. Wait for assertion of DONE, the actual time required for a bitstream to transfer 
depends on: 

• Bitstream size

• Clock (CCLK) frequency

• Transfer mode (and data bus width) from the flash device
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- SPI = Serial Peripheral Interface (x1, x2, or x4)

- BPI = Byte Peripheral Interface (x8 or x16)

Bitstream transfer time can be estimated using this equation. 

Bitstream transfer time = (bitstream size in bits)/(CCLK frequency)/ (data bus width in bits) Equation 7-5

For detailed information about the configuration process, see the 7 Series FPGAs 
Configuration User Guide (UG470). 

Sample Problem Analysis
This section presents data from an ASUS PL5 system to demonstrate the relationships 
between Power Valid, FPGA Configuration, and PERST#. Figure 7-3 shows a case where 
the Endpoint failed to be recognized due to a FPGA configuration time issue. Figure 7-4 
shows a successful FPGA configuration with the Endpoint being recognized by the system.

Failed FPGA Recognition

Figure 7-3 illustrates an example of a cold boot where the host failed to recognize the 
Xilinx® FPGA. Although a second PERST# pulse assists in allowing more time for the 
FPGA to configure, the slowness of the FPGA configuration clock (2 MHz) causes 
configuration to complete well after this second deassertion. During this time, the system 
enumerated the bus and did not recognize the FPGA.
X-Ref Target - Figure 7-3

Figure 7-3: Host Fails to Recognize FPGA Due to Slow Configuration Time
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Successful FPGA Recognition

Figure 7-4 illustrates a successful cold boot test on the same system. In this test, the CCLK 
was running at 50 MHz, allowing the FPGA to configure in time to be enumerated and 
recognized. The figure shows that the FPGA began initialization approximately 250 ms 
before PWR_OK. DONE going High shows that the FPGA was configured even before 
PWR_OK was asserted.

Workarounds for Closed Systems
For failing FPGA configuration combinations, designers might be able to work around the 
issue in closed systems or systems where they can guarantee behavior. These options are 
not recommended for products where the targeted end system is unknown. 

1. Check if the motherboard and BIOS generate multiple PERST# pulses at start-up. This 
can be determined by capturing the signal on the board using an oscilloscope. This is 
similar to what is shown in Figure 7-3. If multiple PERST# pulses are generated, this 
typically adds extra time for FPGA configuration.

Define TPERSTPERIOD as the total sum of the pulse width of PERST# and deassertion 
period before the next PERST# pulse arrives. Because the FPGA is not power cycled or 
reconfigured with additional PERST# assertions, the TPERSTPERIOD number can be 
added to the FPGA configuration equation.

FPGA Configuration Time ≤ TPWRVLD + TPERSTPERIOD + 100 ms Equation 7-6

2. In closed systems, it might be possible to create scripts to force the system to perform 
a warm reset after the FPGA is configured, after the initial power up sequence. This 
resets the system along with the PCI Express subsystem allowing the device to be 
recognized by the system.

X-Ref Target - Figure 7-4

Figure 7-4: Host Successfully Recognizes FPGA
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Appendix A

Example Design and Model Test Bench 
for Endpoint Configuration

Programmed Input/Output: Endpoint Example Design
Programmed Input/Output (PIO) transactions are generally used by a PCI Express® 
system host CPU to access Memory Mapped Input/Output (MMIO) and Configuration 
Mapped Input/Output (CMIO) locations in the PCI Express logic. Endpoints for 
PCI Express accept Memory and I/O Write transactions and respond to Memory and I/O 
Read transactions with Completion with Data transactions.

The PIO example design (PIO design) is included with the 7 Series FPGAs Integrated Block 
for PCI Express in Endpoint configuration generated by the CORE Generator™ software, 
which allows users to bring up their system board with a known established working 
design to verify the link and functionality of the board.

Note: The PIO design Port Model is shared by the 7 Series FPGAs Integrated Block for 
PCI Express, Endpoint Block Plus for PCI Express, and Endpoint PIPE for PCI Express solutions. 
This appendix represents all the solutions generically using the name Endpoint for PCI Express (or 
Endpoint for PCIe®). 

System Overview
The PIO design is a simple target-only application that interfaces with the Endpoint for 
PCIe core’s Transaction (AXI4-Stream) interface and is provided as a starting point for 
customers to build their own designs. These features are included: 

• Four transaction-specific 2 KB target regions using the internal Xilinx® FPGA block 
RAMs, providing a total target space of 8192 bytes

• Supports single DWORD payload Read and Write PCI Express transactions to 
32-/64-bit address memory spaces and I/O space with support for completion TLPs

• Utilizes the core’s (rx_bar_hit[7:0]) m_axis_rx_tuser[9:2] signals to differentiate 
between TLP destination Base Address Registers

• Provides separate implementations optimized for 32-bit, 64-bit, and 128-bit 
AXI4-Stream interfaces

Figure A-1 illustrates the PCI Express system architecture components, consisting of a 
Root Complex, a PCI Express switch device, and an Endpoint for PCIe. PIO operations 
move data downstream from the Root Complex (CPU register) to the Endpoint, and/or 
upstream from the Endpoint to the Root Complex (CPU register). In either case, the 
PCI Express protocol request to move the data is initiated by the host CPU.
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Data is moved downstream when the CPU issues a store register to a MMIO address 
command. The Root Complex typically generates a Memory Write TLP with the 
appropriate MMIO location address, byte enables, and the register contents. The 
transaction terminates when the Endpoint receives the Memory Write TLP and updates the 
corresponding local register. 

Data is moved upstream when the CPU issues a load register from a MMIO address 
command. The Root Complex typically generates a Memory Read TLP with the 
appropriate MMIO location address and byte enables. The Endpoint generates a 
Completion with Data TLP after it receives the Memory Read TLP. The Completion is 
steered to the Root Complex and payload is loaded into the target register, completing the 
transaction.

PIO Hardware
The PIO design implements a 8192 byte target space in FPGA block RAM, behind the 
Endpoint for PCIe. This 32-bit target space is accessible through single DWORD I/O Read, 
I/O Write, Memory Read 64, Memory Write 64, Memory Read 32, and Memory Write 32 
TLPs. 

The PIO design generates a completion with one DWORD of payload in response to a valid 
Memory Read 32 TLP, Memory Read 64 TLP, or I/O Read TLP request presented to it by 
the core. In addition, the PIO design returns a completion without data with successful 
status for I/O Write TLP request. 

The PIO design processes a Memory or I/O Write TLP with one DWORD payload by 
updating the payload into the target address in the FPGA block RAM space. 

X-Ref Target - Figure A-1

Figure A-1: System Overview
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Base Address Register Support

The PIO design supports four discrete target spaces, each consisting of a 2 KB block of 
memory represented by a separate Base Address Register (BAR). Using the default 
parameters, the CORE Generator software produces a core configured to work with the 
PIO design defined in this section, consisting of: 

• One 64-bit addressable Memory Space BAR

• One 32-bit Addressable Memory Space BAR

Users can change the default parameters used by the PIO design; however, in some cases 
they might need to change the back-end User Application depending on their system. See 
Changing CORE Generator Software Default BAR Settings for information about changing 
the default CORE Generator software parameters and the effect on the PIO design. 

Each of the four 2 KB address spaces represented by the BARs corresponds to one of four 
2 KB address regions in the PIO design. Each 2 KB region is implemented using a 2 KB 
dual-port block RAM. As transactions are received by the core, the core decodes the 
address and determines which of the four regions is being targeted. The core presents the 
TLP to the PIO design and asserts the appropriate bits of (rx_bar_hit[7:0]) 
m_axis_rx_tuser[9:2], as defined in Table A-1.

Changing CORE Generator Software Default BAR Settings

Users can change the CORE Generator software parameters and continue to use the PIO 
design to create customized Verilog or VHDL source to match the selected BAR settings. 
However, because the PIO design parameters are more limited than the core parameters, 
consider these example design limitations when changing the default CORE Generator 
software parameters:

• The example design supports one I/O space BAR, one 32-bit Memory space (that 
cannot be the Expansion ROM space), and one 64-bit Memory space. If these limits are 
exceeded, only the first space of a given type is active—accesses to the other spaces do 
not result in completions.

• Each space is implemented with a 2 KB memory. If the corresponding BAR is 
configured to a wider aperture, accesses beyond the 2 KB limit wrap around and 
overlap the 2 KB memory space.

• The PIO design supports one I/O space BAR, which by default is disabled, but can be 
changed if desired. 

Although there are limitations to the PIO design, Verilog or VHDL source code is provided 
so users can tailor the example design to their specific needs. 

Table A-1: TLP Traffic Types

Block RAM TLP Transaction Type Default BAR rx_bar_hit[7:0]

ep_mem0 I/O TLP transactions Disabled Disabled

ep_mem1 32-bit address Memory 
TLP transactions

2 0000_0100b

ep_mem2 64-bit address Memory 
TLP transactions

0-1 0000_0010b

ep_mem3 32-bit address Memory 
TLP transactions destined 
for EROM

Expansion ROM 0100_0000b
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TLP Data Flow

This section defines the data flow of a TLP successfully processed by the PIO design. For 
detailed information about the interface signals within the sub-blocks of the PIO design, 
see Receive Path, page 230 and Transmit Path, page 232.

The PIO design successfully processes single DWORD payload Memory Read and Write 
TLPs and I/O Read and Write TLPs. Memory Read or Memory Write TLPs of lengths 
larger than one DWORD are not processed correctly by the PIO design; however, the core 
does accept these TLPs and passes them along to the PIO design. If the PIO design receives 
a TLP with a length of greater than one DWORD, the TLP is received completely from the 
core and discarded. No corresponding completion is generated. 

Memory and I/O Write TLP Processing

When the Endpoint for PCIe receives a Memory or I/O Write TLP, the TLP destination 
address and transaction type are compared with the values in the core BARs. If the TLP 
passes this comparison check, the core passes the TLP to the Receive AXI4-Stream interface 
of the PIO design. The PIO design handles Memory writes and I/O TLP writes in different 
ways: the PIO design responds to I/O writes by generating a Completion Without Data 
(cpl), a requirement of the PCI Express specification.

Along with the start of packet, end of packet, and ready handshaking signals, the Receive 
AXI4-Stream interface also asserts the appropriate (rx_bar_hit[7:0]) m_axis_rx_tuser[9:2] 
signal to indicate to the PIO design the specific destination BAR that matched the incoming 
TLP. On reception, the PIO design’s RX State Machine processes the incoming Write TLP 
and extracts the TLPs data and relevant address fields so that it can pass this along to the 
PIO design’s internal block RAM write request controller. 

Based on the specific rx_bar_hit[7:0] signal asserted, the RX State Machine indicates to the 
internal write controller the appropriate 2 KB block RAM to use prior to asserting the write 
enable request. For example, if an I/O Write Request is received by the core targeting 
BAR0, the core passes the TLP to the PIO design and asserts rx_bar_hit[0]. The RX State 
machine extracts the lower address bits and the data field from the I/O Write TLP and 
instructs the internal Memory Write controller to begin a write to the block RAM. 

In this example, the assertion of rx_bar_hit[0] instructed the PIO memory write controller 
to access ep_mem0 (which by default represents 2 KB of I/O space). While the write is 
being carried out to the FPGA block RAM, the PIO design RX state machine deasserts the 
m_axis_rx_tready, causing the Receive AXI4-Stream interface to stall receiving any further 
TLPs until the internal Memory Write controller completes the write to the block RAM. 
Deasserting m_axis_rx_tready in this way is not required for all designs using the 
core—the PIO design uses this method to simplify the control logic of the RX state 
machine. 

Memory and I/O Read TLP Processing

When the Endpoint for PCIe receives a Memory or I/O Read TLP, the TLP destination 
address and transaction type are compared with the values programmed in the core BARs. 
If the TLP passes this comparison check, the core passes the TLP to the Receive 
AXI4-Stream interface of the PIO design. 

Along with the start of packet, end of packet, and ready handshaking signals, the Receive 
AXI4-Stream interface also asserts the appropriate rx_bar_hit[7:0] signal to indicate to the 
PIO design the specific destination BAR that matched the incoming TLP. On reception, the 
PIO design’s state machine processes the incoming Read TLP and extracts the relevant TLP 
information and passes it along to the PIO design's internal block RAM read request 
controller. 
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Based on the specific rx_bar_hit[7:0] signal asserted, the RX state machine indicates to the 
internal read request controller the appropriate 2 KB block RAM to use before asserting the 
read enable request. For example, if a Memory Read 32 Request TLP is received by the core 
targeting the default MEM32 BAR2, the core passes the TLP to the PIO design and asserts 
rx_bar_hit[2]. The RX State machine extracts the lower address bits from the Memory 32 
Read TLP and instructs the internal Memory Read Request controller to start a read 
operation.

In this example, the assertion of rx_bar_hit[2] instructs the PIO memory read controller to 
access the Mem32 space, which by default represents 2 KB of memory space. A notable 
difference in handling of memory write and read TLPs is the requirement of the receiving 
device to return a Completion with Data TLP in the case of memory or I/O read request.

While the read is being processed, the PIO design RX state machine deasserts 
m_axis_rx_tready, causing the Receive AXI4-Stream interface to stall receiving any further 
TLPs until the internal Memory Read controller completes the read access from the block 
RAM and generates the completion. Deasserting m_axis_rx_tready in this way is not 
required for all designs using the core. The PIO design uses this method to simplify the 
control logic of the RX state machine.

PIO File Structure

Table A-2 defines the PIO design file structure. Based on the specific core targeted, not all 
files delivered by the CORE Generator software are necessary, and some files might not be 
delivered. The major difference is that some of the Endpoint for PCIe solutions use a 32-bit 
user datapath, others use a 64-bit datapath, and the PIO design works with both. The 
width of the datapath depends on the specific core being targeted.

Three configurations of the PIO design are provided: PIO_32, PIO_64, and PIO_128 with 
32-, 64-, and 128-bit AXI4-Stream interfaces, respectively. The PIO configuration generated 
depends on the selected Endpoint type (that is, 7 series FPGAs integrated block, PIPE, 
PCI Express, and Block Plus) as well as the number of PCI Express lanes and the interface 
width selected by the user. Table A-3 identifies the PIO configuration generated based on 
the user’s selection.

Table A-2: PIO Design File Structure

File Description

PIO.v Top-level design wrapper

PIO_EP.v PIO application module

PIO_TO_CTRL.v PIO turn-off controller module

PIO_32_RX_ENGINE.v 32-bit Receive engine

PIO_32_TX_ENGINE.v 32-bit Transmit engine

PIO_64_RX_ENGINE.v 64-bit Receive engine

PIO_64_TX_ENGINE.v 64-bit Transmit engine

PIO_128_RX_ENGINE.v 128-bit Receive engine

PIO_128_TX_ENGINE.v 128-bit Transmit engine

PIO_EP_MEM_ACCESS.v Endpoint memory access module

PIO_EP_MEM.v Endpoint memory
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Figure A-2 shows the various components of the PIO design, which is separated into four 
main parts: the TX Engine, RX Engine, Memory Access Controller, and Power 
Management Turn-Off Controller.

Table A-3: PIO Configuration

Core x1 x2 x4 x8

Endpoint for PIPE PIO_32 NA NA NA

Endpoint for PCI Express PIO_32 NA PIO_64 PIO_64

Endpoint for PCI Express Block Plus PIO_64 NA PIO_64 PIO_64

Virtex-6 FPGA Integrated Block PIO_64 PIO_64 PIO_64 PIO_64, 
PIO_128(1)

Spartan®-6 FPGA Integrated 
Endpoint Block

PIO_32 NA NA NA

7 Series FPGAs Integrated Block PIO_64 PIO_64 PIO_64, 
PIO_128

PIO_64, 
PIO_128

Notes: 
1. The PIO_128 configuration is only provided for the 128-bit x8 5.0 Gb/s, x8 2.5 Gb/s, and x4 5.0 Gb/s 

cores.

X-Ref Target - Figure A-2

Figure A-2: PIO Design Components
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PIO Application

Figure A-3, Figure A-4, and Figure A-5 depict 128-bit, 64-bit, and 32-bit PIO application 
top-level connectivity, respectively. The datapath width (32, 64, or 128 bits) depends on 
which Endpoint for PCIe core is used. The PIO_EP module contains the PIO FPGA block 
RAM modules and the transmit and receive engines. The PIO_TO_CTRL module is the 
Endpoint Turn-Off controller unit, which responds to power turn-off message from the 
host CPU with an acknowledgment.

The PIO_EP module connects to the Endpoint AXI4-Stream and Configuration (cfg) 
interfaces.

X-Ref Target - Figure A-3

Figure A-3: PIO 128-Bit Application

X-Ref Target - Figure A-4

Figure A-4: PIO 64-Bit Application
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Receive Path

Figure A-6 illustrates the PIO_32_RX_ENGINE, PIO_64_RX_ENGINE, and 
PIO_128_RX_ENGINE modules. The datapath of the module must match the datapath of 
the core being used. These modules connect with Endpoint for PCIe Receive interface.

X-Ref Target - Figure A-5

Figure A-5: PIO 32-Bit Application

X-Ref Target - Figure A-6

Figure A-6: RX Engines
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The PIO_32_RX_ENGINE, PIO_64_RX_ENGINE and PIO_128_RX_ENGINE modules 
receive and parse incoming read and write TLPs.

The RX engine parses one DWORD 32- and 64-bit addressable memory and I/O read 
requests. The RX state machine extracts needed information from the TLP and passes it to 
the memory controller, as defined in Table A-4.

The RX Engine parses one DWORD 32- and 64-bit addressable memory and I/O write 
requests. The RX state machine extracts needed information from the TLP and passes it to 
the memory controller, as defined in Table A-5.

The read datapath stops accepting new transactions from the core while the application is 
processing the current TLP. This is accomplished by m_axis_rx_tready deassertion. For an 
ongoing Memory or I/O Read transaction, the module waits for compl_done_i input to be 
asserted before it accepts the next TLP, while an ongoing Memory or I/O Write transaction 
is deemed complete after wr_busy_i is deasserted.

Table A-4: RX Engine: Read Outputs

Port Description

req_compl_o Completion request (active High)

req_td_o Request TLP Digest bit

req_ep_o Request Error Poisoning bit

req_tc_o[2:0] Request Traffic Class

req_attr_o[1:0] Request Attributes

req_len_o[9:0] Request Length

req_rid_o[15:0] Request Requester Identifier

req_tag_o[7:0] Request Tag

req_be_o[7:0] Request Byte Enable

req_addr_o[10:0] Request Address

Table A-5: Rx Engine: Write Outputs

Port Description

wr_en_o Write received

wr_addr_o[10:0] Write address

wr_be_o[7:0] Write byte enable

wr_data_o[31:0] Write data
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Transmit Path

Figure A-7 shows the PIO_32_TX_ENGINE, PIO_64_TX_ENGINE, and 
PIO_128_TX_ENGINE modules. The datapath of the module must match the datapath of 
the core being used. These modules connect with the core Transmit interface.

The PIO_32_TX_ENGINE, PIO_64_TX_ENGINE, and PIO_128_TX_ENGINE modules 
generate completions for received memory and I/O read TLPs. The PIO design does not 
generate outbound read or write requests. However, users can add this functionality to 
further customize the design.

The PIO_32_TX_ENGINE, PIO_64_TX_ENGINE, and PIO_128_TX_ENGINE modules 
generate completions in response to one DWORD 32- and 64-bit addressable memory and 
I/O read requests. Information necessary to generate the completion is passed to the TX 
Engine, as defined in Table A-6.

X-Ref Target - Figure A-7

Figure A-7: TX Engines
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After the completion is sent, the TX engine asserts the compl_done_i output indicating to 
the RX engine that it can assert m_axis_rx_tready and continue receiving TLPs.

Endpoint Memory

Figure A-8 displays the PIO_EP_MEM_ACCESS module. This module contains the 
Endpoint memory space.

The PIO_EP_MEM_ACCESS module processes data written to the memory from incoming 
Memory and I/O Write TLPs and provides data read from the memory in response to 
Memory and I/O Read TLPs. 

The EP_MEM module processes one DWORD 32- and 64-bit addressable Memory and I/O 
Write requests based on the information received from the RX Engine, as defined in 
Table A-7. While the memory controller is processing the write, it asserts the wr_busy_o 
output indicating it is busy.

req_tc_i[2:0] Request Traffic Class

req_attr_i[1:0] Request Attributes

req_len_i[9:0] Request Length

req_rid_i[15:0] Request Requester Identifier

req_tag_i[7:0] Request Tag

req_be_i[7:0] Request Byte Enable

req_addr_i[10:0] Request Address

Table A-6: TX Engine Inputs (Cont’d)

Port Description

X-Ref Target - Figure A-8

Figure A-8: EP Memory Access
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Both 32- and 64-bit Memory and I/O Read requests of one DWORD are processed based 
on the inputs defined in Table A-8. After the read request is processed, the data is returned 
on rd_data_o[31:0].

Table A-7: EP Memory: Write Inputs

Port Description

wr_en_i Write received

wr_addr_i[10:0] Write address

wr_be_i[7:0] Write byte enable

wr_data_i[31:0] Write data

Table A-8: EP Memory: Read Inputs 

Port Description

req_be_i[7:0] Request Byte Enable

req_addr_i[31:0] Request Address
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PIO Operation

PIO Read Transaction

Figure A-9 depicts a Back-to-Back Memory Read request to the PIO design. The receive 
engine deasserts m_axis_rx_tready as soon as the first TLP is completely received. The next 
Read transaction is accepted only after compl_done_o is asserted by the transmit engine, 
indicating that Completion for the first request was successfully transmitted.

X-Ref Target - Figure A-9

Figure A-9: Back-to-Back Read Transactions
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PIO Write Transaction

Figure A-10 depicts a back-to-back Memory Write to the PIO design. The next Write 
transaction is accepted only after wr_busy_o is deasserted by the memory access unit, 
indicating that data associated with the first request was successfully written to the 
memory aperture.

Device Utilization

Table A-9 shows the PIO design FPGA resource utilization.

X-Ref Target - Figure A-10

Figure A-10: Back-to-Back Write Transactions
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Table A-9: PIO Design FPGA Resources

Resources Utilization

LUTs 300

Flip-Flops 500

Block RAMs 4
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Summary
The PIO design demonstrates the Endpoint for PCIe and its interface capabilities. In 
addition, it enables rapid bring-up and basic validation of end user Endpoint add-in card 
FPGA hardware on PCI Express platforms. Users can leverage standard operating system 
utilities that enable generation of read and write transactions to the target space in the 
reference design.

Root Port Model Test Bench for Endpoint
The PCI Express Root Port Model is a robust test bench environment that provides a test 
program interface that can be used with the provided PIO design or with the user’s design. 
The purpose of the Root Port Model is to provide a source mechanism for generating 
downstream PCI Express TLP traffic to stimulate the customer design, and a destination 
mechanism for receiving upstream PCI Express TLP traffic from the customer design in a 
simulation environment. 

Source code for the Root Port Model is included to provide the model for a starting point 
for the user test bench. All the significant work for initializing the core’s configuration 
space, creating TLP transactions, generating TLP logs, and providing an interface for 
creating and verifying tests are complete, allowing the user to dedicate efforts to verifying 
the correct functionality of the design rather than spending time developing an Endpoint 
core test bench infrastructure.

The Root Port Model consists of:

• Test Programming Interface (TPI), which allows the user to stimulate the Endpoint 
device for the PCI Express

• Example tests that illustrate how to use the test program TPI

• Verilog or VHDL source code for all Root Port Model components, which allow the 
user to customize the test bench

Figure A-11 illustrates the illustrates the Root Port Model coupled with the PIO design.
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Architecture
The Root Port Model consists of these blocks, illustrated in Figure A-11:

• dsport (Root Port)

• usrapp_tx

• usrapp_rx

• usrapp_com (Verilog only)

The usrapp_tx and usrapp_rx blocks interface with the dsport block for transmission and 
reception of TLPs to/from the Endpoint Design Under Test (DUT). The Endpoint DUT 
consists of the Endpoint for PCIe and the PIO design (displayed) or customer design. 

The usrapp_tx block sends TLPs to the dsport block for transmission across the PCI 
Express Link to the Endpoint DUT. In turn, the Endpoint DUT device transmits TLPs 
across the PCI Express Link to the dsport block, which are subsequently passed to the 

X-Ref Target - Figure A-11

Figure A-11: Root Port Model and Top-Level Endpoint
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usrapp_rx block. The dsport and core are responsible for the data link layer and physical 
link layer processing when communicating across the PCI Express logic. Both usrapp_tx 
and usrapp_rx utilize the usrapp_com block for shared functions, for example, TLP 
processing and log file outputting. Transaction sequences or test programs are initiated by 
the usrapp_tx block to stimulate the Endpoint device's fabric interface. TLP responses from 
the Endpoint device are received by the usrapp_rx block. Communication between the 
usrapp_tx and usrapp_rx blocks allow the usrapp_tx block to verify correct behavior and 
act accordingly when the usrapp_rx block has received TLPs from the Endpoint device.

Simulating the Design
Four simulation script files are provided with the model to facilitate simulation with 
Synopsys VCS and VCS MX, Cadence IES, and Mentor Graphics ModelSim tools:

• simulate_vcs.sh (Verilog Only)

• simulate_ncsim.sh

• simulate_mti.do 

The example simulation script files are located in this directory: 

<project_dir>/<component_name>/simulation/functional

Instructions for simulating the PIO design using the Root Port Model are provided in 
Chapter 3, Getting Started Example Design. 

Note: For Cadence IES users, the work construct must be manually inserted into the cds.lib file: 
DEFINE WORK WORK.

Scaled Simulation Timeouts
The simulation model of the 7 Series FPGAs Integrated Block for PCI Express uses scaled 
down times during link training to allow for the link to train in a reasonable amount of 
time during simulation. According to the PCI Express Specification, rev. 2.1, there are various 
timeouts associated with the link training and status state machine (LTSSM) states. The 
7 series FPGAs integrated block scales these timeouts by a factor of 256 in simulation, 
except in the Recovery Speed_1 LTSSM state, where the timeouts are not scaled.
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Test Selection
Table A-10 describes the tests provided with the Root Port Model, followed by specific 
sections for VHDL and Verilog test selection.

VHDL Test Selection

Test selection is implemented in the VHDL Downstream Port Model by overriding the 
test_selector generic within the tests entity. The test_selector generic is a string with a 
one-to-one correspondence to each test within the tests entity. 

The user can modify the generic mapping of the instantiation of the tests entity within the 
pci_exp_usrapp_tx entity. Currently, there is one test defined inside the tests entity, 
sample_smoke_test0. Additional customer-defined tests should be added inside 
tests.vhd. Currently, specific tests cannot be selected from the VHDL simulation scripts. 

Verilog Test Selection 

The Verilog test model used for the Root Port Model lets the user specify the name of the 
test to be run as a command line parameter to the simulator. For example, the 
simulate_ncsim.sh script file, used to start the Cadence IES simulator, can be modified 
to explicitly specify the test sample_smoke_test0 to be run using this command line 
syntax:

ncsim work.board +TESTNAME=sample_smoke_test0

To change the test to be run, change the value provided to TESTNAME defined in the test 
files sample_tests1.v and pio_tests.v. The same mechanism is used for VCS and 
ModelSim. ISim uses the -testplusarg options to specify TESTNAME, for example: 
demo_tb.exe -gui -view wave.wcfg -wdb wave_isim -tclbatch 
isim_cmd.tcl -testplusarg TESTNAME=sample_smoke_test0.

VHDL and Verilog Root Port Model Differences

These subsections identify differences between the VHDL and Verilog Root Port Model. 

Verilog Expectation Tasks

The most significant difference between the Verilog and the VHDL test bench is that the 
Verilog test bench has Expectation Tasks. Expectation tasks are API calls used in 

Table A-10: Root Port Model Provided Tests

Test Name
Test in 

VHDL/Verilog
Description

sample_smoke_test0 Verilog and 
VHDL

Issues a PCI Type 0 Configuration Read TLP and waits for the 
completion TLP; then compares the value returned with the 
expected Device/Vendor ID value. 

sample_smoke_test1 Verilog Performs the same operation as sample_smoke_test0 but makes 
use of expectation tasks. This test uses two separate test program 
threads: one thread issues the PCI Type 0 Configuration Read TLP 
and the second thread issues the Completion with Data TLP 
expectation task. This test illustrates the form for a parallel test that 
uses expectation tasks. This test form allows for confirming 
reception of any TLPs from the customer’s design. Additionally, 
this method can be used to confirm reception of TLPs when 
ordering is unimportant. 
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conjunction with a bus mastering customer design. The test program issues a series of 
expectation task calls, that is, the task calls expect a memory write TLP and a memory read 
TLP. If the customer design does not respond with the expected TLPs, the test program 
fails. This functionality was implemented using the fork-join construct in Verilog, which is 
not available in VHDL and subsequently not implemented. 

Verilog Command Line versus VHDL tests.vhd Module

The Verilog test bench allows test programs to be specified at the command line, while the 
VHDL test bench specifies test programs within the tests.vhd module.

Generating Wave Files

• The Verilog test bench uses recordvars and dumpfile commands within the code to 
generate wave files.

• The VHDL test bench leaves the generating wave file functionality up to the 
simulator.

Speed Differences

The VHDL test bench is slower than the Verilog test bench, especially when testing the x8 
core. For initial design simulation and speed enhancement, the user might want to use the 
x1 core, identify basic functionality issues, and then move to x2, x4, or x8 simulation when 
testing design performance. 

Waveform Dumping
Table A-11 describes the available simulator waveform dump file formats, each of which is 
provided in the simulator’s native file format. The same mechanism is used for VCS and 
ModelSim.

VHDL Flow

Waveform dumping in the VHDL flow does not use the +dump_all mechanism described 
in the Verilog Flow section. Because the VHDL language itself does not provide a common 
interface for dumping waveforms, each VHDL simulator has its own interface for 
supporting waveform dumping. For both the supported ModelSim and IES flows, 
dumping is supported by invoking the VHDL simulator command line with a command 
line option that specifies the respective waveform command file, wave.do (ModelSim), 
wave.sv (IES), and wave.wcfg (ISim). This command line can be found in the respective 
simulation script files simulate_mti.do, simulate_ncsim.sh, and 
simulate_isim.bat[.sh].

Table A-11: Simulator Dump File Format

Simulator Dump File Format

Synopsys VCS .vpd

Mentor Graphics ModelSim .vcd

Cadence IES .trn

http://www.xilinx.com


242 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix A: Example Design and Model Test Bench for Endpoint Configuration

ModelSim

This command line initiates waveform dumping for the ModelSim flow using the VHDL 
test bench:

>vsim +notimingchecks –do wave.do –L unisim –L work work.board

IES

This command line initiates waveform dumping for the IES flow using the VHDL test 
bench:

>ncsim –gui work.board -input @”simvision –input wave.sv”

Verilog Flow

The Root Port Model provides a mechanism for outputting the simulation waveform to file 
by specifying the +dump_all command line parameter to the simulator.

For example, the script file simulate_ncsim.sh (used to start the Cadence IES 
simulator) can indicate to the Root Port Model that the waveform should be saved to a file 
using this command line:

ncsim work.board +TESTNAME=sample_smoke_test0 +dump_all

Output Logging
When a test fails on the example or customer design, the test programmer debugs the 
offending test case. Typically, the test programmer inspects the wave file for the simulation 
and cross-reference this to the messages displayed on the standard output. Because this 
approach can be very time consuming, the Root Port Model offers an output logging 
mechanism to assist the tester with debugging failing test cases to speed the process. 

The Root Port Model creates three output files (tx.dat, rx.dat, and error.dat) during 
each simulation run. Log files rx.dat and tx.dat each contain a detailed record of every 
TLP that was received and transmitted, respectively, by the Root Port Model. With an 
understanding of the expected TLP transmission during a specific test case, the test 
programmer can more easily isolate the failure. 

The log file error.dat is used in conjunction with the expectation tasks. Test programs 
that utilize the expectation tasks generate a general error message to standard output. 
Detailed information about the specific comparison failures that have occurred due to the 
expectation error is located within error.dat.

Parallel Test Programs
There are two classes of tests are supported by the Root Port Model: 

• Sequential tests. Tests that exist within one process and behave similarly to sequential 
programs. The test depicted in Test Program: pio_writeReadBack_test0, page 244 is an 
example of a sequential test. Sequential tests are very useful when verifying behavior 
that have events with a known order. 

• Parallel tests. Tests involving more than one process thread. The test 
sample_smoke_test1 is an example of a parallel test with two process threads. 
Parallel tests are very useful when verifying that a specific set of events have 
occurred, however the order of these events are not known. 
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A typical parallel test uses the form of one command thread and one or more expectation 
threads. These threads work together to verify a device's functionality. The role of the 
command thread is to create the necessary TLP transactions that cause the device to receive 
and generate TLPs. The role of the expectation threads is to verify the reception of an 
expected TLP. The Root Port Model TPI has a complete set of expectation tasks to be used 
in conjunction with parallel tests.

Because the example design is a target-only device, only Completion TLPs can be expected 
by parallel test programs while using the PIO design. However, the full library of 
expectation tasks can be used for expecting any TLP type when used in conjunction with 
the customer's design (which can include bus-mastering functionality). Currently, the 
VHDL version of the Root Port Model Test Bench does not support Parallel tests.

Test Description
The Root Port Model provides a Test Program Interface (TPI). The TPI provides the means 
to create tests by invoking a series of Verilog tasks. All Root Port Model tests should follow 
the same six steps:

1. Perform conditional comparison of a unique test name

2. Set up master timeout in case simulation hangs

3. Wait for Reset and link-up

4. Initialize the configuration space of the Endpoint

5. Transmit and receive TLPs between the Root Port Model and the Endpoint DUT

6. Verify that the test succeeded
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Test Program: pio_writeReadBack_test0

Expanding the Root Port Model
The Root Port Model was created to work with the PIO design, and for this reason is 
tailored to make specific checks and warnings based on the limitations of the PIO design. 
These checks and warnings are enabled by default when the Root Port Model is generated 
by the CORE Generator software. However, these limitations can be disabled so that they 
do not affect the customer's design.

Because the PIO design was created to support at most one I/O BAR, one Mem64 BAR, 
and two Mem32 BARs (one of which must be the EROM space), the Root Port Model by 
default makes a check during device configuration that verifies that the core has been 
configured to meet this requirement. A violation of this check causes a warning message to 
be displayed as well as for the offending BAR to be gracefully disabled in the test bench. 
This check can be disabled by setting the pio_check_design variable to zero in the 
pci_exp_usrapp_tx.v file.

1. else if(testname == "pio_writeReadBack_test1"
2. begin
3. // This test performs a 32 bit write to a 32 bit Memory space and performs a read back
4. TSK_SIMULATION_TIMEOUT(10050);
5. TSK_SYSTEM_INITIALIZATION;
6. TSK_BAR_INIT;
7. for (ii = 0; ii <= 6; ii = ii + 1) begin 
8. if (BAR_INIT_P_BAR_ENABLED[ii] > 2'b00) // bar is enabled          
9.  case(BAR_INIT_P_BAR_ENABLED[ii])
10.          2'b01 : // IO SPACE
11.     begin    
12.              $display("[%t] : NOTHING: to IO 32 Space BAR %x", $realtime, ii);
13.         end    
14.          2'b10 : // MEM 32 SPACE
15.            begin    
16.             $display("[%t] : Transmitting TLPs to Memory 32 Space BAR %x",
17.                          $realtime, ii);
18. //------------------------------------------------------------------------
19. // Event : Memory Write 32 bit TLP
20. //------------------------------------------------------------------------
21.               DATA_STORE[0] = 8'h04;
22.               DATA_STORE[1] = 8'h03;
23.               DATA_STORE[2] = 8'h02;
24.               DATA_STORE[3] = 8'h01;
25.               P_READ_DATA = 32'hffff_ffff; // make sure P_READ_DATA has known initial value 
26.               TSK_TX_MEMORY_WRITE_32(DEFAULT_TAG, DEFAULT_TC, 10'd1, BAR_INIT_P_BAR[ii][31:0] , 4'hF, 

4'hF, 1'b0);
27.               TSK_TX_CLK_EAT(10);
28.               DEFAULT_TAG = DEFAULT_TAG + 1;
29.         //------------------------------------------------------------------------
30.         // Event : Memory Read 32 bit TLP
31.         //------------------------------------------------------------------------
32.               TSK_TX_MEMORY_READ_32(DEFAULT_TAG, DEFAULT_TC, 10'd1, BAR_INIT_P_BAR[ii][31:0], 4'hF, 

4'hF);
33.               TSK_WAIT_FOR_READ_DATA;
34.               if  (P_READ_DATA != {DATA_STORE[3], DATA_STORE[2], DATA_STORE[1], DATA_STORE[0] }) 
35.                 begin
36.                  $display("[%t] : Test FAILED --- Data Error Mismatch, Write Data %x != Read Data %x", 

$realtime,{DATA_STORE[3], DATA_STORE[2], DATA_STORE[1], DATA_STORE[0]},  P_READ_DATA);
37.                end
38.             else
39.               begin
40.                  $display("[%t] : Test PASSED --- Write Data: %x successfully received", $realtime, 

P_READ_DATA);
41.               end
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Root Port Model TPI Task List

The Root Port Model TPI tasks include these tasks, which are further defined in these 
tables.

• Table A-12, Test Setup Tasks

• Table A-13, TLP Tasks

• Table A-14, BAR Initialization Tasks

• Table A-15, Example PIO Design Tasks

• Table A-16, Expectation Tasks

Table A-12: Test Setup Tasks

Name Input(s) Description

TSK_SYSTEM_INITIALIZATION None Waits for transaction interface reset and 
link-up between the Root Port Model and 
the Endpoint DUT. 

This task must be invoked prior to the 
Endpoint core initialization.

TSK_USR_DATA_SETUP_SEQ None Initializes global 4096 byte DATA_STORE 
array entries to sequential values from 
zero to 4095.

TSK_TX_CLK_EAT clock count 31:30 Waits clock_count transaction interface 
clocks.

TSK_SIMULATION_TIMEOUT timeout 31:0 Sets master simulation timeout value in 
units of transaction interface clocks. This 
task should be used to ensure that all DUT 
tests complete.

Table A-13: TLP Tasks

Name Input(s) Description

TSK_TX_TYPE0_CONFIGURATION_READ tag_

reg_addr_

first_dw_be_

7:0

11:0

3:0

Waits for transaction interface reset and 
link-up between the Root Port Model and the 
Endpoint DUT. 

This task must be invoked prior to Endpoint 
core initialization.

TSK_TX_TYPE1_CONFIGURATION_READ tag_

reg_addr_

first_dw_be_

7:0

11:0

3:0

Sends a Type 1 PCI Express Config Read TLP 
from Root Port Model to reg_addr_ of 
Endpoint DUT with tag_ and first_dw_be_ 
inputs. 

CplD returned from the Endpoint DUT uses 
the contents of global COMPLETE_ID_CFG as 
the completion ID.
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TSK_TX_TYPE0_CONFIGURATION_WRITE tag_

reg_addr_

reg_data_

first_dw_be_

7:0

11:0

31:0

3:0

Sends a Type 0 PCI Express Config Write TLP 
from Root Port Model to reg_addr_ of 
Endpoint DUT with tag_ and first_dw_be_ 
inputs. 

Cpl returned from the Endpoint DUT uses the 
contents of global COMPLETE_ID_CFG as the 
completion ID.

TSK_TX_TYPE1_CONFIGURATION_WRITE tag_

reg_addr_

reg_data_

first_dw_be_

7:0

11:0

31:0

3:0

Sends a Type 1 PCI Express Config Write TLP 
from Root Port Model to reg_addr_ of 
Endpoint DUT with tag_ and first_dw_be_ 
inputs. 

Cpl returned from the Endpoint DUT uses the 
contents of global COMPLETE_ID_CFG as the 
completion ID.

TSK_TX_MEMORY_READ_32 tag_

tc_

len_

addr_

last_dw_be_

first_dw_be_

7:0

2:0

9:0

31:0

3:0

3:0

Sends a PCI Express Memory Read TLP from 
Root Port to 32-bit memory address addr_ of 
Endpoint DUT.

CplD returned from the Endpoint DUT uses 
the contents of global COMPLETE_ID_CFG as 
the completion ID.

TSK_TX_MEMORY_READ_64 tag_

tc_

len_

addr_

last_dw_be_

first_dw_be_

7:0

2:0

9:0

63:0

3:0

3:0

Sends a PCI Express Memory Read TLP from 
Root Port Model to 64-bit memory address 
addr_ of Endpoint DUT.

CplD returned from the Endpoint DUT uses 
the contents of global COMPLETE_ID_CFG as 
the completion ID.

TSK_TX_MEMORY_WRITE_32 tag_

tc_

len_

addr_

last_dw_be_

first_dw_be_

ep_

7:0

2:0

9:0

31:0

3:0

3:0

–

Sends a PCI Express Memory Write TLP from 
Root Port Model to 32-bit memory address 
addr_ of Endpoint DUT.

CplD returned from the Endpoint DUT uses 
the contents of global COMPLETE_ID_CFG as 
the completion ID.

The global DATA_STORE byte array is used to 
pass write data to task.

TSK_TX_MEMORY_WRITE_64 tag_

tc_

len_

addr_

last_dw_be_

first_dw_be_

ep_

7:0

2:0

9:0

63:0

3:0

3:0

–

Sends a PCI Express Memory Write TLP from 
Root Port Model to 64-bit memory address 
addr_ of Endpoint DUT. 

CplD returned from the Endpoint DUT uses 
the contents of global COMPLETE_ID_CFG as 
the completion ID.

The global DATA_STORE byte array is used to 
pass write data to task.

Table A-13: TLP Tasks (Cont’d)

Name Input(s) Description
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TSK_TX_TYPE0_CONFIGURATION_WRITE tag_

reg_addr_

reg_data_

first_dw_be_

7:0

11:0

31:0

3:0

Sends a Type 0 PCI Express Config Write TLP 
from Root Port Model to reg_addr_ of 
Endpoint DUT with tag_ and first_dw_be_ 
inputs. 

Cpl returned from the Endpoint DUT uses the 
contents of global COMPLETE_ID_CFG as the 
completion ID.

TSK_TX_TYPE1_CONFIGURATION_WRITE tag_

reg_addr_

reg_data_

first_dw_be_

7:0

11:0

31:0

3:0

Sends a Type 1 PCI Express Config Write TLP 
from Root Port Model to reg_addr_ of 
Endpoint DUT with tag_ and first_dw_be_ 
inputs. 

Cpl returned from the Endpoint DUT uses the 
contents of global COMPLETE_ID_CFG as the 
completion ID.

TSK_TX_MEMORY_READ_32 tag_

tc_

len_

addr_

last_dw_be_

first_dw_be_

7:0

2:0

9:0

31:0

3:0

3:0

Sends a PCI Express Memory Read TLP from 
Root Port to 32-bit memory address addr_ of 
Endpoint DUT.

CplD returned from the Endpoint DUT uses 
the contents of global COMPLETE_ID_CFG as 
the completion ID.

TSK_TX_MEMORY_READ_64 tag_

tc_

len_

addr_

last_dw_be_

first_dw_be_

7:0

2:0

9:0

63:0

3:0

3:0

Sends a PCI Express Memory Read TLP from 
Root Port Model to 64-bit memory address 
addr_ of Endpoint DUT.

CplD returned from the Endpoint DUT uses 
the contents of global COMPLETE_ID_CFG as 
the completion ID.

TSK_TX_MEMORY_WRITE_32 tag_

tc_

len_

addr_

last_dw_be_

first_dw_be_

ep_

7:0

2:0

9:0

31:0

3:0

3:0

–

Sends a PCI Express Memory Write TLP from 
Root Port Model to 32-bit memory address 
addr_ of Endpoint DUT.

CplD returned from the Endpoint DUT uses 
the contents of global COMPLETE_ID_CFG as 
the completion ID.

The global DATA_STORE byte array is used to 
pass write data to task.

TSK_TX_MEMORY_WRITE_64 tag_

tc_

len_

addr_

last_dw_be_

first_dw_be_

ep_

7:0

2:0

9:0

63:0

3:0

3:0

–

Sends a PCI Express Memory Write TLP from 
Root Port Model to 64-bit memory address 
addr_ of Endpoint DUT. 

CplD returned from the Endpoint DUT uses 
the contents of global COMPLETE_ID_CFG as 
the completion ID.

The global DATA_STORE byte array is used to 
pass write data to task.

Table A-13: TLP Tasks (Cont’d)

Name Input(s) Description
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TSK_TX_COMPLETION tag_

tc_

len_

comp_status_

7:0

2:0

9:0

2:0

Sends a PCI Express Completion TLP from 
Root Port Model to the Endpoint DUT using 
global COMPLETE_ID_CFG as the completion 
ID.

TSK_TX_COMPLETION_DATA tag_

tc_

len_

byte_count

lower_addr

comp_status

ep_

7:0

2:0

9:0

11:0

6:0

2:0

–

Sends a PCI Express Completion with Data 
TLP from Root Port Model to the Endpoint 
DUT using global COMPLETE_ID_CFG as the 
completion ID.

The global DATA_STORE byte array is used to 
pass completion data to task.

TSK_TX_MESSAGE tag_

tc_

len_

data

message_rtg

message_code 

7:0

2:0

9:0

63:0

2:0

7:0

Sends a PCI Express Message TLP from Root 
Port Model to Endpoint DUT.

Completion returned from the Endpoint DUT 
uses the contents of global 
COMPLETE_ID_CFG as the completion ID.

TSK_TX_MESSAGE_DATA tag_

tc_

len_

data

message_rtg

message_code 

7:0

2:0

9:0

63:0

2:0

7:0

Sends a PCI Express Message with Data TLP 
from Root Port Model to Endpoint DUT.

The global DATA_STORE byte array is used to 
pass message data to task.

Completion returned from the Endpoint DUT 
uses the contents of global 
COMPLETE_ID_CFG as the completion ID.

TSK_TX_IO_READ tag_

addr_

first_dw_be_

7:0

31:0

3:0

Sends a PCI Express I/O Read TLP from Root 
Port Model to I/O address addr_[31:2] of the 
Endpoint DUT.

CplD returned from the Endpoint DUT uses 
the contents of global COMPLETE_ID_CFG as 
the completion ID.

TSK_TX_IO_WRITE tag_

addr_

first_dw_be_

data

7:0

31:0

3:0

31:0

Sends a PCI Express I/O Write TLP from Root 
Port Model to I/O address addr_[31:2] of the 
Endpoint DUT.

CplD returned from the Endpoint DUT uses 
the contents of global COMPLETE_ID_CFG as 
the completion ID.

Table A-13: TLP Tasks (Cont’d)

Name Input(s) Description
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TSK_TX_BAR_READ bar_index

byte_offset

tag_

tc_

2:0

31:0

7:0

2:0

Sends a PCI Express one DWORD Memory 32, 
Memory 64, or I/O Read TLP from the Root 
Port Model to the target address 
corresponding to offset byte_offset from BAR 
bar_index of the Endpoint DUT. This task 
sends the appropriate Read TLP based on how 
BAR bar_index has been configured during 
initialization. This task can only be called after 
TSK_BAR_INIT has successfully completed.

CplD returned from the Endpoint DUT use the 
contents of global COMPLETE_ID_CFG as the 
completion ID.

TSK_TX_BAR_WRITE bar_index

byte_offset

tag_

tc_

data_

2:0

31:0

7:0

2:0

31:0

Sends a PCI Express one DWORD Memory 32, 
Memory 64, or I/O Write TLP from the Root 
Port to the target address corresponding to 
offset byte_offset from BAR bar_index of the 
Endpoint DUT. 

This task sends the appropriate Write TLP 
based on how BAR bar_index has been 
configured during initialization. This task can 
only be called after TSK_BAR_INIT has 
successfully completed.

TSK_WAIT_FOR_READ_DATA None Waits for the next completion with data TLP 
that was sent by the Endpoint DUT. On 
successful completion, the first DWORD of 
data from the CplD is stored in the global 
P_READ_DATA. This task should be called 
immediately following any of the read tasks in 
the TPI that request Completion with Data 
TLPs to avoid any race conditions.

By default this task locally times out and 
terminate the simulation after 1000 transaction 
interface clocks. The global cpld_to_finish can 
be set to zero so that local time out returns 
execution to the calling test and does not result 
in simulation timeout. For this case test 
programs should check the global cpld_to, 
which when set to one indicates that this task 
has timed out and that the contents of 
P_READ_DATA are invalid. 

Table A-13: TLP Tasks (Cont’d)

Name Input(s) Description
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Table A-14: BAR Initialization Tasks

Name Input(s) Description

TSK_BAR_INIT None Performs a standard sequence of Base Address Register 
initialization tasks to the Endpoint device using the PCI 
Express fabric. Performs a scan of the Endpoint's PCI BAR 
range requirements, performs the necessary memory and I/O 
space mapping calculations, and finally programs the 
Endpoint so that it is ready to be accessed. 

On completion, the user test program can begin memory and 
I/O transactions to the device. This function displays to 
standard output a memory and I/O table that details how the 
Endpoint has been initialized. This task also initializes global 
variables within the Root Port Model that are available for test 
program usage. This task should only be called after 
TSK_SYSTEM_INITIALIZATION. 

TSK_BAR_SCAN None Performs a sequence of PCI Type 0 Configuration Writes and 
Configuration Reads using the PCI Express logic to determine 
the memory and I/O requirements for the Endpoint. 

The task stores this information in the global array 
BAR_INIT_P_BAR_RANGE[]. This task should only be called 
after TSK_SYSTEM_INITIALIZATION.

TSK_BUILD_PCIE_MAP None Performs memory and I/O mapping algorithm and allocates 
Memory 32, Memory 64, and I/O space based on the Endpoint 
requirements. 

This task has been customized to work in conjunction with the 
limitations of the PIO design and should only be called after 
completion of TSK_BAR_SCAN.

TSK_DISPLAY_PCIE_MAP None Displays the memory mapping information of the Endpoint 
core’s PCI Base Address Registers. For each BAR, the BAR 
value, the BAR range, and BAR type is given. This task should 
only be called after completion of TSK_BUILD_PCIE_MAP.
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Table A-15: Example PIO Design Tasks

Name Input(s) Description

TSK_TX_READBACK_CONFIG None Performs a sequence of PCI Type 0 Configuration Reads to 
the Endpoint device's Base Address Registers, PCI 
Command Register, and PCIe Device Control Register 
using the PCI Express logic. 

This task should only be called after 
TSK_SYSTEM_INITIALIZATION.

TSK_MEM_TEST_DATA_BUS bar_index 2:0 Tests whether the PIO design FPGA block RAM data bus 
interface is correctly connected by performing a 32-bit 
walking ones data test to the I/O or memory address 
pointed to by the input bar_index. 

For an exhaustive test, this task should be called four times, 
once for each block RAM used in the PIO design.

TSK_MEM_TEST_ADDR_BUS bar_index

nBytes

2:0

31:0

Tests whether the PIO design FPGA block RAM address bus 
interface is accurately connected by performing a walking 
ones address test starting at the I/O or memory address 
pointed to by the input bar_index. 

For an exhaustive test, this task should be called four times, 
once for each block RAM used in the PIO design. 
Additionally, the nBytes input should specify the entire size 
of the individual block RAM. 

TSK_MEM_TEST_DEVICE bar_index

nBytes

2:0

31:0

Tests the integrity of each bit of the PIO design FPGA block 
RAM by performing an increment/decrement test on all 
bits starting at the block RAM pointed to by the input 
bar_index with the range specified by input nBytes. 

For an exhaustive test, this task should be called four times, 
once for each block RAM used in the PIO design. 
Additionally, the nBytes input should specify the entire size 
of the individual block RAM. 
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Table A-16: Expectation Tasks

Name Input(s) Output Description

TSK_EXPECT_CPLD traffic_class

td

ep

attr

length

completer_id

completer_status

bcm

byte_count

requester_id

tag

address_low

2:0

-

-

1:0

9:0

15:0

2:0

-

11:0

15:0

7:0

6:0

Expect status Waits for a Completion with Data 
TLP that matches traffic_class, td, 
ep, attr, length, and payload. 

Returns a 1 on successful 
completion; 0 otherwise.

TSK_EXPECT_CPL traffic_class

td

ep

attr

completer_id

completer_status

bcm

byte_count

requester_id

tag

address_low

2:0

-

-

1:0

15:0

2:0

-

11:0

15:0

7:0

6:0

Expect

status

Waits for a Completion without 
Data TLP that matches 
traffic_class, td, ep, attr, and 
length. 

Returns a 1 on successful 
completion; 0 otherwise.

TSK_EXPECT_MEMRD traffic_class

td

ep

attr

length

requester_id

tag

last_dw_be

first_dw_be

address

2:0

-

-

1:0

9:0

15:0

7:0

3:0

3:0

29:0

Expect status Waits for a 32-bit Address 
Memory Read TLP with matching 
header fields. 

Returns a 1 on successful 
completion; 0 otherwise. This task 
can only be used in conjunction 
with Bus Master designs.
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TSK_EXPECT_MEMRD64 traffic_class

td

ep

attr

length

requester_id

tag

last_dw_be

first_dw_be

address

2:0

-

-

1:0

9:0

15:0

7:0

3:0

3:0

61:0

Expect status Waits for a 64-bit Address 
Memory Read TLP with matching 
header fields. Returns a 1 on 
successful completion; 0 
otherwise. 

This task can only be used in 
conjunction with Bus Master 
designs.

TSK_EXPECT_MEMWR traffic_class

td

ep

attr

length

requester_id

tag

last_dw_be

first_dw_be

address

2:0

-

-

1:0

9:0

15:0

7:0

3:0

3:0

29:0

Expect

status

Waits for a 32-bit Address 
Memory Write TLP with matching 
header fields. Returns a 1 on 
successful completion; 0 
otherwise. 

This task can only be used in 
conjunction with Bus Master 
designs.

TSK_EXPECT_MEMWR64 traffic_class

td

ep

attr

length

requester_id

tag

last_dw_be

first_dw_be

address

2:0

-

-

1:0

9:0

15:0

7:0

3:0

3:0

61:0

Expect

status

Waits for a 64-bit Address 
Memory Write TLP with matching 
header fields. Returns a 1 on 
successful completion; 0 
otherwise. 

This task can only be used in 
conjunction with Bus Master 
designs.

TSK_EXPECT_IOWR td

ep

requester_id

tag

first_dw_be

address

data

-

-

15:0

7:0

3:0

31:0

31:0

Expect

status

Waits for an I/O Write TLP with 
matching header fields. Returns a 
1 on successful completion; 0 
otherwise.

This task can only be used in 
conjunction with Bus Master 
designs.

Table A-16: Expectation Tasks (Cont’d)

Name Input(s) Output Description
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Example Design and Model Test Bench 
for Root Port Configuration

Configurator Example Design
The Configurator example design, included with the 7 Series FPGAs Integrated Block for 
PCI Express® in Root Port configuration generated by the CORE Generator™ software, is 
a synthesizeable, lightweight design that demonstrates the minimum setup required for 
the integrated block in Root Port configuration to begin application-level transactions with 
an Endpoint.

System Overview
PCI Express devices require setup after power-on, before devices in the system can begin 
application specific communication with each other. Minimally, two devices connected via 
a PCI Express Link must have their Configuration spaces initialized and be enumerated to 
communicate.

Root Ports facilitate PCI Express enumeration and configuration by sending Configuration 
Read (CfgRd) and Write (CfgWr) TLPs to the downstream devices such as Endpoints and 
Switches to set up the configuration spaces of those devices. When this process is complete, 
higher-level interactions, such as Memory Reads (MemRd TLPs) and Writes (MemWr 
TLPs), can occur within the PCI Express System.

The Configurator example design described herein performs the configuration 
transactions required to enumerate and configure the Configuration space of a single 
connected PCI Express Endpoint and allow application-specific interactions to occur. 

Configurator Example Design Hardware
The Configurator example design consists of four high-level blocks:

• Root Port: The 7 series FPGAs integrated block in Root Port configuration.
• Configurator Block: Logical block which interacts with the configuration space of a 

PCI Express Endpoint device connected to the Root Port.
• Configurator ROM: Read-only memory that sources configuration transactions to the 

Configurator Block.
• PIO Master: Logical block which interacts with the user logic connected to the 

Endpoint by exchanging data packets and checking the validity of the received data. 
The data packets are limited to a single DWORD and represent the type of traffic that 
would be generated by a CPU.

Note: The Configurator Block and Configurator ROM, and Root Port are logically grouped in the 
RTL code within a wrapper file called the Configurator Wrapper.
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The Configurator example design, as delivered, is designed to be used with the PIO Slave 
example included with Xilinx Endpoint cores and described in Appendix A, Example 
Design and Model Test Bench for Endpoint Configuration. The PIO Master is useful for 
simple bring-up and debugging, and is an example of how to interact with the 
Configurator Wrapper. The Configurator example design can be modified to be used with 
other Endpoints.

Figure B-1 shows the various components of the Configurator example design.
X-Ref Target - Figure B-1

Figure B-1: Configurator Example Design Components
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Figure B-2 shows how the blocks are connected in an overall system view.

Configurator Block

The Configurator Block generates CfgRd and CfgWr TLPs and presents them to the 
AXI4-Stream interface of the integrated block in Root Port configuration. The TLPs that the 
Configurator Block generates are determined by the contents of the Configurator ROM.

The generated configuration traffic is predetermined by the designer to address their 
particular system requirements. The configuration traffic is encoded in a 
memory-initialization file (the Configurator ROM) which is synthesized as part of the 
Configurator. The Configurator Block and the attached Configurator ROM is intended to 
be usable a part of a real-world embedded design.

X-Ref Target - Figure B-2

Figure B-2: Configurator Example Design
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The Configurator Block steps through the Configuration ROM file and sends the TLPs 
specified therein. Supported TLP types are Message, Message w/Data, Configuration 
Write (Type 0), and Configuration Read (Type 0). For the Configuration packets, the 
Configurator Block waits for a Completion to be returned before transmitting the next TLP. 
If the Completion TLP fields do not match the expected values, PCI Express configuration 
fails. However, the Data field of Completion TLPs is ignored and not checked

Note: There is no completion timeout mechanism in the Configurator Block, so if no Completion is 
returned, the Configurator Block waits forever.

The Configurator Block has these parameters, which can be altered by the user:

• TCQ: Clock-to-out delay modeled by all registers in design.

• EXTRA_PIPELINE: Controls insertion of an extra pipeline stage on the Receive 
AXI4-Stream interface for timing.

• ROM_FILE: File name containing configuration steps to perform.

• ROM_SIZE: Number of lines in ROM_FILE containing data (equals number of TLPs 
to send/2).

• REQUESTER_ID: Value for the Requester ID field in outgoing TLPs.

When the Configurator Block design is used, all TLP traffic must pass through the 
Configurator Block. The user design is responsible for asserting the start_config input (for 
one clock cycle) to initiate the configuration process when user_lnk_up has been asserted 
by the core. Following start_config, the Configurator Block performs whatever 
configuration steps have been specified in the Configuration ROM. During configuration, 
the Configurator Block controls the core's AXI4-Stream interface. Following configuration, 
all AXI4-Stream traffic is routed to/from the User Application, which in the case of this 
example design is the PIO Master. The end of configuration is signaled by the assertion of 
finished_config. If configuration is unsuccessful for some reason, failed_config is also 
asserted.

If used in a system that supports PCIe v2.1 5.0 Gb/s links, the Configurator Block begins its 
process by attempting to up-train the link from 2.5 Gb/s to 5.0 Gb/s. This feature is 
enabled depending on the LINK_CAP_MAX_LINK_SPEED parameter on the 
Configurator Wrapper. 

The Configurator does not support the user throttling received data on the Receive 
AXI4-Stream interface. Because of this, the Root Port inputs which control throttling are 
not included on the Configurator Wrapper. These signals are m_axis_rx_tready and 
rx_np_ok. This is a limitation of the Configurator Example Design and not of the 
Integrated Block for PCI Express in Root Port configuration. This means that the user 
design interfacing with the Configurator Example Design must be able to accept received 
data at line rate.

Configurator ROM

The Configurator ROM stores the necessary configuration transactions to configure a PCI 
Express Endpoint. This ROM interfaces with the Configurator Block to send these 
transactions over the PCI Express link.

The example ROM file included with this design shows the operations needed to configure 
a 7 Series FPGAs Integrated Endpoint Block for PCI Express and PIO Example Design.

The Configurator ROM can be customized for other Endpoints and PCI Express system 
topologies. The unique set of configuration transactions required depends on the Endpoint 
that interacts with the Root Port. This information can be obtained from the documentation 
provided with the Endpoint. 
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The ROM file follows the format specified in the Verilog specification (IEEE 1364-2001) 
section 17.2.8, which describes using the $readmemb function to pre-load data into a RAM 
or ROM. Verilog-style comments are allowed. 

The file is read by the simulator or synthesis tool and each memory value encountered is 
used as a single location in memory. Digits can be separated by an underscore character (_) 
for clarity without constituting a new location.

Each configuration transaction specified uses two adjacent memory locations - the first 
location specifies the header fields, while the second location specifies the 32-bit data 
payload. (For CfgRd TLPs and Messages without data, the data location is unused but still 
present.) In other words, header fields are on even addresses, while data payloads are on 
odd addresses.

For headers, Messages and CfgRd/CfgWr TLPs use different fields. For all TLPs, two bits 
specify the TLP type. For Messages, Message Routing and Message Code are specified. For 
CfgRd/CfgWr TLPs, Function Number, Register Number, and 1st DWORD Byte-Enable 
are specified. The specific bit layout is shown in the example ROM file.

PIO Master

The PIO Master demonstrates how a user-application design might interact with the 
Configurator Block. It directs the Configurator Block to bring up the link partner at the 
appropriate time, and then (after successful bring-up) generates and consumes bus traffic. 
The PIO Master performs writes and reads across the PCI Express Link to the PIO Slave 
Example Design (from the Endpoint core) to confirm basic operation of the link and the 
Endpoint.

The PIO Master waits until user_lnk_up is asserted by the Root Port. It then asserts 
start_config to the Configurator Block. When the Configurator Block asserts 
finished_config, the PIO Master writes and reads to/from each BAR in the PIO Slave 
design. If the readback data matches what was written, the PIO Master asserts its 
pio_test_finished output. If there is a data mismatch or the Configurator Block fails to 
configure the Endpoint, the PIO Master asserts its pio_test_failed output. The PIO Master's 
operation can be restarted by asserting its pio_test_restart input for one clock cycle.

Configurator File Structure

Table B-1 defines the Configurator example design file structure.

Table B-1: Example Design File Structure

File Description

xilinx_pcie_2_1_rport_v6.v Top-level wrapper file for Configurator example 
design

cgator_wrapper.v Wrapper for Configurator and Root Port

cgator.v Wrapper for Configurator sub-blocks

cgator_cpl_decoder.v Completion decoder

cgator_pkt_generator.v Configuration TLP generator

cgator_tx_mux.v Transmit AXI4-Stream muxing logic

cgator_gen2_enabler.v 5.0 Gb/s directed speed change module 

cgator_controller.v Configurator transmit engine
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The hierarchy of the Configurator example design is:

• xilinx_pcie_2_1_rport_v6topdirectory

•  cgator_wrapper

-  pcie_2_1_rport_v6 (in the source directory)
This directory contains all the source files for the Integrated Block for PCI 
Express in Root Port Configuration.

-  cgator

-  cgator_cpl_decoder 

-  cgator_pkt_generator

-  cgator_tx_mux

-  cgator_gen2_enabler 

-  cgator_controller
This directory contains <cgator_cfg_rom.data> (specified by ROM_FILE)*

•  pio_master

-  pio_master_controller

-  pio_master_checker

-  pio_master_pkt_generator

Note: cgator_cfg_rom.data is the default name of the ROM data file. The user can override this 
by changing the value of the ROM_FILE parameter.

Configurator Example Design Summary
The Configurator example design is a synthesizable design that demonstrates the 
capabilities of the 7 Series FPGAs Integrated Block for PCI Express when configured as a 
Root Port. The example is provided via the CORE Generator software and uses the 
Endpoint PIO example as a target for PCI Express enumeration and configuration. The 
design can be modified to target other Endpoints by changing the contents of a ROM file.

cgator_cfg_rom.data Configurator ROM file

pio_master.v Wrapper for PIO Master

pio_master_controller.v TX and RX Engine for PIO Master

pio_master_checker.v Checks incoming User-Application Completion TLPs

pio_master_pkt_generator.v Generates User-Application TLPs

Table B-1: Example Design File Structure (Cont’d)

File Description
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Endpoint Model Test Bench for Root Port
The Endpoint model test bench for the 7 Series FPGAs Integrated Block for PCI Express in 
Root Port configuration is a simple example test bench that connects the Configurator 
example design and the PCI Express Endpoint model allowing the two to operate like two 
devices in a physical system. As the Configurator example design consists of logic that 
initializes itself and generates and consumes bus traffic, the example test bench only 
implements logic to monitor the operation of the system and terminate the simulation.

The Endpoint model test bench consists of:

• Verilog or VHDL source code for all Endpoint model components

• PIO slave design

Figure B-2, page 257 illustrates the Endpoint model coupled with the Configurator 
example design.

Architecture
The Endpoint model consists of these blocks:

• PCI Express Endpoint (7 Series FPGAs Integrated Block for PCI Express in Endpoint 
configuration) model.

• PIO slave design, consisting of:

• PIO_RX_ENGINE

• PIO_TX_ENGINE

• PIO_EP_MEM

• PIO_TO_CTRL

The PIO_RX_ENGINE and PIO_TX_ENGINE blocks interface with the ep block for 
reception and transmission of TLPs from/to the Root Port Design Under Test (DUT). The 
Root Port DUT consists of the Integrated Block for PCI Express configured as a Root Port 
and the Configurator Example Design, which consists of a Configurator block and a PIO 
Master design, or customer design.

The PIO slave design is described in detail in Appendix A, Programmed Input/Output: 
Endpoint Example Design.

Simulating the Design
Three simulation script files are provided with the model to facilitate simulation with 
Synopsys VCS and VCS MX, Cadence IES, and Mentor Graphics ModelSim simulators:

• simulate_vcs.sh (Verilog only)
• simulate_ncsim.sh (Verilog only)
• simulate_mti.do

The example simulation script files are located in this directory:

<project_dir>/<component_name>/simulation/functional

Instructions for simulating the Configurator example design with the Endpoint model are 
provided in Chapter 3, Getting Started Example Design.

Note: For Cadence IES users, the work construct must be manually inserted into the cds.lib file: 
DEFINE WORK WORK.
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Scaled Simulation Timeouts
The simulation model of the 7 Series FPGAs Integrated Block for PCI Express uses scaled 
down times during link training to allow for the link to train in a reasonable amount of 
time during simulation. According to the PCI Express Specification, rev. 2.1, there are various 
timeouts associated with the link training and status state machine (LTSSM) states. The 
7 Series FPGAs Integrated Block for PCI Express scales these timeouts by a factor of 256 in 
simulation, except in the Recovery Speed_1 LTSSM state, where the timeouts are not 
scaled.

Waveform Dumping
Table B-2 describes the available simulator waveform dump file formats, each of which is 
provided in the simulators native file format. The same mechanism is used for VCS and 
ModelSim.

The Endpoint model test bench provides a mechanism for outputting the simulation 
waveform to file by specifying the +dump_all command line parameter to the simulator.

For example, the script file simulate_ncsim.sh (used to start the Cadence IES 
simulator) can indicate to the Endpoint model that the waveform should be saved to a file 
using this command line:

ncsim work.boardx01 +dump_all

Output Logging
The test bench outputs messages, captured in the simulation log, indicating the time at 
which these occur:

• user_reset deasserted

• user_lnk_up asserted

• cfg_done asserted by the Configurator

• pio_test_finished asserted by the PIO Master

• Simulation Timeout (if pio_test_finished or pio_test_failed never asserted)

Table B-2: Simulator Dump File Format

Simulator Dump File Format

Synopsys VCS and VCS MX .vpd

ModelSim .vcd

Cadence IES .trn
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Migration Considerations

For users migrating to the 7 Series FPGAs Integrated Block for PCI Express® from the 
Virtex-6 FPGA Integrated Block for PCI Express, the list in this appendix describes the 
differences in behaviors and options between the 7 Series FPGAs Integrated Block for PCI 
Express core and the Virtex-6 FPGA Integrated Block for PCI Express core, version v2.x 
with the AXI interface. For additional differences in behavior and signal naming between 
the 7 Series FPGAs Integrated Block for PCI Express core and Virtex-6 FPGA Integrated 
Block for PCI Express core, version v1.x, with TRN interface, refer to Appendix F, TRN to 
AXI Migration Considerations.

Core Capability Differences
• 8 lane, 5.0 Gb/s (Gen2) Speed Operation for Root Port Configuration: The 7 Series 

FPGAs Integrated Block for PCI Express also supports the 5.0 Gb/s speed operation 
for the 8-lane Root Port Configuration.

• 128-bit Interface: The 7 Series FPGAs Integrated Block for PCI Express supports the 
128-bit interface for the 8 lane, 2.5 Gb/s and 4 lane, 5.0 Gb/s configurations.

Configuration Interface
Table C-1 lists the Configuration interface signals whose names were changed.

Table C-1: Configuration Interface Changes

Name
Signal Name in 

Virtex-6 FPGA Integrated 
Block for PCI Express

Signal Name in 7 Series 
FPGAs Integrated Block 

for PCI Express

Configuration Data Out cfg_do cfg_mgmt_do

Configuration Read Write Done cfg_rd_wr_done cfg_mgmt_rd_wr_done

Configuration Data In cfg_di cfg_mgmt_di

Configuration DWORD Address cfg_dwaddr cfg_mgmt_dwaddr

Configuration Byte Enable cfg_byte_en cfg_mgmt_byte_en

Configuration Write Enable cfg_wr_en cfg_mgmt_wr_en

Configuration Read Enable cfg_rd_en cfg_mgmt_rd_en
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Table C-2 lists the new Configuration interface signals. See Design with Configuration 
Space Registers and Configuration Interface in Chapter 5 for detailed information.

Error Reporting Signals
The 7 Series FPGAs Integrated Block for PCI Express core supports the additional error 
reporting signals listed below. See Design with Configuration Space Registers and 
Configuration Interface in Chapter 5 for detailed information.

• cfg_err_poisoned

• cfg_err_malformed

• cfg_err_acs

• cfg_err_atomic_egress_blocked

• cfg_err_mc_blocked

• cfg_err_internal_uncor

• cfg_err_internal_cor

• cfg_err_norecovery

ID Initial Values
The ID initial values (Vendor ID, Device ID, Revision ID, Subsystem Vendor ID, and 
Subsystem ID) have changed from attributes on Virtex-6 FPGA Integrated Block for 
PCI Express to input ports on the 7 Series FPGAs Integrated Block for PCI Express. The 
values set for these via the CORE Generator software GUI are used to drive these ports in 
the 7 Series FPGAs Integrated Block for PCI Express. These ports are not available at the 
Core boundary of the wrapper, but are available within the top-level wrapper of the 

Table C-2: New Configuration Interface Signals

Signal Description

cfg_mgmt_wr_rw1c_as_rw New Configuration Write signals in the 
core.

cfg_mgmt_wr_readonly

cfg_pm_halt_aspm_l0s New Power Management signals in the 
core.

cfg_pm_halt_aspm_l1

cfg_pm_force_state[1:0]

cfg_pm_force_state_en

cfg_err_aer_headerlog[127:0] New AER Interface signals. 

cfg_err_aer_headerlog_set

cfg_aer_interrupt_msgnum[4:0]

cfg_aer_ecrc_gen_en

cfg_aer_ecrc_check_en

cfg_pciecap_interrupt_msgnum[4:0] New Interrupt interface signals

cfg_interrupt_stat

cfg_vc_tcvc_map[6:0] New TC/VC Map signal
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Physical Layer Interface

7 Series FPGAs Integrated Block for PCI Express. Table C-3 lists the ID values and the 
corresponding ports.

Physical Layer Interface
Table C-4 and Table C-5 list the changes in the Physical Layer interface in the 7 Series 
FPGAs Integrated Block for PCI Express.

Table C-3: ID Values and Corresponding Ports

ID Value Input Port

Vendor ID cfg_vend_id[15:0]

Device ID cfg_dev_id[15:0]

Revision ID cfg_rev_id[7:0]

Subsystem Vendor ID cfg_subsys_vend_id[15:0]

Subsystem ID cfg_subsys_id[15:0]

Table C-4: Physical Layer Signal Name Changes

Name in Virtex-6 FPGA Integrated Block 
for PCI Express Core

Name in 7 Series FPGAs Integrated Block 
for PCI Express Core

pl_link_gen2_capable pl_link_gen2_cap

pl_link_upcfg_capable pl_link_upcfg_cap

pl_sel_link_rate pl_sel_lnk_rate

pl_sel_link_width pl_sel_lnk_width

Table C-5: New Physical Layer Signals

Signal Description

pl_directed_change_done Indicates the Directed change is done.

pl_phy_lnk_up Indicates Physical Layer Link Up Status

pl_rx_pm_state Indicates RX Power Management State

pl_tx_pm_state Indicates TX Power Management State
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Dynamic Reconfiguration Port Interface
Some signals names on the Dynamic Reconfiguration Port Interface have changed in the 
7 Series FPGAs Integrated Block for PCI Express. Table C-6 shows the signals that have 
changed on this interface.

Table C-6: Dynamic Reconfiguration Port Name Changes

Name in Virtex-6 FPGA 
Integrated Block for PCI Express 

Name in 7 Series FPGAs
Integrated Block for PCI Express

pcie_drp_den pcie_drp_en

pcie_drp_dwe pcie_drp_we

pcie_drp_daddr pcie_drp_addr

pcie_drp_drdy pcie_drp_rdy
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Debugging Designs

This appendix provides information on using resources available on the Xilinx Support 
website, available debug tools, and a step-by-step process for debugging designs that use 
the 7 Series FPGAs Integrated Block for PCI Express®. This appendix uses flow diagrams 
to guide the user through the debug process. 

This information is found in this appendix:

• Finding Help on Xilinx.com

• Contacting Xilinx Technical Support

• Debug Tools

• Hardware Debug

• Simulation Debug

Finding Help on Xilinx.com
To help in the design and debug process when using the 7 series FPGA, the Xilinx Support 
webpage (www.xilinx.com/support) contains key resources such as Product 
documentation, Release Notes, Answer Records, and links to opening a Technical Support 
case.

Documentation
The Data Sheet and User Guide are the main documents associated with the 7 Series 
FPGAs Integrated Block, as shown in Table D-1. 

These Integrated Block for PCI Express documents along with documentation related to all 
products that aid in the design process can be found on the Xilinx Support webpage. 
Documentation is sorted by product family at the main support page or by solution at the 
Documentation Center. 

Table D-1: 7 Series FPGAs Integrated Block for PCI Express Documentation

Designation Description

DS

Data Sheet: provides a high-level description of the integrated block and 
key features. It includes information on which ISE® software version is 
supported by the current LogiCORE™ IP version used to instantiate the 
integrated block.

UG

User Guide: provides information on generating an integrated block 
design, detailed descriptions of the interface and how to use the product. 
The User Guide contains waveforms to show interactions with the block 
and other important information needed to design with the product. 

http://www.xilinx.com/support
http://www.xilinx.com


268 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix D: Debugging Designs

To see the available documentation by device family: 

• Navigate to www.xilinx.com/support.

To see the available documentation by solution:

• Navigate to www.xilinx.com/support.

• Select the Documentation tab located at the top of the webpage. 

• This is the Documentation Center where Xilinx documentation is sorted by Devices, 
Boards, IP, Design Tools, Doc Type, and Topic. 

Answer Records

Answer Records include information on commonly encountered problems, helpful 
information on how to resolve these problems, and any known issues with a product. 
Answer Records are created and maintained daily ensuring users have access to the most 
up-to-date information on Xilinx products. Answer Records can be found by searching the 
Answers Database. 

To use the Answers Database Search:

• Navigate to www.xilinx.com/support. The Answers Database Search is located at the 
top of this webpage. 

• Enter keywords in the provided search field and select Search. 

• Examples of searchable keywords are product names, error messages, or a generic 
summary of the issue encountered. 

Contacting Xilinx Technical Support 
Xilinx provides premier technical support for customers encountering issues that requires 
additional assistance. 

To contact Technical Support:

• Navigate to www.xilinx.com/support.

• Open a WebCase by selecting the WebCase link located under Support Quick Links. 

When opening a WebCase, include:

• Target FPGA including package and speed grade

• All applicable ISE, synthesis (if not XST), and simulator software versions

• The XCO file created during generation of the LogiCORE IP wrapper 

• This file is located in the directory targeted for the CORE Generator software 
project

Additional files might be required based on the specific issue. See the relevant sections in 
this debug guide for further information on specific files to include with the WebCase.

http://www.xilinx.com/support
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Debug Tools
There are many tools available to debug PCI Express design issues. This section indicates 
which tools are useful for debugging the various situations encountered. 

Example Design
Xilinx Endpoint for PCI Express products come with a synthesizable back-end application 
called the PIO design that has been tested and is proven to be interoperable in available 
systems. The design appropriately handles all incoming one Endpoint read and write 
transactions. It returns completions for non-posted transactions and updates the target 
memory space for writes. For more information, see Programmed Input/Output: 
Endpoint Example Design, page 223.

ChipScope Pro Tool
The ChipScope™ Pro tool inserts logic analyzer, bus analyzer, and virtual I/O software 
cores directly into the user design. The ChipScope Pro tool allows the user to set trigger 
conditions to capture application and Integrated Block port signals in hardware. Captured 
signals can then be analyzed through the ChipScope Pro Logic Analyzer tool. For detailed 
information on the ChipScope Pro tool, visit www.xilinx.com/chipscope. 

Link Analyzers
Third party link analyzers show link traffic in a graphical or text format. Lecroy, Agilent, 
and Vmetro are companies that make common analyzers available today. These tools 
greatly assist in debugging link issues and allow users to capture data which Xilinx 
support representatives can view to assist in interpreting link behavior.

Third Party Software Tools
This section describes third-party software tools that can be useful in debugging.

LSPCI (Linux)

LSPCI is available on Linux platforms and allows users to view the PCI Express device 
configuration space. LSPCI is usually found in the /sbin directory. LSPCI displays a list of 
devices on the PCI buses in the system. See the LSPCI manual for all command options. 
Some useful commands for debugging include:

• lspci -x -d [<vendor>]:[<device>]

This displays the first 64 bytes of configuration space in hexadecimal form for the 
device with vendor and device ID specified (omit the -d option to display information 
for all devices). The default Vendor/Device ID for Xilinx cores is 10EE:6012. Here is a 
sample of a read of the configuration space of a Xilinx device:

> lspci -x -d 10EE:6012
81:00.0 Memory controller: Xilinx Corporation: Unknown device 6012
00: ee 10 12 60 07 00 10 00 00 00 80 05 10 00 00 00
10: 00 00 80 fa 00 00 00 00 00 00 00 00 00 00 00 00
20: 00 00 00 00 00 00 00 00 00 00 00 00 ee 10 6f 50
30: 00 00 00 00 40 00 00 00 00 00 00 00 05 01 00 00

Included in this section of the configuration space are the Device ID, Vendor ID, Class 
Code, Status and Command, and Base Address Registers. 

http://www.xilinx.com/chipscope
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• lspci -xxxx -d [<vendor>]:[<device>]

This displays the extended configuration space of the device. It can be useful to read 
the extended configuration space on the root and look for the Advanced Error 
Reporting (AER) registers. These registers provide more information on why the 
device has flagged an error (for example, it might show that a correctable error was 
issued because of a replay timer timeout).

• lspci -k

Shows kernel drivers handling each device and kernel modules capable of handling it 
(works with kernel 2.6 or later).

PCItree (Windows)

PCItree can be downloaded at www.pcitree.de and allows the user to view the PCI Express 
device configuration space and perform one DWORD memory writes and reads to the 
aperture.

The configuration space is displayed by default in the lower right corner when the device 
is selected, as shown in Figure D-1.
X-Ref Target - Figure D-1

Figure D-1: PCItree with Read of Configuration Space

UG477_aD_01_101810
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HWDIRECT (Windows)

HWDIRECT can be purchased at www.eprotek.com and allows the user to view the 
PCI Express device configuration space as well as the extended configuration space 
(including the AER registers on the root).

PCI-SIG Software Suites

PCI-SIG® software suites such as PCIE-CV can be used to test compliance with the 
specification. This software can be downloaded at www.pcisig.com.

Hardware Debug
Hardware issues can range from device recognition issues to problems seen after hours of 
testing. This section provides debug flow diagrams for some of the most common issues 
experienced by users. Endpoints that are shaded gray indicate that more information can 
be found in sections after Figure D-3.

X-Ref Target - Figure D-2

Figure D-2: HWDIRECT with Read of Configuration Space

UG477_aD_02_101810
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X-Ref Target - Figure D-3

Figure D-3: Design Fails in Hardware Debug Flow Diagram

UG477_aD_03_012811

Design Fails in Hardware

Does a soft reset fix the problem?
(user_lnk_up = 1)

No

Is user_reset deasserted?
(user_reset = 0)

No

Is user_lnk_up asserted?
(user_lnk_up = 1)

To eliminate FPGA configuration 
as a root cause, perform a soft 
restart of the system. Performing a
soft reset on the system will keep
power applied and forces 
re-enumeration of the device.

One reason user_reset stays 
asserted other than the system
reset being asserted is due to a 
faulty clock. This might keep the
PLL from locking which holds
user_reset asserted.

Yes
See “Link is Training Debug” section.

Yes

Yes

See "FPGA Configuration Time 
Debug" section.

Is it a multi-lane link?

Multi-lane links are susceptible to
crosstalk and noise when all lanes
are switching during training.
A quick test for this is forcing one
lane operation. This can be done 
by using an interposer or adapter
to isolate the upper lanes or use 
a tape such as Scotch tape and
tape off the upper lanes on the
connector. If it is an embedded 
board, remove the AC capacitors if
possible to isolate the lanes.

Yes Force x1 Operation

Does user_lnk_up = 1 when using
as x1 only?

There are potentially issues
with the board layout causing 
interference when all lanes are 
switching. See board debug 
suggestions.

Yes

No

No

No

Do you have a link analyzer?

Use the link analyzer to monitor the training 
sequence and to determine the point of failure.
Have the analyzer trigger on the first TS1 that it 
recognizes and then compare the output to the 
LTSSM state machine sequences outlined in 
Chapter 4 of the PCI Express Base Specification.

Yes

The ChipScope tool can be used to 
determine the point of failure. 

Using probes, an LED, ChipScope
or some other method, determine if
user_lnk_up is asserted. When
user_lnk_up is High, it indicates
the core has achieved link up
meaning the LTSSM is in L0 state
and the data link layer is in the
DL_Active state.

See "Clock Debug" section.
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FPGA Configuration Time Debug
Device initialization and configuration issues can be caused by not having the FPGA 
configured fast enough to enter link training and be recognized by the system. Section 6.6 
of PCI Express Base Specification, rev. 2.1 states two rules that might be impacted by FPGA 
Configuration Time:

• A component must enter the LTSSM Detect state within 20 ms of the end of the 
Fundamental reset. 

• A system must guarantee that all components intended to be software visible at boot 
time are ready to receive Configuration Requests within 100 ms of the end of 
Conventional Reset at the Root Complex.

These statements basically mean the FPGA must be configured within a certain finite time, 
and not meeting these requirements could cause problems with link training and device 
recognition.

Configuration can be accomplished using an onboard PROM or dynamically using JTAG. 
When using JTAG to configure the device, configuration typically occurs after the Chipset 
has enumerated each peripheral. After configuring the FPGA, a soft reset is required to 
restart enumeration and configuration of the device. A soft reset on a Windows based PC 
is performed by going to Start →  Shut Down and then selecting Restart.

To eliminate FPGA configuration as a root cause, the designer should perform a soft restart 
of the system. Performing a soft reset on the system keeps power applied and forces 
re-enumeration of the device. If the device links up and is recognized after a soft reset is 
performed, then FPGA configuration is most likely the issue. Most typical systems use 
ATX power supplies which provide some margin on this 100 ms window as the power 
supply is normally valid before the 100 ms window starts. For more information on FPGA 
configuration, see Chapter 7, FPGA Configuration.
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Link is Training Debug
Figure D-4 shows the flowchart for link trained debug.

X-Ref Target - Figure D-4

Figure D-4: Link Trained Debug Flow Diagram
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Link is Training
(user_lnk_up = 1)

Is the device recognized by the system?
Can it be seen by PCITREE (Windows) or

lspci (Linux)?

Does a soft reset fix the problem?
(user_lnk_up = 1)

No
To eliminate FPGA configuration 
as a root cause, perform a soft 
restart of the system. Performing a
soft reset on the system keeps
power applied and forces 
re-enumeration of the device.
If this fixes the problem, then it is 
likely the FPGA is not configured in
time for the host to access the card.

Yes

Yes

Does using the PIO example
design fix the problem?

No

No

No
Do you have a link analyzer?

Does mirroring the PIO 
CORE Generator GUI settings for
the user design fix the problem?

PCITREE and lspci scan the
the system and display devices
recognized during startup. These
tools show the PCI configuration
space and its settings within
the device.

Yes

The PIO design is known to work.
Often, the PIO design works when
a user design does not. This usually
indicates some parameter or resource
conflict due to settings used for the
user design configuration. 
It is recommended to mirror the PIO
CORE Generator GUI settings into 
the user design. Even though the
design might not function, it should 
still be recognized by the system.

Yes

Check for configuration settings
conflict. See the "Debugging 

PCI Configuration Space Parameters" 
section.

Yes

If the PIO design works, but mirroring the 
configuration parameters does not fix the 

problem, then attention should be focused on
the user application design. See the "Application

Requirements" section.

No

With no link analyzer, it is possible to use
the ChipScope tool to gather the same information. 

See "FPGA Configuration Time 
Debug" section.

It is likely the problem is due to the device
not responding properly to some type of access. A
link analyzer allows the user to view the link traffic 

and determine if something is incorrect. See 
the "Using a Link Analyzer to Debug 
Device Recognition Issues” section.

See “Data Transfer Failing Debug”
section.
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FPGA Configuration Time Debug

Device initialization and configuration issues can be caused by not having the FPGA 
configured fast enough to enter link training and be recognized by the system. Section 6.6 
of PCI Express Base Specification, rev. 2.1 states two rules that might be impacted by FPGA 
Configuration Time:

• A component must enter the LTSSM Detect state within 20 ms of the end of the 
Fundamental reset. 

• A system must guarantee that all components intended to be software visible at boot 
time are ready to receive Configuration Requests within 100 ms of the end of 
Conventional Reset at the Root Complex.

These statements basically mean the FPGA must be configured within a certain finite time, 
and not meeting these requirements could cause problems with link training and device 
recognition.

Configuration can be accomplished using an onboard PROM or dynamically using JTAG. 
When using JTAG to configure the device, configuration typically occurs after the Chipset 
has enumerated each peripheral. After configuring the FPGA, a soft reset is required to 
restart enumeration and configuration of the device. A soft reset on a Windows based PC 
is performed by going to Start →  Shut Down and then selecting Restart. 

To eliminate FPGA configuration as a root cause, the designer should perform a soft restart 
of the system. Performing a soft reset on the system keeps power applied and forces 
re-enumeration of the device. If the device links up and is recognized after a soft reset is 
performed, then FPGA configuration is most likely the issue. Most typical systems use 
ATX power supplies which provides some margin on this 100 ms window as the power 
supply is normally valid before the 100 ms window starts. For more information on FPGA 
configuration, see Chapter 7, FPGA Configuration.

Debugging PCI Configuration Space Parameters

Often, a user application fails to be recognized by the system, but the Xilinx PIO Example 
design works. In these cases, the user application is often using a PCI configuration space 
setting that is interfering with the system systems ability to recognize and allocate 
resources to the card.

Xilinx solutions for PCI Express handle all configuration transactions internally and 
generate the correct responses to incoming configuration requests. Chipsets have limits as 
to the amount of system resources it can allocate and the core must be configured to adhere 
to these limitations. 

The resources requested by the Endpoint are identified by the BAR settings within the 
Endpoint configuration space. The user should verify that the resources requested in each 
BAR can be allocated by the chipset. I/O BARs are especially limited so configuring a large 
I/O BAR typically prevents the chipset from configuring the device. Generate a core that 
implements a small amount of memory (approximately 2 KB) to identify if this is the root 
cause.

The Class Code setting selected in the CORE Generator software GUI can also affect 
configuration. The Class Code informs the Chipset as to what type of device the Endpoint 
is. Chipsets might expect a certain type of device to be plugged into the PCI Express slot 
and configuration might fail if it reads an unexpected Class Code. The BIOS could be 
configurable to work around this issue.

Use the PIO design with default settings to rule out any device allocation issues. The PIO 
design default settings have proven to work in all systems encountered when debugging 
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problems. If the default settings allow the device to be recognized, then change the PIO 
design settings to match the intended user application by changing the PIO configuration 
the CORE Generator software GUI. Trial and error might be required to pinpoint the issue 
if a link analyzer is not available.

Using a link analyzer, it is possible to monitor the link traffic and possibly determine when 
during the enumeration and configuration process problems occur.

Application Requirements

During enumeration, it is possible for the chipset to issue TLP traffic that is passed from the 
core to the backend application. A common oversight when designing custom backend 
applications is to not have logic which handles every type incoming request. As a result, no 
response is created and problems arise. The PIO design has the necessary backend 
functions to respond correctly to any incoming request. It is the responsibility of the 
application to generate the correct response. These packet types are presented to the 
application:

• Requests targeting the Expansion ROM (if enabled)

• Message TLPs

• Memory or I/O requests targeting a BAR

• All completion packets

The PIO design, can be used to rule out any of these types of concerns, as the PIO design 
responds to all incoming transactions to the user application in some way to ensure the 
host receives the proper response allowing the system to progress. If the PIO design works, 
but the custom application does not, some transaction is not being handled properly. 

The ChipScope tool should be implemented on the wrapper Receive AXI4-Stream interface 
to identify if requests targeting the backend application are drained and completed 
successfully. The AXI4-Stream interface signals that should be probed in the ChipScope 
tool are defined in Table D-2, page 279.

Using a Link Analyzer to Debug Device Recognition Issues

In cases where the link is up (user_lnk_up = 1), but the device is not recognized by the 
system, a link analyzer can help solve the issue. It is likely the FPGA is not responding 
properly to some type of access. The link view can be used to analyze the traffic and see if 
anything looks out of place. 

To focus on the issue, it might be necessary to try different triggers. Here are some trigger 
examples:

• Trigger on the first INIT_FC1 and/or UPDATE_FC in either direction. This allows the 
analyzer to begin capture after link up. 

• The first TLP normally transmitted to an Endpoint is the Set Slot Power Limit 
Message. This usually occurs before Configuration traffic begins. This might be a 
good trigger point.

• Trigger on Configuration TLPs.

• Trigger on Memory Read or Memory Write TLPs.
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Data Transfer Failing Debug
Figure D-5 shows the flowchart for data transfer debug.

X-Ref Target - Figure D-5

Figure D-5: Data Transfer Debug Flow Diagram
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Identifying Errors
Hardware symptoms of system lock up issues are indicated when the system hangs or a 
blue screen appears (PC systems). The PCI Express Base Specification, rev. 2.1 requires that 
error detection be implemented at the receiver. A system lock up or hang is commonly the 
result of a Fatal Error and is reported in bit 2 of the receiver’s Device Status register. Using 
the ChipScope tool, monitor the core’s device status register to see if a fatal error is being 
reported.

A fatal error reported at the Root complex implies an issue on the transmit side of the EP. 
The Root Complex Device Status register can often times be seen using PCITree (Windows) 
or LSPCI (Linux). If a fatal error is detected, refer to the Transmit section. A Root Complex 
can often implement Advanced Error Reporting, which further distinguishes the type of 
error reported. AER provides valuable information as to why a certain error was flagged 
and is provided as an extended capability within a devices configuration space. 
Section 7.10 of the PCI Express Base Specification, rev. 2.1 provides more information on AER 
registers.

Transmit

Fatal Error Detected on Root or Link Partner

Check to make sure the TLP is correctly formed and that the payload (if one is attached) 
matches what is stated in the header length field. The Endpoints device status register does 
not report errors created by traffic on the transmit channel. 

These signals should be monitored on the Transmit interface to verify all traffic being 
initiated is correct. Refer to Table 2-9 for signal descriptions.

• user_lnk_up

• s_axis_tx_tlast

• s_axis_tx_tdata

• s_axis_tx_trb

• s_axis_tx_tvalid

• s_axis_tx_tready

Fatal Error Not Detected

Ensure that the address provided in the TLP header is valid. The kernel mode driver 
attached to the device is responsible for obtaining the system resources allocated to the 
device. In a Bus Mastering design, the driver is also responsible for providing the 
application with a valid address range. System hangs or blue screens might occur if a TLP 
contains an address that does not target the designated address range for that device. 
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Receive

Xilinx solutions for PCI Express provide the Device Status register to the application on 
CFG_DSTATUS[3:0].

System lock up conditions due to issues on the receive channel of the PCI Express core are 
often result of an error message being sent upstream to the root. Error messages are only 
sent when error reporting is enabled in the Device Control register.

A fatal condition is reported if any of these events occur:

• Training Error

• DLL Protocol Error

• Flow Control Protocol Error

• Malformed TLP

• Receiver Overflow

The first four bullets are not common in hardware because both Xilinx solutions for PCI 
Express and connected components have been thoroughly tested in simulation and 
hardware. However, a receiver overflow is a possibility. Users must ensure they follow 
requirements discussed in the section Receiver Flow Control Credits Available in 
Chapter 5 when issuing memory reads.

Non-Fatal Errors
This subsection lists conditions reported as Non-Fatal errors. See the PCI Express Base 
Specification, rev. 2.1 for more details. 

If the error is being reported by the root, the AER registers can be read to determine the 
condition that led to the error. Use a tool such as HWDIRECT, discussed in Third Party 
Software Tools, page 269, to read the root’s AER registers. Chapter 7 of the PCI Express Base 
Specification defines the AER registers. If the error is signaled by the Endpoint, debug ports 
are available to help determine the specific cause of the error. 

Correctable Non-Fatal errors are:

• Receiver Error

• Bad TLP

• Bad DLLP

• Replay Timeout

• Replay NUM Rollover

The first three errors listed above are detected by the receiver and are not common in 
hardware systems. The replay error conditions are signaled by the transmitter. If an ACK is 
not received for a packet within the allowed time, it is replayed by the transmitter. 

Table D-2: Description of CFG_DSTATUS[3:0]

CFG_DSTATUS[3:0] Description

CFG_DSTATUS[0] Correctable Error Detected

CFG_DSTATUS[1] Non-Fatal Error Detected

CFG_DSTATUS[2] Fatal Error Detected

CFG_DSTATUS[3] UR Detected
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Throughput can be reduced if many packets are being replayed, and the source can usually 
be determined by examining the link analyzer or ChipScope tool captures. 

Uncorrectable Non-Fatal errors are:

• Poisoned TLP

• Received ECRC Check Failed

• Unsupported Request (UR)

• Completion Timeout 

• Completer Abort

• Unexpected Completion

• ACS Violation

An unsupported request usually indicates that the address in the TLP did not fall within 
the address space allocated to the BAR. This often points to an issue with the address 
translation performed by the driver. Ensure also that the BAR has been assigned correctly 
by the root at start-up. LSPCI or PCItree discussed in Third Party Software Tools, page 269 
can be used to read the BAR values for each device.

A completion timeout indicates that no completion was returned for a transmitted TLP 
and is reported by the requester. This can cause the system to hang (could include a blue 
screen on Windows) and is usually caused when one of the devices locks up and stops 
responding to incoming TLPs. If the root is reporting the completion timeout, the 
ChipScope tool can be used to investigate why the User Application did not respond to a 
TLP (for example, the User Application is busy, there are no transmit buffers available, or 
s_axis_tx_tready is deasserted). If the Endpoint is reporting the Completion timeout, a link 
analyzer would show the traffic patterns during the time of failure and would be useful in 
determining the root cause.

Next Steps
If the debug suggestions listed previously do not resolve the issue, open a support case to 
have the appropriate Xilinx expert assist with the issue. 

To create a technical support case in WebCase, see the Xilinx website at:

www.xilinx.com/support/clearexpress/websupport.htm

Items to include when opening a case:

• Detailed description of the issue and results of the steps listed above.

• Attach ChipScope tool VCD captures taken in the steps above.

To discuss possible solutions, use the Xilinx User Community:

forums.xilinx.com/xlnx/

Simulation Debug
This section provides simulation debug flow diagrams for some of the most common 
issues experienced by users. Endpoints that are shaded gray indicate that more 
information can be found in sections after Figure D-6.

http://www.xilinx.com/support/clearexpress/websupport.htm
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ModelSim Debug
Figure D-6 shows the flowchart for ModelSim debug.

X-Ref Target - Figure D-6

Figure D-6: ModelSim Debug Flow Diagram
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PIO Simulator Expected Output

The PIO design simulation should give the output as follows:

# Loading work.board(fast)
# Loading unisims_ver.IBUFDS_GTXE1(fast)
# Loading work.pcie_clocking_v6(fast)
# Loading unisims_ver.PCIE_2_1(fast)
# Loading work.pcie_gtx_v6(fast)
# Loading unisims_ver.GTXE1(fast)
# Loading unisims_ver.RAMB36(fast)
# Loading unisims_ver.RAMB16_S36_S36(fast)
# Loading unisims_ver.PCIE_2_1(fast__1)
# Loading work.glbl(fast)
# [                   0] board.EP.core.pcie_2_1_i.pcie_bram_i ROWS_TX 1 COLS_TX 2
# [                   0] board.EP.core.pcie_2_1_i.pcie_bram_i ROWS_RX 1 COLS_RX 2
# [                   0] board.EP.core.pcie_2_1_i.pcie_bram_i.pcie_brams_tx NUM_BRAMS 2  
DOB_REG 1 WIDTH 36 RAM_WRITE_LATENCY 0 RAM_RADDR_LATENCY 0 RAM_RDATA_LATENCY 2
# [                  0] board.EP.core.pcie_2_1_i.pcie_bram_i.pcie_brams_rx NUM_BRAMS 2  
DOB_REG 1 WIDTH 36 RAM_WRITE_LATENCY 0 RAM_RADDR_LATENCY 0 RAM_RDATA_LATENCY 2
# [                   0] board.RP.rport.pcie_2_1_i.pcie_bram_i ROWS_TX 1 COLS_TX 2
# [                   0] board.RP.rport.pcie_2_1_i.pcie_bram_i ROWS_RX 1 COLS_RX 2
# [              0] board.RP.rport.pcie_2_1_i.pcie_bram_i.pcie_brams_tx NUM_BRAMS 2  
DOB_REG 1 WIDTH 36 RAM_WRITE_LATENCY 0 RAM_RADDR_LATENCY 0 RAM_RDATA_LATENCY 2
# [               0] board.RP.rport.pcie_2_1_i.pcie_bram_i.pcie_brams_rx NUM_BRAMS 2  
DOB_REG 1 WIDTH 36 RAM_WRITE_LATENCY 0 RAM_RADDR_LATENCY 0 RAM_RDATA_LATENCY 2
# Running test {sample_smoke_test0}......
# [                   0] : System Reset Asserted...
# [             4995000] : System Reset De-asserted...
# [            64069100] : Transaction Reset Is De-asserted...
# [            73661100] : Transaction Link Is Up...
# [            73661100] : Expected Device/Vendor ID = 000710ee
# [            73661100] : Reading from PCI/PCI-Express Configuration Register 0x00
# [            73673000] : TSK_PARSE_FRAME on Transmit
# [            74941000] : TSK_PARSE_FRAME on Receive
# [            75273000] : TEST PASSED --- Device/Vendor ID 000710ee successfully received
# ** Note: $finish    : ../tests/sample_tests1.v(29)
#    Time: 75273 ns  Iteration: 3  Instance: /board/RP/tx_usrapp

Compiling Simulation Libraries

Use the compxlib command to compile simulation libraries. This tool is delivered as part 
of the Xilinx software. For more information see the ISE software manuals and specifically 
“Development System Reference Guide” under the section titled compxlib.

Assuming the Xilinx and ModelSim environments are set up correctly, this is an example of 
compiling the SecureIP and UniSims libraries for Verilog into the current directory:

compxlib -s mti_se -arch virtex7 -l verilog -lib secureip -lib unisims 
-dir ./

There are many other options available for compxlib described in the Development System 
Reference Guide.

Compxlib produces a modelsim.ini file containing the library mappings. In ModelSim, 
to see the current library mappings type vmap at the prompt. The mappings can be 
updated in the ini file, or to map a library at the ModelSim prompt, type:

vmap [<logical_name>] [<path>]

For example:

Vmap unisims_ver C:\my_unisim_lib
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Next Step
If the debug suggestions listed previously do not resolve the issue, a support case should 
be opened to have the appropriate Xilinx expert assist with the issue. 

To create a technical support case in WebCase, see the Xilinx website at:

www.xilinx.com/support/clearexpress/websupport.htm

Items to include when opening a case:

• Detailed description of the issue and results of the steps listed above.

• Attach a VCD or WLF dump of the simulation.

To discuss possible solutions, use the Xilinx User Community:

forums.xilinx.com/xlnx/

http://www.xilinx.com/support/clearexpress/websupport.htm
http://forums.xilinx.com/xlnx/
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Managing Receive-Buffer Space for 
Inbound Completions

The PCI Express® Base Specification requires all Endpoints to advertise infinite Flow 
Control credits for received Completions to their link partners. This means that an 
Endpoint must only transmit Non-Posted Requests for which it has space to accept 
Completion responses. This appendix describes how a User Application can manage the 
receive-buffer space in the PCI Express Endpoint core to fulfill this requirement.

General Considerations and Concepts

Completion Space
Table E-1 defines the completion space reserved in the receive buffer by the core. The 
values differ depending on the different Capability Max Payload Size settings of the core 
and the performance level selected by the designer. If the designer chooses to not have TLP 
Digests (ECRC) removed from the incoming packet stream, the TLP Digests (ECRC) must 
be accounted for as part of the data payload. Values are credits, expressed in decimal.

Table E-1: Receiver-Buffer Completion Space

Capability Max Payload 
Size (bytes)

Performance Level: Good Performance Level: High

Cpl. Hdr.
(Total_CplH)

Cpl. Data 
(Total_CplD)

Cpl. Hdr.
(Total_CplH)

Cpl. Data
(Total_CplD)

128 36 77 36 154

156 36 77 36 154

512 36 154 36 308

1024 36 308 36 616
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Maximum Request Size
A Memory Read cannot request more than the value stated in Max_Request_Size, which is 
given by Configuration bits cfg_dcommand[14:12] as defined in Table E-2. If the User 
Application chooses not to read the Max_Request_Size value, it must use the default value 
of 128 bytes.

Read Completion Boundary
A Memory Read can be answered with multiple Completions, which when put together 
return all requested data. To make room for packet-header overhead, the User Application 
must allocate enough space for the maximum number of Completions that might be 
returned.

To make this process easier, the Base Specification quantizes the length of all Completion 
packets such that each must start and end on a naturally aligned Read Completion 
Boundary (RCB), unless it services the starting or ending address of the original request. 
The value of RCB is determined by Configuration bit cfg_lcommand[3] as defined in 
Table E-3. If the User Application chooses not to read the RCB value, it must use the default 
value of 64 bytes.

When calculating the number of Completion credits a Non-Posted Request requires, the 
user must determine how many RCB-bounded blocks the Completion response might 
require; this is the same as the number of Completion Header credits required. 

Table E-2: Max_Request_Size Settings

cfg_dcommand[14:12]
Max_Request_Size

Bytes DW QW Credits

000b 128 32 16 8

001b 256 64 32 16

010b 512 128 64 32

011b 1024 256 128 64

100b 2048 512 256 128

101b 4096 1024 512 256

110b–111b Reserved

Table E-3: Read Completion Boundary Settings

cfg_lcommand[3]
Read Completion Boundary

Bytes DW QW Credits

0 64 16 8 4

1 128 32 16 8
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Methods of Managing Completion Space
A User Application can choose one of five methods to manage receive-buffer Completion 
space, as listed in Table E-4. For convenience, this discussion refers to these methods as 
LIMIT_FC, PACKET_FC, RCB_FC, DATA_FC, and STREAM_FC. Each has advantages 
and disadvantages that the designer needs to consider when developing the User 
Application.

LIMIT_FC Method
The LIMIT_FC method is the simplest to implement. The User Application assesses the 
maximum number of outstanding Non-Posted Requests allowed at one time, MAX_NP. To 
calculate this value, perform these steps:

1. Determine the number of CplH credits required by a Max_Request_Size packet:

Max_Header_Count = ceiling(Max_Request_Size / RCB)

2. Determine the greatest number of maximum-sized Completions supported by the 
CplD credit pool:

Max_Packet_Count_CplD = floor(CplD / Max_Request_Size)

Table E-4: Managing Receive Completion Space Methods

Method Description Advantage Disadvantage

LIMIT_FC Limit the total number of 
outstanding NP Requests

Simplest method to 
implement in user 
logic

Much Completion 
capacity goes 
unused

PACKET_FC Track the number of 
outstanding CplH and 
CplD credits; allocate and 
deallocate on a per-packet 
basis

Relatively simple 
user logic; finer 
allocation 
granularity means 
less wasted capacity 
than LIMIT_FC

As with LIMIT_FC, 
credits for an NP are 
still tied up until the 
Request is 
completely satisfied

RCB_FC Track the number of 
outstanding CplH and 
CplD credits; allocate and 
deallocate on a per-RCB 
basis

Ties up credits for 
less time than 
PACKET_FC

More complex user 
logic than LIMIT_FC 
or PACKET_FC

DATA_FC Track the number of 
outstanding CplH and 
CplD credits; allocate and 
deallocate on a per-RCB 
basis

Lowest amount of 
wasted capacity

More complex user 
logic than 
LIMIT_FC, 
PACKET_FC, and 
RCB_FC

STREAM_FC Stream packets out of the 
core at line rate

Very high 
performance

The user must accept 
and process 
Downstream 
Completion and 
Posted Transactions 
at line rate; Most 
complex user logic 
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3. Determine the greatest number of maximum-sized Completions supported by the 
CplH credit pool:

Max_Packet_Count_CplH = floor(CplH / Max_Header_Count)

4. Use the smaller of the two quantities from steps 2 and 3 to obtain the maximum number 
of outstanding Non-Posted requests: 

MAX_NP = min(Max_Packet_Count_CplH, Max_Packet_Count_CplD)

With knowledge of MAX_NP, the User Application can load a register NP_PENDING with 
zero at reset and make sure it always stays with the range 0 to MAX_NP. When a 
Non-Posted Request is transmitted, NP_PENDING decrements by one. When all 
Completions for an outstanding NP Request are received, NP_PENDING increments by 
one.

Although this method is the simplest to implement, it potentially wastes the most receiver 
space because an entire Max_Request_Size block of Completion credit is allocated for each 
Non-Posted Request, regardless of actual request size. The amount of waste becomes 
greater when the User Application issues a larger proportion of short Memory Reads (on 
the order of a single DWORD), I/O Reads and I/O Writes.

PACKET_FC Method
The PACKET_FC method allocates blocks of credit in finer granularities than LIMIT_FC, 
using the receive Completion space more efficiently with a small increase in user logic.

Start with two registers, CPLH_PENDING and CPLD_PENDING, (loaded with zero at 
reset), and then perform these steps:

1. When the User Application needs to send an NP request, determine the potential 
number of CplH and CplD credits it might require:

NP_CplH = ceiling[((Start_Address mod RCB) + Request_Size) / RCB]

NP_CplD = ceiling[((Start_Address mod 16 bytes) + Request_Size) /16 bytes]
(except I/O Write, which returns zero data)

The modulo and ceiling functions ensure that any fractional RCB or credit blocks are 
rounded up. For example, if a Memory Read requests 8 bytes of data from address 
7Ch, the returned data can potentially be returned over two Completion packets 
(7Ch-7Fh, followed by 80h-83h). This would require two RCB blocks and two data 
credits.

2. Check these:

CPLH_PENDING + NP_CplH < Total_CplH (from Table E-1)

CPLD_PENDING + NP_CplD < Total_CplD (from Table E-1)

3. If both inequalities are true, transmit the Non-Posted Request, increase 
CPLH_PENDING by NP_CplH and CPLD_PENDING by NP_CplD. For each NP 
Request transmitted, keep NP_CplH and NP_CplD for later use.

4. When all Completion data is returned for an NP Request, decrement 
CPLH_PENDING and CPLD_PENDING accordingly.

This method is less wasteful than LIMIT_FC but still ties up all of an NP Request’s 
Completion space until the entire request is satisfied. RCB_FC and DATA_FC provide finer 
deallocation granularity at the expense of more logic.
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RCB_FC Method
The RCB_FC method allocates and de-allocates blocks of credit in RCB granularity. Credit 
is freed on a per-RCB basis.

As with PACKET_FC, start with two registers, CPLH_PENDING and CPLD_PENDING 
(loaded with zero at reset).

1. Calculate the number of data credits per RCB:

CplD_PER_RCB = RCB / 16 bytes

2. When the User Application needs to send an NP request, determine the potential 
number of CplH credits it might require. Use this to allocate CplD credits with RCB 
granularity:

NP_CplH = ceiling[((Start_Address mod RCB) + Request_Size) / RCB]

NP_CplD = NP_CplH × CplD_PER_RCB

3. Check these:

CPLH_PENDING + NP_CplH < Total_CplH

CPLD_PENDING + NP_CplD < Total_CplD

4. If both inequalities are true, transmit the Non-Posted Request, increase 
CPLH_PENDING by NP_CplH and CPLD_PENDING by NP_CplD.

5. At the start of each incoming Completion, or when that Completion begins at or 
crosses an RCB without ending at that RCB, decrement CPLH_PENDING by 1 and 
CPLD_PENDING by CplD_PER_RCB. Any Completion could cross more than one 
RCB. The number of RCB crossings can be calculated by:

RCB_CROSSED = ceiling[((Lower_Address mod RCB) + Length) / RCB]

Lower_Address and Length are fields that can be parsed from the Completion header. 
Alternatively, a designer can load a register CUR_ADDR with Lower_Address at the 
start of each incoming Completion, increment per DW or QW as appropriate, then 
count an RCB whenever CUR_ADDR rolls over.

This method is less wasteful than PACKET_FC but still gives us an RCB granularity. If a 
User Application transmits I/O requests, the User Application could adopt a policy of only 
allocating one CplD credit for each I/O Read and zero CplD credits for each I/O Write. The 
User Application would have to match each incoming Completion’s Tag with the Type 
(Memory Write, I/O Read, I/O Write) of the original NP Request.

DATA_FC Method
The DATA_FC method provides the finest allocation granularity at the expense of logic.

As with PACKET_FC and RCB_FC, start with two registers, CPLH_PENDING and 
CPLD_PENDING (loaded with zero at reset).

1. When the User Application needs to send an NP request, determine the potential 
number of CplH and CplD credits it might require:

NP_CplH = ceiling[((Start_Address mod RCB) + Request_Size) / RCB]

NP_CplD = ceiling[((Start_Address mod 16 bytes) + Request_Size) / 16 bytes] 
(except I/O Write, which returns zero data)

2. Check these:

CPLH_PENDING + NP_CplH < Total_CplH
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CPLD_PENDING + NP_CplD < Total_CplD

3. If both inequalities are true, transmit the Non-Posted Request, increase 
CPLH_PENDING by NP_CplH and CPLD_PENDING by NP_CplD.

4. At the start of each incoming Completion, or when that Completion begins at or 
crosses an RCB without ending at that RCB, decrement CPLH_PENDING by 1. The 
number of RCB crossings can be calculated by:

RCB_CROSSED = ceiling[((Lower_Address mod RCB) + Length) / RCB]

Lower_Address and Length are fields that can be parsed from the Completion header. 
Alternatively, a designer can load a register CUR_ADDR with Lower_Address at the 
start of each incoming Completion, increment per DW or QW as appropriate, then 
count an RCB whenever CUR_ADDR rolls over.

5. At the start of each incoming Completion, or when that Completion begins at or 
crosses at a naturally aligned credit boundary, decrement CPLD_PENDING by 1. The 
number of credit-boundary crossings is given by: 

DATA_CROSSED = ceiling[((Lower_Address mod 16 B) + Length) / 16 B]

Alternatively, a designer can load a register CUR_ADDR with Lower_Address at the 
start of each incoming Completion, increment per DW or QW as appropriate, then 
count an RCB whenever CUR_ADDR rolls over each 16-byte address boundary.

This method is the least wasteful but requires the greatest amount of user logic. If even 
finer granularity is desired, the user can scale the Total_CplD value by 2 or 4 to get the 
number of Completion QWORDs or DWORDs, respectively, and adjust the data 
calculations accordingly.

STREAM_FC Method
When configured as an Endpoint, user applications can maximize Downstream (away 
from Root Complex) data throughput by streaming Memory Read Transactions Upstream 
(towards the Root Complex) at the highest rate allowed on the Integrated Block 
Transaction transmit interface. Streaming Memory Reads are allowed only if 
m_axis_rx_tready can be held asserted; so that Downstream Completion Transactions, 
along with Posted Transactions, can be presented on the integrated block’s receive 
Transaction interface and processed at line rate. Asserting m_axis_rx_tready in this 
manner guarantees that the Completion space within the receive buffer is not 
oversubscribed (that is, Receiver Overflow does not occur).
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Appendix F

TRN to AXI Migration Considerations

This appendix describes the differences in signal naming and behavior for users migrating 
to the 7 Series FPGAs Integrated Block for PCI Express® from the Virtex®-6 FPGA 
Integrated Block for PCI Express, v1.x.

High-Level Summary
The 7 Series FPGAs Integrated Block for PCI Express updates the main user interface from 
TRN to the standard AXI4-Stream signal naming and behavior. In addition, all control 
signals that were active Low have been changed to active High. This list summarizes the 
main changes to the core:

• Signal name changes

• Datapath DWORD ordering

• All control signals are active High

• Start-of-frame (SOF) signaling is implied

• Remainder signals are replaced with Strobe signals 

Step-by-Step Migration Guide
This section describes the steps that a user should take to migrate an existing user 
application based on TRN to the AXI4-Stream interface.

1. For each signal in Table F-1 labeled “Name change only”, connect the appropriate user 
application signal to the newly named core signal.

2. For each signal in Table F-1 labeled “Name change; Polarity”, add an inverter and 
connect the appropriate user application signal to the newly named core signal.

3. Swap the DWORD ordering on the datapath signals as described in Datapath DWORD 
Ordering.

4. Leave disconnected the user application signal originally connected to trn_tsof_n.

5. Recreate trn_rsof_n as described in the Start-Of-Frame Signaling section and connect 
to the user application as was originally connected.

6. Make the necessary changes as described in the Remainder/Strobe Signaling section.

7. If using the trn_rsrc_dsc_n signal in the original design, make the changes as described 
in Packet Transfer Discontinue on Receive section, otherwise leave disconnected.

8. Make the changes as described in the Packet Re-ordering on Receive section.
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Signal Changes
Table F-1 details the main differences in signaling between TRN Local-Link to 
AXI4-Stream. 

Table F-1: Interface Changes

TRN Name AXI4-Stream Name Difference

Common Interface

sys_reset_n sys_reset Name change; Polarity

trn_clk user_clk_out Name change only

trn_reset_n user_reset_out Name change; Polarity

trn_lnk_up_n user_lnk_up Name change; Polarity

trn_fc_ph[7:0] fc_ph[7:0] Name change only

trn_fc_pd[11:0] fc_pd[11:0] Name change only

 trn_fc_nph[7:0] fc_nph[7:0] Name change only

trn_fc_npd[11:0] fc_npd[11:0] Name change only

trn_fc_cplh[7:0] fc_cplh[7:0] Name change only

trn_fc_cpld[11:0] fc_cpld[11:0] Name change only

trn_fc_sel[2:0] fc_sel[2:0] Name change only

Transmit Interface

trn_tsof_n No equivalent for 32- and 64-bit version (see text)

trn_teof_n s_axis_tx_tlast Name change only

trn_td[W-1:0]

(W = 32, 64, or 128)
s_axis_tx_tdata[W-1:0] Name change; DWORD Ordering (see text)

trn_trem_n

(64-bit interface)
s_axis_tx_tstrb[7:0] Name change; Functional differences (see text)

trn_trem_n[1:0]

(128-bit interface)
s_axis_tx_tstrb[15:0] Name change; Functional differences (see text)

trn_tsrc_rdy_n s_axis_tx_tvalid Name change; Polarity

trn_tdst_rdy_n s_axis_tx_tready Name change; Polarity

trn_tsrc_dsc_n s_axis_tx_tuser[3] Name change; Polarity

trn_tbuf_av[5:0] tx_buf_av[5:0] Name Change

trn_terr_drop_n tx_terr_drop Name change; Polarity

trn_tstr_n s_axis_tx_tuser[2] Name change; Polarity

trn_tcfg_req_n 
(64-bit interface only)

tx_cfg_req Name change; Polarity

trn_tcfg_gnt_n 
(64-bit interface only)

tx_cfg_gnt Name change; Polarity
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trn_terrfwd_n s_axis_tx_tuser[1] Name change; Polarity

Receive Interface

trn_rsof_n No equivalent for 32 and 64-bit versions

trn_reof_n m_axis_rx_tlast Name change; Polarity

trn_rd[W-1:0]

(W = 32, 64, or 128)
m_axis_rx_tdata[W-1:0] Name change; DWORD Ordering

trn_rrem_n 
(64-bit interface)

m_axis_rx_tstrb Name change; Functional differences (see text)

trn_rrem_n[1:0] 
(128-bit interface)

m_axis_rx_tuser[14:10], 
m_axis_rx_tuser[21:17]

Name change; Functional differences (see text)

trn_rerrfwd_n m_axis_rx_tuser[1] Name change; Polarity

trn_rsrc_rdy_n m_axis_rx_tvalid Name change; Polarity

trn_rdst_rdy_n m_axis_rx_tready Name change; Polarity

trn_rsrc_dsc_n No equivalent

trn_rnp_ok_n rx_np_ok Name change; Polarity; Extra delay (see text)

trn_rbar_hit_n[7:0] m_axis_rx_tuser[9:2] Name change; Polarity

Configuration Interface

cfg_rd_wr_done_n cfg_rd_wr_done Name change; Polarity

cfg_byte_en_n[3:0] cfg_byte_en[3:0] Name change; Polarity

cfg_wr_en_n cfg_wr_en Name change; Polarity

cfg_rd_en_n cfg_rd_en Name change; Polarity

cfg_pcie_link_state_n[2:0] cfg_pcie_link_state[2:0] Name change only

cfg_trn_pending_n cfg_trn_pending Name change; Polarity

cfg_to_turnoff_n cfg_to_turnoff Name change; Polarity

cfg_turnoff_ok_n cfg_turnoff_ok Name change; Polarity

cfg_pm_wake_n cfg_pm_wake Name change; Polarity

cfg_wr_rw1c_as_rw_n cfg_wr_rw1c_as_rw Name change; Polarity

cfg_interrupt_n cfg_interrupt Name change; Polarity

cfg_interrupt_rdy_n cfg_interrupt_rdy Name change; Polarity

cfg_interrupt_assert_n cfg_interrupt_assert Name change; Polarity

cfg_err_ecrc_n cfg_err_ecrc Name change; Polarity

cfg_err_ur_n cfg_err_ur Name change; Polarity

cfg_err_cpl_timeout_n cfg_err_cpl_timeout Name change; Polarity

cfg_err_cpl_unexpect_n cfg_err_cpl_unexpect Name change; Polarity

Table F-1: Interface Changes (Cont’d)

TRN Name AXI4-Stream Name Difference
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Datapath DWORD Ordering
The AXI4-Stream interface swaps the DWORD locations but preserves byte ordering 
within an individual DWORD as compared to the TRN interface. This change only affects 
the 64-bit and 128-bit versions of the core. Figure F-1 and Figure F-2 illustrate the DWORD 
swap ordering from TRN to AXI4-Stream for both 64-bit and 128-bit versions.

Users migrating existing 64-bit and 128-bit TRN-based designs should swap DWORD 
locations for the s_axis_tx_tdata[W-1:0] and s_axis_rx_rdata[W-1:0] buses as they enter 
and exit the PCIe® core.

For example, existing user application pseudo-code:

usr_trn_rd[127:0] = trn_rd[127:0];

should be modified to:

usr_trn_rd[127:96] = s_axis_rx_rdata[31:0]
usr_trn_rd[95:64] = s_axis_rx_rdata[63:32]
usr_trn_rd[63:32] = s_axis_rx_rdata[95:64]
usr_trn_rd[31:0] = s_axis_rx_rdata[127:96]

cfg_err_cpl_abort_n cfg_err_cpl_abort Name change; Polarity

cfg_err_posted_n cfg_err_posted Name change; Polarity

cfg_err_cor_n cfg_err_cor Name change; Polarity

cfg_err_cpl_rdy_n cfg_err_cpl_rdy Name change; Polarity

cfg_err_locked_n cfg_err_locked Name change; Polarity

Table F-1: Interface Changes (Cont’d)

TRN Name AXI4-Stream Name Difference

X-Ref Target - Figure F-1

Figure F-1: TRN vs. AXI DWORD Ordering on Data Bus (64-Bit)

X-Ref Target - Figure F-2

Figure F-2: TRN vs. AXI DWORD Ordering on Data Bus (128-Bit)
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Start-Of-Frame Signaling

Start-Of-Frame Signaling
AXI4-Stream does not have equivalent signals for start-of-frame (trn_tsof_n and 
trn_rsof_n) in the 32-bit and 64-bit versions. On the transmit side, existing TRN designs 
can just leave the user trn_tsof_n connection unconnected. On the receive side, existing 
TRN designs can recreate trn_rsof_n using simple logic, if necessary. 

32- and 64-Bit Interfaces
First the user creates a sequential (clocked) signal called in_packet_reg. A combinatorial 
logic function using existing signals from the core can then be used to recreate trn_rsof_n 
as illustrated in this pseudo-code:

For every clock cycle (user_clk_out) do {
  if(reset)
in_packet_reg = 0

  else if (m_axis_rx_tvalid and m_axis_rx_tready)
in_packet_reg = !m_axis_rx_tlast

}

trn_rsof_n = !(m_axis_rx_tvalid & !in_packet_reg)

128-Bit Interface
The 128-bit interface provides an SOF signal. The user can invert (rx_is_sof[4]) 
m_axis_rx_tuser[14] to recreate trn_rsof_n.

Remainder/Strobe Signaling
This section covers the changes to the remainder signals trn_trem_n[1:0] and 
trn_rrem_n[1:0]. 

The AXI4-Stream interface uses strobe signaling (byte enables) in place of remainder 
signaling. There are three key differences between the strobe signals and the remainder 
signals as detailed in Table F-2. There are also some differences between the 64-bit version 
and 128-bit version of the core. The 128-bit RX version replaces trn_rrem[1:0] with 
(rx_is_sof[4:0]) m_axis_rx_tuser[14:10] and (rx_is_eof[4:0]) m_axis_rx_tuser[21:17], instead 
of a strobe signal. For simplicity, this section treats 64-bit and 128-bit transmit and receive 
operations separately.

Table F-2: Remainder Signal Differences

TRN Remainders
64-bit: trn_trem_n, trn_rrem_n

128-bit: trn_trem_n[1:0], trn_rrem_n[1:0]

AXI4-Stream Strobes
64-bit: s_axis_tx_tstrb[7:0], m_axis_rx_tstrb[7:0]

128-bit: s_axis_tx_tstrb[15:0], rx_is_sof[4:0], rx_is_eof[4:0]

Active Low Active High

Acts on DWORDs Acts on Bytes

Only valid on end-of-frame (EOF) cycles Valid for every clock cycle that tvalid and tready are asserted
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64-Bit Transmit 
Existing TRN designs can do a simple conversion from the single trn_trem signal to 
s_axis_tx_tstrobe[7:0]. Assuming the user currently has a signal named user_trn_trem that 
drives the trn_trem input, the listed pseudo-code illustrates the conversion to 
s_axis_tx_tstrobe[7:0]. The user must drive s_axis_tx_tstrobe[7:0] every clock cycle that 
tvalid is asserted.

if s_axis_tx_tlast == 1 //in a packet at EOF
s_axis_tx_tstrobe[7:0] = user_trn_trem_n  ? 0Fh : FFh

else //in a packet but not EOF, or not in a packet
s_axis_tx_tstrobe = FFh

64-Bit Receive
Existing TRN designs can do a simple conversion on m_axis_rx_tstrobe[7:0] to recreate the 
trn_rrem signal using combinatorial logic. The listed pseudo-code illustrates the 
conversion.

if m_axis_rx_tlast == 1
trn_rrem_n = (m_axis_rx_tstrb[7:4] == Fh) ? 0b : 1b 

else
trn_rrem_n = 1b

128-Bit Transmit
Existing TRN designs can do a simple conversion from the single trn_trem[1:0] signal to 
s_axis_tx_tstrobe[15:0]. Assuming the user currently has a signal named 
user_trn_trem[1:0] that drives the trn_trem[1:0] input, the listed pseudo-code illustrates 
the conversion to s_axis_tx_tstrobe[15:0]. The user must drive s_axis_tx_tstrobe[15:0] 
every clock cycle.

if s_axis_tx_tlast == 1                       //in a packet at EOF
 if    user_trn_trem_n[1:0]==00b      

s_axis_tx_tstrobe[15:0] = FFFFh 
        else if user_trn_trem_n[1:0] = 01b 

s_axis_tx_tstrobe[15:0] = 0FFFh 
        else if user_trn_trem_n[1:0] = 10b 

s_axis_tx_tstrobe[15:0] = 00FFh  
        else if user_trn_trem_n[1:0] = 11b 

s_axis_tx_tstrobe[15:0] = 000Fh   

else //in a packet but not EOF, or not in a packet
s_axis_tx_tstrobe =FF FFh

http://www.xilinx.com


7 Series FPGAs Integrated Block for PCIe www.xilinx.com 297
UG477 March 1, 2011

Packet Transfer Discontinue on Receive

128-Bit Receive
The 128-bit receive remainder signal trn_rrem[1:0] does not have an equivalent strobe 
signal for AXI4-Stream. Instead, (is_sof[4:0]) m_axis_rx_tuser[14:10] and (is_eof[4:0]) 
m_axis_rx_tuser[21:17] are used. Existing TRN designs can do a conversion on the 
rx_is_sof and rx_is_eof signals to recreate the trn_rrem[1:0] signal using combinatorial 
logic. The listed pseudo-code illustrates the conversion. This pseudo-code assumes that 
the user has swapped the DWORD locations from the AXI4-Stream interface (see the 
usr_trn_rd[127:0] signal pseudo-code).

trn_rrem_n[1] =  !rx_is_sof[4] & !rx_is_eof[4]  | rx_is_eof[4] & 
rx_is_sof[3] | rx_is_eof[4] & !rx_is_eof[3]

trn_rrem_n[0] = !rx_is_eof[2]

Note: rx_is_eof[4] is equivalent to m_axis_rx_tlast.

Packet Transfer Discontinue on Receive
When the trn_rsrc_dsc_n signal in the TRN interface is asserted, it indicates to the user that 
a received packet has been discontinued. The AXI4-Stream interface has no equivalent 
signal. On both the TRN and AXI4-Stream cores, however, a packet is only discontinued on 
the receive interface if link connectivity is lost. Therefore, users can just monitor the 
user_lnk_up signal to determine a receive packet discontinue condition.

On the TRN interface, the packet transmission on the data interface (trn_rd) stops 
immediately following assertion of trn_rsrc_dsc_n, and trn_reof_n might never be 
asserted. On the AXI4-Stream interface, the packet is padded out to the proper length of 
the TLP, and m_axis_rx_tlast is asserted even though the data is corrupted. Figure F-3 and 
Figure F-4 show the TRN and AXI4-Stream signaling for packet discontinue. To recreate 
the trn_rsrc_dsc_n signal, the user can just invert and add one clock cycle delay to 
user_lnk_up. 
X-Ref Target - Figure F-3

Figure F-3: Receive Discontinue on the TRN Interface
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Packet Re-ordering on Receive
The TRN interface uses the trn_rnp_ok_n signal to re-order TLP traffic on the receive 
interface. The AXI4-Stream interface has an equivalent signal, rx_np_ok. Users need to 
account for two differences in the AXI4-Stream interface as shown in Table F-3. Users have 
to account for these differences in their custom logic. If the user application does not use 
packet re-ordering, the user can tie rx_np_ok to 1b.

System Reset
The system reset is usually provided by PERST#, which is an active Low signal. If the 
incoming reset signal is active Low, the user must invert this signal before connecting to 
the sys_reset signal on the core interface.

X-Ref Target - Figure F-4

Figure F-4: Receive Discontinue on the AXI4-Stream Interface
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Table F-3: AXI4-Stream Interface Differences

TRN
trn_rnp_ok_n

AXI4-Stream
rx_np_ok

Active Low Active High

Must be deasserted at least one clock cycle 
before trn_reof_n of the next-to-last 

Non-Posted TLP that the user can accept

Must be deasserted at least one clock cycle 
before is_eof[4] of the second-to-last 

Non-Posted TLP that the user can accept
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