
7 Series FPGAs
Integrated Block for
PCI Express

User Guide

UG477 March 1, 2011

NOTICE: This document contains preliminary information and is subject to change without notice.
Information provided herein relates to products and/or services not yet available for sale, and
provided solely for information purposes and are not intended, or to be construed, as an offer for
sale or an attempted commercialization of the products and/or services referred to herein.

7 Series FPGAs Integrated Block for PCIe www.xilinx.com UG477 March 1, 2011

Xilinx is providing this product documentation, hereinafter “Information,” to you “AS IS” with no warranty of any kind, express or implied.
Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You
are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to
change without notice.

XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR
ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT
THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or
transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of Xilinx.

CRITICAL APPLICATIONS DISCLAIMER
XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE
FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY
DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF
AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, “CRITICAL APPLICATIONS”). FURTHERMORE, XILINX
PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR
AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN
THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR.
CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX PRODUCTS, TO
THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL APPLICATIONS.

AUTOMOTIVE APPLICATIONS DISCLAIMER
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING
FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A
VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE
XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES
THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF
XILINX PRODUCTS IN SUCH APPLICATIONS.

© Copyright 2011 Xilinx, Inc. XILINX, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, and other designated brands included herein are
trademarks of Xilinx in the United States and other countries. PCI, PCI Express, PCIe, and PCI-X are trademarks of PCI-SIG. All other
trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

Date Version Revision

03/01/11 1.0 Initial Xilinx release.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 3
UG477 March 1, 2011

Revision History . 2

Preface: About This Guide
Guide Contents . 11
Additional Resources . 12
Conventions . 13

Typographical . 13
Online Document . 14

List of Acronyms . 14

Chapter 1: Introduction
About the Core . 17
Supported Tools and System Requirements . 17
Recommended Design Experience . 18
Additional Core Resources . 18

Chapter 2: Core Overview
Overview . 19
Protocol Layers. 20

Transaction Layer. 20
Data Link Layer . 21
Physical Layer . 21
Configuration Management . 21

PCI Configuration Space . 22
Core Interfaces . 27

System Interface . 27
PCI Express Interface . 27

Transaction Interface . 31
Common Interface . 31
Transmit Interface . 33
Receive Interface . 36

Physical Layer Interface . 39
Configuration Interface . 44
Interrupt Interface Signals . 51
Error Reporting Signals . 52
Dynamic Reconfiguration Port Interface . 55

Chapter 3: Getting Started Example Design
Integrated Block Endpoint Configuration Overview . 57

Simulation Design Overview . 57
Implementation Design Overview . 59

Table of Contents

http://www.xilinx.com

4 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Example Design Elements . 59
Generating the Core . 60
Simulating the Example Design . 63

Endpoint Configuration . 63
Setting Up for Simulation . 63

Simulator Requirements . 63
Running the Simulation . 63

Implementing the Example Design . 64
Directory Structure and File Contents . 65

Example Design . 65
<project directory> . 66
<project directory>/<component name> . 66
<component name>/doc . 66
<component name>/example_design . 67
<component name>/implement . 67

implement/results . 67
implement/xst . 68

<component name>/source . 68
<component name>/simulation . 69

simulation/dsport . 69
simulation/functional. 70
simulation/tests . 70

Chapter 4: Generating and Customizing the Core
Customizing the Core using the CORE Generator Software 71

Basic Parameter Settings . 72
Component Name. 72
PCIe Device / Port Type. 72
Number of Lanes . 73
Link Speed . 73
Interface Width . 73
Interface Frequency . 74

Base Address Registers . 75
Base Address Register Overview . 75
Managing Base Address Register Settings . 76

PCI Registers . 77
ID Initial Values . 77
Class Code . 78
Class Code Look-up Assistant . 78
Cardbus CIS Pointer . 78

Configuration Register Settings . 79
Capabilities Register . 80
Device Capabilities Register . 81
Block RAM Configuration Options. 81
Device Capabilities 2 Register. 81
Link Capabilities Register . 82
Link Control Register . 82
Link Control 2 Register . 82
Link Status Register . 82

Interrupt Capabilities . 83
Legacy Interrupt Settings . 83
MSI Capabilities . 83

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 5
UG477 March 1, 2011

MSI-X Capabilities . 84
Power Management Registers . 85
PCI Express Extended Capabilities . 87

Device Serial Number Capability . 87
Virtual Channel Capability . 88
Vendor Specific Capability . 88
User-Defined Configuration Capabilities: Endpoint Configuration Only 88
AER Capability . 89
RBAR Capability. 90
ECRC . 90

Pinout Selection . 91
Advanced Settings . 92

Transaction Layer Module . 93
Link Layer Module . 94
Advanced Physical Layer . 94
Debug Ports . 95
Reference Clock Frequency. 95
Silicon Revision. 95

Chapter 5: Designing with the Core
Designing with the Transaction Layer Interface . 98

Designing with the 64-Bit Transaction Layer Interface . 98
TLP Format on the AXI4-Stream Interface . 98
Transmitting Outbound Packets . 99
Receiving Inbound Packets . 107

Designing with the 128-Bit Transaction Layer Interface . 118
TLP Format in the AXI4-Stream Interface. 118
Transmitting Outbound Packets . 119
Receiving Inbound Packets . 129

Transaction Processing on the Receive AXI4-Stream Interface 144
Atomic Operations . 146
Core Buffering and Flow Control . 147

Maximum Payload Size . 147
Transmit Buffers . 147
Receiver Flow Control Credits Available . 148
Flow Control Credit Information . 149

Designing with the Physical Layer Control and Status Interface 153
Design Considerations for a Directed Link Change . 153
Directed Link Width Change . 154
Directed Link Speed Change . 155
Directed Link Width and Speed Change . 156

Design with Configuration Space Registers and Configuration Interface 158
Registers Mapped Directly onto the Configuration Interface 158
Device Control and Status Register Definitions . 159

cfg_bus_number[7:0], cfg_device_number[4:0], cfg_function_number[2:0] 159
cfg_status[15:0] . 159
cfg_command[15:0]. 159
cfg_dstatus[15:0] . 160
cfg_dcommand[15:0]. 160
cfg_lstatus[15:0] . 161
cfg_lcommand[15:0] . 161
cfg_dcommand2[15:0]. 162

http://www.xilinx.com

6 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Core Response to Command Register Settings . 162
Status Register Response to Error Conditions . 163
Accessing Registers through the Configuration Port . 165
Optional PCI Express Extended Capabilities . 167
Xilinx Defined Vendor Specific Capability . 169

Loopback Control Register (Offset 08h) . 169
Loopback Status Register (Offset 0Ch) . 170
Loopback Error Count Register 1 (Offset 10h) . 171
Loopback Error Count Register 2 (Offset 14h) . 171

Advanced Error Reporting Capability . 172
Resizable BAR Capability . 172
User-Implemented Configuration Space . 172

PCI Configuration Space. 172
PCI Express Extended Configuration Space . 173

Additional Packet Handling Requirements . 174
Generation of Completions. 174
Tracking Non-Posted Requests and Inbound Completions . 174

Handling Message TLPs . 174
Root Port Configuration . 174

Reporting User Error Conditions . 175
Error Types . 175

Power Management . 182
Active State Power Management . 183
Programmed Power Management . 183

PPM L0 State. 183
PPM L1 State. 183
PPM L3 State. 184

Generating Interrupt Requests . 185
Legacy Interrupt Mode . 187
MSI Mode . 187
MSI-X Mode . 188

Link Training: 2-Lane, 4-Lane, and 8-Lane Components . 189
Link Partner Supports Fewer Lanes . 189
Lane Becomes Faulty . 189

Lane Reversal . 190
Clocking and Reset of the Integrated Block Core . 190

Reset . 190
Clocking . 191

Synchronous and Non-Synchronous Clocking . 191
Using the Dynamic Reconfiguration Port Interface. 194

Writing and Reading the DRP Interface . 194
Other Considerations for the DRP Interface . 195

DRP Address Map . 195

Chapter 6: Core Constraints
Contents of the User Constraints File . 207

Part Selection Constraints: Device, Package, and Speed Grade 207
User Timing Constraints . 207
User Physical Constraints . 207
Core Pinout and I/O Constraints . 208
Core Physical Constraints . 208

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 7
UG477 March 1, 2011

Core Timing Constraints . 208
Required Modifications . 208
Device Selection . 208
Core I/O Assignments . 209
Core Physical Constraints . 209
Core Timing Constraints . 210
Relocating the Integrated Block Core . 210
Supported Core Pinouts . 211

Chapter 7: FPGA Configuration
Configuration Terminology . 215
Configuration Access Time . 215

Configuration Access Specification Requirements . 216
Board Power in Real-World Systems. 218

Hot Plug Systems . 219
Recommendations . 219

FPGA Configuration Times for 7 Series Devices . 219
Sample Problem Analysis . 220

Failed FPGA Recognition . 220
Successful FPGA Recognition . 221

Workarounds for Closed Systems . 221

Appendix A: Example Design and Model Test Bench for Endpoint
Configuration

Programmed Input/Output: Endpoint Example Design. 223
System Overview . 223
PIO Hardware . 224

Base Address Register Support. 225
TLP Data Flow . 226
PIO File Structure . 227
PIO Application . 229
Receive Path . 230
Transmit Path . 232
Endpoint Memory. 233

PIO Operation. 235
PIO Read Transaction . 235
PIO Write Transaction . 236
Device Utilization . 236

Summary . 237
Root Port Model Test Bench for Endpoint . 237

Architecture . 238
Simulating the Design . 239
Scaled Simulation Timeouts . 239
Test Selection . 240

VHDL Test Selection. 240
Verilog Test Selection . 240
VHDL and Verilog Root Port Model Differences . 240

Waveform Dumping . 241
VHDL Flow. 241

http://www.xilinx.com

8 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Verilog Flow . 242
Output Logging . 242
Parallel Test Programs. 242
Test Description . 243

Test Program: pio_writeReadBack_test0. 244
Expanding the Root Port Model . 244

Root Port Model TPI Task List . 245

Appendix B: Example Design and Model Test Bench for Root Port
Configuration

Configurator Example Design . 255
System Overview . 255
Configurator Example Design Hardware . 255

Configurator Block . 257
Configurator ROM . 258
PIO Master . 259
Configurator File Structure. 259

Configurator Example Design Summary . 260
Endpoint Model Test Bench for Root Port . 261

Architecture . 261
Simulating the Design . 261
Scaled Simulation Timeouts . 262
Waveform Dumping . 262
Output Logging . 262

Appendix C: Migration Considerations
Core Capability Differences . 263
Configuration Interface . 263
Error Reporting Signals . 264
ID Initial Values . 264
Physical Layer Interface . 265
Dynamic Reconfiguration Port Interface . 266

Appendix D: Debugging Designs
Finding Help on Xilinx.com . 267

Documentation . 267
Answer Records . 268

Contacting Xilinx Technical Support . 268
Debug Tools . 269

Example Design . 269
ChipScope Pro Tool . 269
Link Analyzers . 269
Third Party Software Tools . 269

LSPCI (Linux) . 269
PCItree (Windows) . 270
HWDIRECT (Windows) . 271
PCI-SIG Software Suites . 271

Hardware Debug . 271

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 9
UG477 March 1, 2011

FPGA Configuration Time Debug . 273
Link is Training Debug . 274

FPGA Configuration Time Debug . 275
Debugging PCI Configuration Space Parameters . 275
Application Requirements . 276
Using a Link Analyzer to Debug Device Recognition Issues . 276

Data Transfer Failing Debug . 277
Identifying Errors . 278

Transmit . 278
Receive . 279

Non-Fatal Errors . 279
Next Steps . 280

Simulation Debug . 280
ModelSim Debug . 281

PIO Simulator Expected Output . 282
Compiling Simulation Libraries . 282

Next Step . 283

Appendix E: Managing Receive-Buffer Space for Inbound Completions
General Considerations and Concepts . 285

Completion Space . 285
Maximum Request Size . 286
Read Completion Boundary . 286

Methods of Managing Completion Space . 287
LIMIT_FC Method . 287
PACKET_FC Method . 288
RCB_FC Method. 289
DATA_FC Method . 289
STREAM_FC Method . 290

Appendix F: TRN to AXI Migration Considerations
High-Level Summary . 291
Step-by-Step Migration Guide . 291
Signal Changes . 292
Datapath DWORD Ordering . 294
Start-Of-Frame Signaling. 295

32- and 64-Bit Interfaces . 295
128-Bit Interface . 295

Remainder/Strobe Signaling . 295
64-Bit Transmit . 296
64-Bit Receive . 296
128-Bit Transmit . 296
128-Bit Receive . 297

Packet Transfer Discontinue on Receive . 297
Packet Re-ordering on Receive . 298
System Reset . 298

http://www.xilinx.com

10 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 11
UG477 March 1, 2011

Preface

About This Guide

Xilinx® 7 series FPGAs include three unified FPGA families that are all designed for lowest
power to enable a common design to scale across families for optimal power, performance,
and cost. The Artix™-7 family is optimized for lowest cost and absolute power for the
highest volume applications. The Virtex®-7 family is optimized for highest system
performance and capacity. The Kintex™-7 family is an innovative class of FPGAs
optimized for the best price-performance. This document describes the function and
operation of the 7 Series FPGAs Integrated Block for PCI Express®, including how to
design, customize, and implement it.

This 7 series FPGAs Integrated Block for PCI Express user guide, part of an overall set of
documentation on the 7 series FPGAs, is available on the Xilinx website at
www.xilinx.com/7.

Guide Contents
This manual contains these chapters and appendices:

• Chapter 1, Introduction, describes the core and related information, including
recommended design experience and additional resources.

• Chapter 2, Core Overview, describes the main components of the integrated block
architecture.

• Chapter 3, Getting Started Example Design, provides instructions for quickly
generating, simulating, and implementing the example design using the
demonstration test bench.

• Chapter 4, Generating and Customizing the Core, describes how to use the graphical
user interface (GUI) to configure the integrated block using the CORE Generator™
software.

• Chapter 5, Designing with the Core, provides instructions on how to design a device
using the Integrated Block core.

• Chapter 6, Core Constraints, discusses the required and optional constraints for the
integrated block.

• Chapter 7, FPGA Configuration, discusses considerations for FPGA configuration
and PCI Express.

• Appendix A, Example Design and Model Test Bench for Endpoint Configuration,
describes the Programmed Input/Output (PIO) example design for use with the core
and the Root Port model test bench environment, which provides a test program
interface for use with the PIO example design.

• Appendix B, Example Design and Model Test Bench for Root Port Configuration,
describes the Configurator example design for use with the core, and the Endpoint
Model test bench environment for use with the Configurator example design.

www.xilinx.com/7
http://www.xilinx.com

12 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Preface: About This Guide

• Appendix C, Migration Considerations, defines the differences in behavior and
options between the 7 Series FPGAs Integrated Block for PCI Express and the
Endpoint Block Plus for PCI Express.

• Appendix D, Debugging Designs, provides information on resources available on the
Xilinx support website, available debug tools, and a step-by-step process for
debugging designs that use the 7 Series FPGAs Integrated Block for PCI Express.

• Appendix E, Managing Receive-Buffer Space for Inbound Completions, provides
example methods for handling finite receive buffer space for inbound completions
with regards to the PCI Express Endpoint requirement to advertise infinite
completion credits.

• Appendix F, TRN to AXI Migration Considerations, describes the differences in signal
naming and behavior for users migrating to the 7 Series FPGAs Integrated Block for
PCI Express from the Virtex-6 FPGA Integrated Block for PCI Express.

Additional Resources
To find additional documentation, see the Xilinx website at:

www.xilinx.com/support/documentation.

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx website at:

www.xilinx.com/support.

http://www.xilinx.com
http://www.xilinx.com/support/documentation
http://www.xilinx.com/support

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 13
UG477 March 1, 2011

Conventions

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font

Messages, prompts, and
program files that the system
displays. Signal names in text
also.

speed grade: - 100

Courier bold
Literal commands that you enter
in a syntactical statement

ngdbuild design_name

Helvetica bold

Commands that you select from
a menu

File → Open

Keyboard shortcuts Ctrl+C

Italic font

Variables in a syntax statement
for which you must supply
values

ngdbuild design_name

References to other manuals
See the User Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol, the
two nets are not connected.

Dark Shading
Items that are not supported or
reserved

This feature is not supported

Square brackets []

An optional entry or parameter.
However, in bus specifications,
such as bus[7:0], they are
required.

ngdbuild [option_name]
design_name

Braces { }
A list of items from which you
must choose one or more

lowpwr ={on|off}

Vertical bar |
Separates items in a list of
choices

lowpwr ={on|off}

Angle brackets < >
User-defined variable or in code
samples

<directory name>

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . .
Repetitive material that has
been omitted

allow block block_name loc1
loc2 ... locn;

http://www.xilinx.com

14 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Preface: About This Guide

Online Document
The following conventions are used in this document:

List of Acronyms
The following table defines acronyms used in this document.

Notations

The prefix ‘0x’ or the suffix ‘h’
indicate hexadecimal notation

A read of address 0x00112975
returned 45524943h.

An ‘_n’ means the signal is
active Low usr_teof_n is active Low.

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text
Cross-reference link to a location
in the current document

See the section Guide Contents
for details.

Refer to Title Formats in Chapter
1 for details.

Blue, underlined text Hyperlink to a website (URL)
Go to http://www.xilinx.com
for the latest speed files.

Acronym Definition

AER Advanced Error Reporting

ANFE Advisory Non-Fatal Error

ASPM Active State Power Management

BAR Base Address Register

CAS Compare And Set

CFG Configuration

CMIO Configuration Mapped Input/Output

CMM Configuration Management Module

DLLP Data Link Layer Packet

DRP Dynamic Reconfiguration Port

DSN Device Serial Number

DUT Design Under Test

DQWORD Double Quad Word

DWORD Doubleword

ECRC End-to-end Cyclic Redundancy Check

EOF End of Frame

GUI Graphical User Interface

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 15
UG477 March 1, 2011

List of Acronyms

LTSSM Link Training and Status State Machine

MMIO Memory Mapped Input/Output

MPS Maximum Payload Size

MSI Message Signaled Interrupt

PBA Pending Bit Array

PCI Peripheral Component Interconnect

PIO Programmed Input/Output

PL Physical Layer

POR Power On Reset

PPM Programmed Power Management

QWORD Quad Word

RBAR Resizable BAR

RCB Read Completion Boundary

RX Receive/Receiver

SOF Start of Frame

SSC Spread Spectrum Clock

TLP Transaction Layer Packet

TPI Test Programming Interface

TX Transmit/Transmitter

UCF User Constraints File

UR Unsupported Request

VC Virtual Channel

VSEC Vendor Specific

Acronym Definition

http://www.xilinx.com

16 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Preface: About This Guide

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 17
UG477 March 1, 2011

Chapter 1

Introduction

This chapter introduces the 7 Series FPGAs Integrated Block for PCI Express® core and
provides related information including system requirements and recommended design
experience.

About the Core
The 7 Series FPGAs Integrated Block for PCI Express core is a reliable, high-bandwidth,
scalable serial interconnect building block for use with the 7 series FPGA families. The core
instantiates the 7 Series FPGA Integrated Block for PCI Express found in the
7 series FPGAs, and supports both Verilog-HDL and VHDL.

The 7 Series FPGAs Integrated Block for PCI Express is a CORE Generator™ IP core,
included in the ISE® Design Suite. For detailed information about the core, see the
7 Series FPGAs Integrated Block for PCI Express product page.

Supported Tools and System Requirements

Windows

• Windows XP Professional 32-bit/64-bit

• Windows Vista Business 32-bit/64-bit

Linux

• Red Hat Enterprise Linux WS v4.0 32-bit/64-bit

• Red Hat Enterprise Desktop v5.0 32-bit/64-bit (with Workstation Option)

• SUSE Linux Enterprise (SLE) desktop and server v10.1 32-bit/64-bit

Tools

• ISE v13.1 software

• Verification/Simulation

http://www.xilinx.com
www.xilinx.com/products/ipcenter/7_SERIES_PCI_Express_Block.htm

18 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 1: Introduction

Table 1-1 lists the tools and their respective versions for the 13.1 release.

Recommended Design Experience
Although the 7 Series FPGAs Integrated Block for PCI Express core is a fully verified
solution, the challenge associated with implementing a complete design varies depending
on the configuration and functionality of the application. For best results, previous
experience building high-performance, pipelined FPGA designs using Xilinx
implementation software and User Constraints Files (UCFs) is recommended.

Additional Core Resources
For detailed information and updates about the integrated block, refer to these documents
on the Xilinx website:

• DS821, LogiCORE IP 7 Series Integrated Block for PCI Express Data Sheet

• XTP025, IP Release Notes Guide

Additional information and resources related to the PCI Express technology are available
from these websites:

• PCI Express at PCI-SIG

• PCI Express Developer’s Forum

Table 1-1: Tools and Versions for 13.1

Tools Version

ISE/XST 13.1

Mentor Graphics ModelSim 6.6d

Cadence Incisive Enterprise Simulator (IES) 10.2

Synopsys VCS and VCS MX 2010.06

http://www.xilinx.com
http://www.pcisig.com/specifications/pciexpress
http://developer.intel.com/technology/pciexpress/devnet

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 19
UG477 March 1, 2011

Chapter 2

Core Overview

This chapter describes the main components of the 7 Series FPGAs Integrated Block for
PCI Express® architecture.

Overview
The 7 Series FPGAs Integrated Block for PCI Express contains full support for 2.5 Gb/s
and 5.0 Gb/s PCI Express Endpoint and Root Port configurations. Table 2-1 defines the
Integrated Block for PCIe® solutions.

The LogiCORE™ IP 7 Series FPGAs Integrated Block for PCI Express core internally
instantiates the 7 Series FPGAs Integrated Block for PCI Express (PCIE_2_1). The
integrated block follows the PCI Express Base Specification layering model, which consists of
the Physical, Data Link, and Transaction layers. The integrated block is compliant with the
PCI Express Base Specification, rev. 2.1.

Figure 2-1 illustrates these interfaces to the 7 Series FPGAs Integrated Block for
PCI Express:

• System (SYS) interface

• PCI Express (PCI_EXP) interface

• Configuration (CFG) interface

• Transaction interface (AXI4-Stream)

• Physical Layer Control and Status (PL) interface

The core uses packets to exchange information between the various modules. Packets are
formed in the Transaction and Data Link Layers to carry information from the transmitting
component to the receiving component. Necessary information is added to the packet
being transmitted, which is required to handle the packet at those layers. At the receiving

Table 2-1: Product Overview

Product Name User Interface Width Supported Lane Widths

1-lane at 2.5 Gb/s, 5.0 Gb/s 64 x1

2-lane at 2.5 Gb/s, 5.0 Gb/s 64 x1, x2(1)

4-lane at 2.5 Gb/s, 5.0 Gb/s 64, 128 x1, x2, x4(1),(2)

8-lane at 2.5 Gb/s, 5.0 Gb/s 64, 128 x1, x2, x4, x8(1),(3)

Notes:
1. See Link Training: 2-Lane, 4-Lane, and 8-Lane Components, page 189 for additional information.
2. The x4 at 2.5 Gb/s option in the CORE Generator™ tool provides only the 64-bit width interface.
3. x8 at 5.0 Gb/s only available in the 128-bit width.

http://www.xilinx.com

20 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 2: Core Overview

end, each layer of the receiving element processes the incoming packet, strips the relevant
information and forwards the packet to the next layer.

As a result, the received packets are transformed from their Physical Layer representation
to their Data Link Layer representation and the Transaction Layer representation.

Protocol Layers
The functions of the protocol layers, as defined by the PCI Express Base Specification, include
generation and processing of Transaction Layer Packets (TLPs), flow control management,
initialization, power management, data protection, error checking and retry, physical link
interface initialization, maintenance and status tracking, serialization, deserialization, and
other circuitry for interface operation. Each layer is defined in the next subsections.

Transaction Layer
The Transaction Layer is the upper layer of the PCI Express architecture, and its primary
function is to accept, buffer, and disseminate Transaction Layer packets or TLPs. TLPs
communicate information through the use of memory, I/O, configuration, and message
transactions. To maximize the efficiency of communication between devices, the
Transaction Layer enforces PCI compliant Transaction ordering rules and manages TLP
buffer space via credit-based flow control.

X-Ref Target - Figure 2-1

Figure 2-1: Top-Level Functional Blocks and Interfaces

LogiCORE IP 7 Series FPGAs
Integrated Block for PCI Express Core

7 Series FPGAs
Integrated Block for

PCI Express
(PCIE_2_1)

Transceivers

Optional Debug

System
(SYS)

User Logic

UG477_c2_01_020311

PCI
Express
Logic

Clock
and
Reset

PCI Express
(PCI_EXP)

User
Logic

Physical Layer
Control and Status

Host
Interface

Transaction
(AXI4-Stream)

User
Logic

Optional Debug
(DRP)

Physical
(PL)

Configuration
(CFG)

TX
Block RAM

RX
Block RAM

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 21
UG477 March 1, 2011

Protocol Layers

Data Link Layer
The Data Link Layer acts as an intermediate stage between the Transaction Layer and the
Physical Layer. Its primary responsibility is to provide a reliable mechanism for the
exchange of TLPs between two components on a link.

Services provided by the Data Link Layer include data exchange (TLPs), error detection
and recovery, initialization services and the generation and consumption of Data Link
Layer Packets (DLLPs). DLLPs are used to transfer information between Data Link Layers
of two directly connected components on the link. DLLPs convey information such as
Power Management, Flow Control, and TLP acknowledgments.

Physical Layer
The Physical Layer interfaces the Data Link Layer with signalling technology for link data
interchange, and is subdivided into the Logical sub-block and the Electrical sub-block.

• The Logical sub-block frames and deframes TLPs and DLLPs. It also implements the
Link Training and Status State machine (LTSSM), which handles link initialization,
training, and maintenance. Scrambling, descrambling, and 8B/10B encoding and
decoding of data is also performed in this sub-block.

• The Electrical sub-block defines the input and output buffer characteristics that
interfaces the device to the PCIe® link.

The Physical Layer also supports Lane Reversal (for multi-lane designs) and Lane Polarity
Inversion, as indicated in the PCI Express Base Specification, rev. 2.1 requirement.

Configuration Management
The Configuration Management layer maintains the PCI™ Type 0 Endpoint configuration
space and supports these features:

• Implements the PCI Configuration Space

• Supports Configuration Space accesses

• Power Management functions

• Implements error reporting and status functionality

• Implements packet processing functions

• Receive

- Configuration Reads and Writes

• Transmit

- Completions with or without data

- TLM Error Messaging

- User Error Messaging

- Power Management Messaging/Handshake

• Implements MSI and INTx interrupt emulation

• Optionally implements MSIx Capability Structure in the PCI Configuration Space

• Optionally implements the Device Serial Number Capability in the PCI Express
Extended Capability Space

• Optionally implements Virtual Channel Capability (support only for VC0) in the
PCI Express Extended Capability Space

http://www.xilinx.com

22 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 2: Core Overview

• Optionally implements Xilinx defined Vendor Specific Capability Structure in the
PCI Express Extended Capability space to provide Loopback Control and Status

• Optionally implements Advanced Error Reporting (AER) Capability Structure in the
PCI Express Extended Configuration Space

• Optionally implements Resizeable BAR (RBAR) Capability Structure in the PCI
Express Extended Configuration Space

PCI Configuration Space
The PCI configuration space consists of three primary parts, illustrated in Table 2-2. These
include:

• Legacy PCI v3.0 Type 0/1 Configuration Space Header

• Type 0 Configuration Space Header used by Endpoint applications (see Table 2-3)

• Type 1 Configuration Space Header used by Root Port applications (see Table 2-4)

• Legacy Extended Capability Items

• PCIe Capability Item

• Power Management Capability Item

• Message Signaled Interrupt (MSI) Capability Item

• MSI-X Capability Item (optional)

• PCIe Extended Capabilities

• Device Serial Number Extended Capability Structure (optional)

• Virtual Channel Extended Capability Structure (optional)

• Vendor Specific Extended Capability Structure (optional)

• Advanced Error Reporting Extended Capability Structure (optional)

• Resizable BAR Extended Capability Structure (optional)

The core implements up to four legacy extended capability items. The remaining legacy
extended capability space from address 0xA8 to 0xFF is reserved or user-definable
(Endpoint configuration only). Also, the locations for any optional capability structure that
is not implemented are reserved. If the user does not use this space, the core returns
0x00000000 when this address range is read. If the user chooses to implement registers
within user-definable locations in the range 0xA8 to 0xFF, this space must be
implemented in the User Application. The user is also responsible for returning
0x00000000 for any address within this range that is not implemented in the User
Application.

For more information about enabling this feature, see Chapter 4, Generating and
Customizing the Core. For more information about designing with this feature, see Design
with Configuration Space Registers and Configuration Interface in Chapter 5.

The core optionally implements up to three PCI Express Extended Capabilities. The
remaining PCI Express Extended Capability Space is available for users to implement. The
starting address of the space available to the users depends on which, if any, of the five
optional PCIe Extended Capabilities are implemented. If the user chooses to implement
registers in this space, the user can select the starting location of this space, and this space
must be implemented in the User Application. For more information about enabling this
feature, see PCI Express Extended Capabilities in Chapter 4. For more information about
designing with this feature, see Design with Configuration Space Registers and
Configuration Interface in Chapter 5.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 23
UG477 March 1, 2011

PCI Configuration Space

Table 2-2: Common PCI Configuration Space Header

31 16 15 0

Device ID Vendor ID 000h

Status Command 004h

Class Code Rev ID 008h

BIST Header Lat Timer Cache Ln 00Ch

Header Type Specific

(see Table 2-3 and Table 2-4)

010h

014h

018h

01Ch

020h

024h

028h

02Ch

030h

CapPtr 034h

038h

Intr Pin Intr Line 03Ch

PM Capability NxtCap PM Cap 040h

Data BSE PMCSR 044h

Customizable(1) MSI Control NxtCap MSI Cap 048h

Message Address (Lower) 04Ch

Message Address (Upper) 050h

Reserved Message Data 054h

Mask Bits 058h

Pending Bits 05Ch

PE Capability NxtCap PE Cap 060h

PCI Express Device Capabilities 064h

Device Status Device Control 068h

PCI Express Link Capabilities 06Ch

Link Status Link Control 070h

Root Port
Only(2)

Slot Capabilities 074h

Slot Status Slot Control 078h

Root Capabilities Root Control 07Ch

Root Status 080h

PCI Express Device Capabilities 2 084h

Device Status 2 Device Control 2 088h

PCI Express Link Capabilities 2 08Ch

http://www.xilinx.com

24 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 2: Core Overview

Link Status 2 Link Control 2 090h

Unimplemented Configuration Space
(Returns 0x00000000)

094h-
098h

Optional MSlx Control NxtCap MSlx Cap 09Ch

Table Offset Table
BIR

0A0h

PBA Offset PBA
BIR

0A4h

Reserved Legacy Configuration Space
(Returns 0x00000000)

0A8h-
0FFh

Optional(3) Next Cap Cap.
Ver.

PCI Express Extended Capability -
DSN

100h

PCI Express Device Serial Number (1st) 104h

PCI Express Device Serial Number (2nd) 108h

Optional(3) Next Cap Cap.
Ver.

PCI Express Extended
Capability - VC

10Ch

Port VC Capability Register 1 110h

Port VC Capability Register 2 114h

Port VC Status Port VC Control 118h

VC Resource Capability Register 0 11Ch

VC Resource Control Register 0 120h

VC Resource Status Register 0 124h

Optional(3) Next Cap Cap.
Ver.

PCI Express Extended Capability -
VSEC

128h

Vendor Specific Header 12Ch

Vendor Specific - Loopback Command 130h

Vendor Specific - Loopback Status 134h

Vendor Specific - Error Count #1 138h

Vendor Specific - Error Count #2 13Ch

Table 2-2: Common PCI Configuration Space Header (Cont’d)

31 16 15 0

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 25
UG477 March 1, 2011

PCI Configuration Space

Optional(3)

Next Cap Cap. Ver. PCI Express Extended Cap. ID (AER) 140h

Uncorrectable Error Status Register 144h

Uncorrectable Error Mask Register 148h

Uncorrectable Error Severity Register 14Ch

Correctable Error Status Register 150h

Correctable Error Mask Register 154h

Advanced Error Cap. & Control Register 158h

Header Log Register 1 15Ch

Header Log Register 2 160h

Header Log Register 3 164h

Header Log Register 4 168h

Optional, Root
Port only(3)

Root Error Command Register 16Ch

Root Error Status Register 170h

Error Source ID Register 174h

Optional(3)

Next Cap Cap. Ver. PCI Express Extended Cap. ID (RBAR) 178h

Resizable BAR Capability Register(0) 17Ch

Reserved Resizable BAR Control(0) 180h

Resizable BAR Capability Register(1) 184h

Reserved Resizable BAR Control(1) 188h

Resizable BAR Capability Register(2) 18Ch

Reserved Resizable BAR Control(2) 190h

Resizable BAR Capability Register(3) 194h

Reserved Resizable BAR Control(3) 198h

Resizable BAR Capability Register(4) 19Ch

Reserved Resizable BAR Control(4) 1A0h

Resizable BAR Capability Register(5) 1A4h

Reserved Resizable BAR Control(5) 1A8h

Reserved Extended Configuration Space (Returns Completion with
0x00000000)

1ACh-
FFFh

Notes:
1. The MSI Capability Structure varies dependent on the selections in the CORE Generator tool GUI.
2. Reserved for Endpoint configurations (returns 0x00000000).
3. The layout of the PCI Express Extended Configuration Space (100h-FFFh) can change dependent on

which optional capabilities are enabled. This table represents the Extended Configuration space layout
when all five optional extended capability structures are enabled. For more information, see Optional
PCI Express Extended Capabilities, page 167.

Table 2-2: Common PCI Configuration Space Header (Cont’d)

31 16 15 0

http://www.xilinx.com

26 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 2: Core Overview

Table 2-3: Type 0 PCI Configuration Space Header

31 16 15 0

Device ID Vendor ID 00h

Status Command 04h

Class Code Rev ID 08h

BIST Header Lat Timer Cache Ln 0Ch

Base Address Register 0 10h

Base Address Register 1 14h

Base Address Register 2 18h

Base Address Register 3 1Ch

Base Address Register 4 20h

Base Address Register 5 24h

Cardbus CIS Pointer 28h

Subsystem ID Subsystem Vendor ID 2Ch

Expansion ROM Base Address 30h

Reserved CapPtr 34h

Reserved 38h

Max Lat Min Gnt Intr Pin Intr Line 3Ch

Table 2-4: Type 1 PCI Configuration Space Header

31 16 15 0

Device ID Vendor ID 00h

Status Command 04h

Class Code Rev ID 08h

BIST Header Lat Timer Cache Ln 0Ch

Base Address Register 0 10h

Base Address Register 1 14h

Second Lat
Timer

Sub Bus
Number

Second Bus
Number

Primary Bus
Number 18h

Secondary Status I/O Limit I/O Base 1Ch

Memory Limit Memory Base 20h

Prefetchable Memory Limit Prefetchable Memory Base 24h

Prefetchable Base Upper 32 Bits 28h

Prefetchable Limit Upper 32 Bits 2Ch

I/O Limit Upper 16 Bits I/O Base Upper 16 Bits 30h

Reserved CapPtr 34h

Expansion ROM Base Address 38h

Bridge Control Intr Pin Intr Line 3Ch

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 27
UG477 March 1, 2011

Core Interfaces

Core Interfaces
The 7 Series FPGAs Integrated Block for PCI Express core includes top-level signal
interfaces that have sub-groups for the receive direction, transmit direction, and signals
common to both directions.

System Interface
The System (SYS) interface consists of the system reset signal (sys_reset) and the system
clock signal (sys_clk), as described in Table 2-5.

The system reset signal is an asynchronous input. The assertion of sys_reset causes a hard
reset of the entire core. The reset provided by the PCI Express system is typically active
Low (for example, PERST#) and needs to be inverted before connecting to the sys_reset
signal. The system input clock must be 100 MHz, 125 MHz, or 250 MHz, as selected in the
CORE Generator™ software GUI Clock and Reference Signals.

PCI Express Interface
The PCI Express (PCI_EXP) interface consists of differential transmit and receive pairs
organized in multiple lanes. A PCI Express lane consists of a pair of transmit differential
signals (pci_exp_txp, pci_exp_txn) and a pair of receive differential signals {pci_exp_rxp,
pci_exp_rxn}. The 1-lane core supports only Lane 0, the 2-lane core supports lanes 0-1, the
4-lane core supports lanes 0-3, and the 8-lane core supports lanes 0-7. Transmit and receive
signals of the PCI_EXP interface are defined in Table 2-6.

Table 2-5: System Interface Signals

Function Signal Name Direction Description

System Reset sys_reset Input Asynchronous signal. sys_reset must
be asserted for at least 1500 ns during
power on and warm reset operations.

System Clock sys_clk Input Reference clock: Selectable frequency
100 MHz, 125 MHz, or 250 MHz.

Table 2-6: PCI Express Interface Signals for 1-, 2-, 4- and 8-Lane Cores

Lane
Number

Name Direction Description

1-Lane Cores

0 pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential
Output 0 (+)

pci_exp_txn0 Output PCI Express Transmit Negative: Serial
Differential Output 0 (–)

pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential
Input 0 (+)

pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential
Input 0 (–)

http://www.xilinx.com

28 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 2: Core Overview

2-Lane Cores

0 pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential
Output 0 (+)

pci_exp_txn0 Output PCI Express Transmit Negative: Serial
Differential Output 0 (–)

pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential
Input 0 (+)

pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential
Input 0 (–)

1 pci_exp_txp1 Output PCI Express Transmit Positive: Serial Differential
Output 1 (+)

pci_exp_txn1 Output PCI Express Transmit Negative: Serial
Differential Output 1 (–)

pci_exp_rxp1 Input PCI Express Receive Positive: Serial Differential
Input 1 (+)

pci_exp_rxn1 Input PCI Express Receive Negative: Serial Differential
Input 1 (–)

4-Lane Cores

0 pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential
Output 0 (+)

pci_exp_txn0 Output PCI Express Transmit Negative: Serial
Differential Output 0 (–)

pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential
Input 0 (+)

pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential
Input 0 (–)

1 pci_exp_txp1 Output PCI Express Transmit Positive: Serial Differential
Output 1 (+)

pci_exp_txn1 Output PCI Express Transmit Negative: Serial
Differential Output 1 (–)

pci_exp_rxp1 Input PCI Express Receive Positive: Serial Differential
Input 1 (+)

pci_exp_rxn1 Input PCI Express Receive Negative: Serial Differential
Input 1 (–)

Table 2-6: PCI Express Interface Signals for 1-, 2-, 4- and 8-Lane Cores (Cont’d)

Lane
Number

Name Direction Description

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 29
UG477 March 1, 2011

Core Interfaces

2 pci_exp_txp2 Output PCI Express Transmit Positive: Serial Differential
Output 2 (+)

pci_exp_txn2 Output PCI Express Transmit Negative: Serial
Differential Output 2 (–)

pci_exp_rxp2 Input PCI Express Receive Positive: Serial Differential
Input 2 (+)

pci_exp_rxn2 Input PCI Express Receive Negative: Serial Differential
Input 2 (–)

3 pci_exp_txp3 Output PCI Express Transmit Positive: Serial Differential
Output 3 (+)

pci_exp_txn3 Output PCI Express Transmit Negative: Serial
Differential Output 3 (–)

pci_exp_rxp3 Input PCI Express Receive Positive: Serial Differential
Input 3 (+)

pci_exp_rxn3 Input PCI Express Receive Negative: Serial Differential
Input 3 (–)

8-Lane Cores

0 pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential
Output 0 (+)

pci_exp_txn0 Output PCI Express Transmit Negative: Serial
Differential Output 0 (–)

pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential
Input 0 (+)

pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential
Input 0 (–)

1 pci_exp_txp1 Output PCI Express Transmit Positive: Serial Differential
Output 1 (+)

pci_exp_txn1 Output PCI Express Transmit Negative: Serial
Differential Output 1 (–)

pci_exp_rxp1 Input PCI Express Receive Positive: Serial Differential
Input 1 (+)

pci_exp_rxn1 Input PCI Express Receive Negative: Serial Differential
Input 1 (–)

Table 2-6: PCI Express Interface Signals for 1-, 2-, 4- and 8-Lane Cores (Cont’d)

Lane
Number

Name Direction Description

http://www.xilinx.com

30 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 2: Core Overview

2 pci_exp_txp2 Output PCI Express Transmit Positive: Serial Differential
Output 2 (+)

pci_exp_txn2 Output PCI Express Transmit Negative: Serial
Differential Output 2 (–)

pci_exp_rxp2 Input PCI Express Receive Positive: Serial Differential
Input 2 (+)

pci_exp_rxn2 Input PCI Express Receive Negative: Serial Differential
Input 2 (–)

3 pci_exp_txp3 Output PCI Express Transmit Positive: Serial Differential
Output 3 (+)

pci_exp_txn3 Output PCI Express Transmit Negative: Serial
Differential Output 3 (–)

pci_exp_rxp3 Input PCI Express Receive Positive: Serial Differential
Input 3 (+)

pci_exp_rxn3 Input PCI Express Receive Negative: Serial Differential
Input 3 (–)

4 pci_exp_txp4 Output PCI Express Transmit Positive: Serial Differential
Output 4 (+)

pci_exp_txn4 Output PCI Express Transmit Negative: Serial
Differential Output 4 (–)

pci_exp_rxp4 Input PCI Express Receive Positive: Serial Differential
Input 4 (+)

pci_exp_rxn4 Input PCI Express Receive Negative: Serial Differential
Input 4 (–)

5 pci_exp_txp5 Output PCI Express Transmit Positive: Serial Differential
Output 5 (+)

pci_exp_txn5 Output PCI Express Transmit Negative: Serial
Differential Output 5 (–)

pci_exp_rxp5 Input PCI Express Receive Positive: Serial Differential
Input 5 (+)

pci_exp_rxn5 Input PCI Express Receive Negative: Serial Differential
Input 5 (–)

6 pci_exp_txp6 Output PCI Express Transmit Positive: Serial Differential
Output 6 (+)

pci_exp_txn6 Output PCI Express Transmit Negative: Serial
Differential Output 6 (–)

pci_exp_rxp6 Input PCI Express Receive Positive: Serial Differential
Input 6 (+)

pci_exp_rxn6 Input PCI Express Receive Negative: Serial Differential
Input 6 (–)

Table 2-6: PCI Express Interface Signals for 1-, 2-, 4- and 8-Lane Cores (Cont’d)

Lane
Number

Name Direction Description

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 31
UG477 March 1, 2011

Transaction Interface

Transaction Interface
The Transaction interface provides a mechanism for the user design to generate and
consume TLPs. The signal names and signal descriptions for this interface are shown in
Table 2-7, Table 2-9, and Table 2-10.

Common Interface
Table 2-7 defines and describes the common interface signals.

7 pci_exp_txp7 Output PCI Express Transmit Positive: Serial Differential
Output 7 (+)

pci_exp_txn7 Output PCI Express Transmit Negative: Serial
Differential Output 7 (–)

pci_exp_rxp7 Input PCI Express Receive Positive: Serial Differential
Input 7 (+)

pci_exp_rxn7 Input PCI Express Receive Negative: Serial Differential
Input 7 (–)

Table 2-6: PCI Express Interface Signals for 1-, 2-, 4- and 8-Lane Cores (Cont’d)

Lane
Number

Name Direction Description

Table 2-7: Common Transaction Interface Signals

Name Direction Description

user_clk_out Output Transaction Clock: Transaction, Configuration, and Physical
Layer Control and Status Interface operations are referenced
to and synchronous with the rising edge of this clock. This
signal is active after power-on, and sys_reset has no effect on
it. This signal is guaranteed to be stable at the selected
operating frequency only after user_reset_out is deasserted.
The user_clk_out clock output is a fixed frequency
configured in the CORE Generator software. This signal does
not change frequencies in case of link recovery or training
down.

See Table 2-8 for recommended and optional frequencies.

user_reset_out Output Transaction Reset: User logic interacting with the Transaction
and Configuration interfaces must use user_reset_out to
return to its quiescent state. This signal is deasserted
synchronously with respect to user_clk_out, and is
deasserted and asserted asynchronously with sys_reset
assertion. This signal is asserted for core in-band reset events
such as Hot Reset or Link Disable.

http://www.xilinx.com

32 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 2: Core Overview

user_lnk_up Output Transaction Link Up: Transaction link-up is asserted when
the core and the connected upstream link partner port are
ready and able to exchange data packets. Transaction link-up
is deasserted when the core and link partner are attempting
to establish communication, or when communication with
the link partner is lost due to errors on the transmission
channel. This signal is also deasserted when the core is driven
to Hot Reset or Link Disable state by the link partner, and all
TLPs stored in the core are lost. This signal is not deasserted
while in the Recovery state, but is deasserted if Recovery
fails.

fc_ph[7:0] Output Posted Header Flow Control Credits: The number of Posted
Header FC credits for the selected flow control type.

fc_pd[11:0] Output Posted Data Flow Control Credits: The number of Posted
Data FC credits for the selected flow control type.

fc_nph[7:0] Output Non-Posted Header Flow Control Credits: The number of
Non-Posted Header FC credits for the selected flow control
type.

fc_npd[11:0] Output Non-Posted Data Flow Control Credits: The number of
Non-Posted Data FC credits for the selected flow control
type.

fc_cplh[7:0] Output Completion Header Flow Control Credits: The number of
Completion Header FC credits for the selected flow control
type.

fc_cpld[11:0] Output Completion Data Flow Control Credits: The number of
Completion Data FC credits for the selected flow control
type.

fc_sel[2:0] Input Flow Control Informational Select: Selects the type of flow
control information presented on the fc_* signals. Possible
values:

• 000: Receive buffer available space
• 001: Receive credits granted to the link partner
• 010: Receive credits consumed
• 100: Transmit user credits available
• 101: Transmit credit limit
• 110: Transmit credits consumed

Table 2-7: Common Transaction Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 33
UG477 March 1, 2011

Transaction Interface

Transmit Interface
Table 2-9 defines the transmit (TX) interface signals. The bus s_axis_tx_tuser consists of
unrelated signals. Both the mnemonics and TSUSER signals are used throughout this
document. For example, the Transmit Source Discontinue signal is referenced as:
(tsrc_dsc)s_axis_tx_tuser[3].

Table 2-8: Recommended and Optional Transaction Clock (user_clk_out)
Frequencies

Product
Link Speed

(Gb/s)
Interface Width(1)

(Bits)
Recommended

Frequency (MHz)
Optional

Frequency (MHz)

1-lane 2.5 64 62.5 31.25, 125, 250

1-lane 5 64 62.5 125, 250

2-lane 2.5 64 62.5 125, 250

2-lane 5 64 125 250

4-lane 2.5 64 125 250

4-lane 5 64 250 -

4-lane 5 128 125 250

8-lane 2.5 64 250 -

8-lane 2.5 128 125 250

8-lane 5 128 250 -

Notes:
1. Interface Width is a static selection and does not change with dynamic Link Speed changes

Table 2-9: Transmit Interface Signals

Name Mnemonic Direction Description

s_axis_tx_tlast Input Transmit End-of-Frame (EOF): Signals the end of a packet.
Valid only along with assertion of s_axis_tx_tvalid.

s_axis_tx_tdata[W-1:0] Input Transmit Data: Packet data to be transmitted.

Product Data Bus Width (W)

1-lane (2.5 Gb/s and 5.0 Gb/s) 64

2-lane (2.5 Gb/s and 5.0 Gb/s) 64

4-lane (2.5 Gb/s and 5.0 Gb/s) 64 or 128

8-lane (2.5 Gb/s and 5.0 Gb/s) 64 or 128

http://www.xilinx.com

34 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 2: Core Overview

s_axis_tx_tstrb[7:0]
(64-bit interface)

s_axis_tx_tstrb[15:0]
(128-bit interface)

Input Transmit Data Strobe: Determines which data bytes are
valid on s_axis_tx_tdata[W-1:0] during a given beat
(s_axis_tx_tvalid and s_axis_tx_tready both asserted).

Bit 0 corresponds to the least significant byte on
s_axis_tx_tdata and bit 7 (64-bit) and bit 15(128-bit)
correspond to the most significant byte, for example:

• s_axis_tx_tstrb[0] == 1b, s_axis_tx_tdata[7:0] is valid
• s_axis_tx_tstrb[7] ==0b, s_axis_tx_tdata[63:56] is not

valid

When s_axis_tx_tlast is not asserted, the only valid values
are 0xFF (64-bit) or 0xFFFF (128-bit).

When s_axis_tx_tlast is asserted, valid values are:

• 64-bit: only 0x0F and 0xFF are valid
• 128-bit: 0x000F, 0x00FF, 0x0FFF, and 0xFFFF are

valid

s_axis_tx_tvalid Input Transmit Source Ready: Indicates that the User Application
is presenting valid data on s_axis_tx_tdata.

s_axis_tx_tready Output Transmit Destination Ready: Indicates that the core is
ready to accept data on s_axis_tx_tdata. The simultaneous
assertion of s_axis_tx_tvalid and s_axis_tx_tready marks
the successful transfer of one data beat on s_axis_tx_tdata.

s_axis_tx_tuser[3] t_src_dsc Input Transmit Source Discontinue: Can be asserted any time
starting on the first cycle after SOF. Assert s_axis_tx_tlast
simultaneously with (tx_src_dsc)s_axis_tx_tuser[3].

tx_buf_av[5:0] Output Transmit Buffers Available: Indicates the number of free
transmit buffers available in the core. Each free transmit
buffer can accommodate one TLP up to the supported
Maximum Payload Size (MPS). The maximum number of
transmit buffers is determined by the supported MPS and
block RAM configuration selected. (See Core Buffering and
Flow Control, page 147.)

tx_terr_drop Output Transmit Error Drop: Indicates that the core discarded a
packet because of a length violation or, when streaming,
data was not presented on consecutive clock cycles.

s_axis_tx_tuser[2] tx_str Input Transmit Streamed: Indicates a packet is presented on
consecutive clock cycles and transmission on the link can
begin before the entire packet has been written to the core.
Commonly referred as transmit cut-through mode.

tx_cfg_req Output Transmit Configuration Request: Asserted when the core is
ready to transmit a Configuration Completion or other
internally generated TLP.

Table 2-9: Transmit Interface Signals (Cont’d)

Name Mnemonic Direction Description

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 35
UG477 March 1, 2011

Transaction Interface

tx_cfg_gnt Input Transmit Configuration Grant: Asserted by the User
Application in response to tx_cfg_req, to allow the core to
transmit an internally generated TLP. The tx_cfg_req signal
is always deasserted after the core-generated packet has
been serviced before another request is made. Therefore,
user designs can look for the rising edge of tx_cfg_req to
determine when to assert tx_cfg_gnt. Holding tx_cfg_gnt
deasserted after tx_cfg_req allows user-initiated TLPs to be
given a higher priority of transmission over core-generated
TLPs. Asserting tx_cfg_gnt for one clock cycle when
tx_cfg_req is asserted causes the next packet output to be
the core’s internally generated packet. In cases where there
is no buffer space to store the internal packet, tx_cfg_req
remains asserted even after tx_cfg_gnt has been asserted.
The user design does not need to assert tx_cfg_gnt again
because the initial assertion has been captured.

If the user does not wish to alter the prioritization of the
transmission of internally generated TLPs, this signal can
be continuously asserted.

s_axis_tx_tuser[1] tx_err_fwd Input Transmit Error Forward: This input marks the current
packet in progress as error-poisoned. It can be asserted any
time between SOF and EOF, inclusive. The tx_err_fwd
signal must not be asserted if (tx_str)s_axis_tx_tuser[2] is
asserted.

s_axis_tx_tuser[0] tx_ecrc_gen Input Transmit ECRC Generate: Causes the end-to-end cyclic
redundancy check (ECRC) digest to be appended. This
input must be asserted at the beginning of the TLP.

Table 2-9: Transmit Interface Signals (Cont’d)

Name Mnemonic Direction Description

http://www.xilinx.com

36 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 2: Core Overview

Receive Interface
Table 2-10 defines the receive (RX) interface signals. The bus m_axis_tx_tuser consists of
unrelated signals. Mnemonics for these signals are used throughout this document in place
of the TUSER signal names.

Table 2-10: Receive Interface Signals

Name Mnemonic Direction Description

m_axis_rx_tlast Output Receive End-of-Frame (EOF): Signals the end of a packet.
Valid only if m_axis_rx_tvalid is also asserted.

m_axis_rx_tdata[W-1:0] Output Receive Data: Packet data being received. Valid only if
m_axis_rx_tvalid is also asserted.

128-bit interface only: Unlike the Transmit interface
s_axis_tx_tdata[127:0], received TLPs can begin on either
the upper QWORD m_axis_rx_tdata[127:64] or lower
QWORD m_axis_rx_tdata[63:0] of the bus. See the
description of is_sof and (rx_is_sof[4:0])
m_axis_rx_tuser[14:10] m_axis_rx_tuser[21:17] for
further explanation.

m_axis_rx_tstrb[7:0]
(64-bit interface only)

Output Receive Data Strobe:

Determines which data bytes are valid on
m_axis_rx_tdata[63:0] during a given beat
(m_axis_rx_tvalid and m_axis_rx_tready both asserted).

Bit 0 corresponds to the least significant byte on
m_axis_rx_tdata and bit 7 correspond to the most
significant byte, for example:

• m_axis_rx_tstrb[0] == 1b, m_axis_rx_tdata[7:0] is valid
• m_axis_rx_tstrb[7] == 0b, m_axis_rx_tdata[63:56] is

not valid

When m_axis_rx_tlast is not asserted, the only valid value
is 0xFF.

When m_axis_rx_tlast is asserted, valid values are:

• 64-bit:, only 0x0F and 0xFF are valid

Product Data Bus Width (W)

1-lane (2.5 Gb/s and 5.0 Gb/s) 64

2-lane (2.5 Gb/s and 5.0 Gb/s) 64

4-lane (2.5 Gb/s and 5.0 Gb/s) 64 or 128

8-lane (2.5 Gb/s and 5.0 Gb/s) 64 or 128

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 37
UG477 March 1, 2011

Transaction Interface

m_axis_rx_tuser[14:10]

(128-bit interface only)

rx_is_sof[4:0] Output Indicates the start of a new packet header in
m_axis_rx_tdata:

Bit 4: Asserted when a new packet is present

Bit 0-3: Indicates byte location of start of new packet,
binary encoded.

Valid values:

• 5'b10000 = SOF at AXI byte 0 (DWORD 0)
m_axis_rx_tdata[7:0]

• 5'b11000 = SOF at AXI byte 8 (DWORD 2)
m_axis_rx_tdata[71:64]

• 5'b00000 = No SOF present

m_axis_rx_tuser[21:17]

(128-bit interface only)

rx_is_eof[4:0] Output Indicates the end of a packet in m_axis_rx_tdata:

Bit 4: Asserted when a packet is ending

Bit 0-3: Indicates byte location of end of the packet, binary
encoded.

Valid values:

• 5'b10011 = EOF at AXI byte 3 (DWORD 0)
m_axis_rx_tdata[31:24]

• 5'b10111 = EOF at AXI byte 7 (DWORD 1)
m_axis_rx_tdata[63:56]

• 5'b11011 = EOF at AXI byte 11 (DWORD 2)
m_axis_rx_tdata[95:88]

• 5'b11111 = EOF at AXI byte 15 (DWORD 3)
m_axis_rx_tdata[127:120]

• 5'b00011 = No EOF present

m_axis_rx_tuser[1] rx_err_fwd Output Receive Error Forward:

64-bit interface: When asserted, marks the packet in
progress as error-poisoned. Asserted by the core for the
entire length of the packet.

128-bit interface: When asserted, marks the current packet
in progress as error-poisoned. Asserted by the core for the
entire length of the packet. If asserted during a straddled
data transfer, applies to the packet that is beginning.

m_axis_rx_tuser[0] rx_ecrc_err Output Receive ECRC Error: Indicates the current packet has an
ECRC error. Asserted at the packet EOF.

m_axis_rx_tvalid Output Receive Source Ready: Indicates that the core is
presenting valid data on m_axis_rx_tdata.

m_axis_rx_tready Input Receive Destination Ready: Indicates that the User
Application is ready to accept data on m_axis_rx_tdata.
The simultaneous assertion of m_axis_rx_tvalid and
m_axis_rx_tready marks the successful transfer of one
data beat on s_axis_tx_tdata.

Table 2-10: Receive Interface Signals (Cont’d)

Name Mnemonic Direction Description

http://www.xilinx.com

38 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 2: Core Overview

rx_np_ok Input Receive Non-Posted OK: The User Application asserts
this signal when it is ready to accept Non-Posted Request
TLPs. rx_np_ok must be deasserted when the User
Application cannot process received Non-Posted TLPs, so
that these can be buffered within the core's receive queue.
In this case, Posted and Completion TLPs received after
the Non-Posted TLPs bypass the blocked TLPs.

When the User Application approaches a state where it is
unable to service Non-Posted Requests, it must deassert
rx_np_ok two clock cycle before the core asserts
m_axis_rx_tlast of the next-to-last Non-Posted TLP the
User Application can accept.

rx_np_req Input Receive Non-Posted Request: When asserted, requests
one non-posted TLP from the core per user_clk cycle. If
the User Application can process received Non-Posted
TLPs at the line rate, this signal can be constantly asserted.
If the User Application is not requesting Non-Posted
packets, received Posted and Completion TLPs bypass
waiting Non-Posted TLPs.

m_axis_rx_tuser[9:2] rx_bar_hit[7:0] Output Receive BAR Hit: Indicates BAR(s) targeted by the current
receive transaction. Asserted from the beginning of the
packet to m_axis_rx_tlast.

• (rx_bar_hit[0])m_axis_rx_tuser[2]: BAR0
• (rx_bar_hit[1])m_axis_rx_tuser[3]: BAR1
• (rx_bar_hit[2])m_axis_rx_tuser[4]: BAR2
• (rx_bar_hit[3])m_axis_rx_tuser[5]: BAR3
• (rx_bar_hit[4])m_axis_rx_tuser[6]: BAR4
• (rx_bar_hit[5])m_axis_rx_tuser[7]: BAR5
• (rx_bar_hit[6])m_axis_rx_tuser[8]: Expansion ROM

Address

If two BARs are configured into a single 64-bit address,
both corresponding rx_bar_hit bits are asserted.

m_axis_rx_tuser[8:4] are not applicable to Root Port
configurations.

m_axis_rx_tuser[9] is reserved for future use.

Table 2-10: Receive Interface Signals (Cont’d)

Name Mnemonic Direction Description

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 39
UG477 March 1, 2011

Physical Layer Interface

Physical Layer Interface
The Physical Layer (PL) interface enables the user design to inspect the status of the Link
and Link Partner and control the Link State. Table 2-11 defines and describes the signals for
the PL interface.

Table 2-11: Physical Layer Interface Signals

Name Direction Description

pl_initial_link_width[2:0] Output Initial Negotiated Link Width: Indicates the
link width after the PCI Express port has
achieved the first successful link training.
Initial Negotiated Link Width represents the
widest link width possible during normal
operation of the link, and can be equal to or
smaller than the capability link width (smaller
of the two) supported by link partners. This
value is reset when the core is reset or the
LTSSM goes through the Detect state.
Otherwise the value remains the same.

• 000: Link not trained
• 001: 1-Lane link
• 010: 2-Lane link
• 011: 4-Lane link
• 100: 8-Lane link

pl_phy_lnk_up Output Physical Layer Link Up Status: Indicates the
physical layer link up status.

pl_lane_reversal_mode[1:0] Output Lane Reversal Mode: Indicates the current Lane
Reversal mode.

• 00: No reversal
• 01: Lanes 1:0 reversed
• 10: Lanes 3:0 reversed
• 11: Lanes 7:0 reversed

pl_link_gen2_cap Output Link Gen2 Capable: Indicates that the
PCI Express link is 5.0 Gb/s (Gen 2) speed
capable (both the Link Partner and the Device
are Gen 2 capable)

• 0: Link is not Gen2 Capable
• 1: Link is Gen2 Capable

pl_link_partner_gen2_supported Output Link Partner Gen2 Capable: Indicates if the PCI
Express link partner advertises 5.0 Gb/s (Gen2)
capability. Valid only when user_lnk_up is
asserted.

• 0: Link partner not Gen2 capable
• 1: Link partner is Gen2 capable

pl_link_upcfg_cap Output Link Upconfigure Capable: Indicates the
PCI Express link is Upconfigure capable. Valid
only when user_lnk_up is asserted.

• 0: Link is not Upconfigure capable
• 1: Link is Upconfigure capable

http://www.xilinx.com

40 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 2: Core Overview

pl_sel_lnk_rate Output Current Link Rate: Reports the current link
speed. Valid only when user_lnk_up is
asserted.

0: 2.5 Gb/s

1: 5.0 Gb/s

pl_sel_lnk_width[1:0] Output Current Link Width: Reports the current link
width. Valid only when user_lnk_up is
asserted.

00: 1-Lane link

01: 2-Lane link

10: 4-Lane link

11: 8-Lane link

Table 2-11: Physical Layer Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 41
UG477 March 1, 2011

Physical Layer Interface

pl_ltssm_state[5:0] Output LTSSM State: Shows the current LTSSM state
(hex).

0, 1: Detect Quiet

2, 3: Detect Active

4: Polling Active

5: Polling Configuration

6: Polling Compliance, Pre_Send_EIOS

7: Polling Compliance, Pre_Timeout

8: Polling Compliance, Send_Pattern

9: Polling Compliance, Post_Send_EIOS

A: Polling Compliance, Post_Timeout

B: Configuration Linkwidth, State 0

C: Configuration Linkwidth, State 1

D: Configuration Linkwidth, Accept 0

E: Configuration Linkwidth, Accept 1

F: Configuration Lanenum Wait

10: Configuration Lanenum, Accept

11: Configuration Complete x1

12: Configuration Complete x2

13: Configuration Complete x4

14: Configuration Complete x8

15: Configuration Idle

16: L0

17: L1 Entry0

18: L1 Entry1

19: L1 Entry2 (also used for the L2/L3 Ready
pseudo state)

1A: L1 Idle

1B: L1 Exit

1C: Recovery Rcvrlock

1D: Recovery Rcvrcfg

Table 2-11: Physical Layer Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

42 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 2: Core Overview

pl_ltssm_state[5:0] (Cont’d) Output 1E: Recovery Speed_0

1F: Recovery Speed_1

20: Recovery Idle

21: Hot Reset

22: Disabled Entry 0

23: Disabled Entry 1

24: Disabled Entry 2

25: Disabled Idle

26: Root Port, Configuration, Linkwidth State 0

27: Root Port, Configuration, Linkwidth State 1

28: Root Port, Configuration, Linkwidth State 2

29: Root Port, Configuration, Link Width
Accept 0

2A: Root Port, Configuration, Link Width
Accept 1

2B: Root Port, Configuration, Lanenum_Wait

2C: Root Port, Configuration,
Lanenum_Accept

2D: Timeout To Detect

2E: Loopback Entry0

2F: Loopback Entry1

30: Loopback Active0

31: Loopback Exit0

32: Loopback Exit1

33: Loopback Master Entry0

pl_rx_pm_state[1:0] Output RX Power Management State: Indicates the RX
Power Management State:

00: RX Not in L0s

01: RX L0s Entry

10: RX L0s Idle

11: RX L0s FTS

pl_tx_pm_state[2:0] Output TX Power Management State: Indicates the TX
Power Management State:

000: TX Not in L0s

001: TX L0s Entry

010: TX L0s Idle

011: TX L0s FTS

100 - 111: Reserved

Table 2-11: Physical Layer Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 43
UG477 March 1, 2011

Physical Layer Interface

pl_directed_link_auton Input Directed Autonomous Link Change: Specifies
the reason for directed link width and speed
change. This must be used in conjunction with
pl_directed_link_change[1:0],
pl_directed_link_speed, and
pl_directed_link_width[1:0] inputs.

• 0: Link reliability driven
• 1: Application requirement driven

(autonomous)

pl_directed_link_change[1:0] Input Directed Link Change Control: Directs the PCI
Express Port to initiate a link width and/or
speed change. Link change operation must be
initiated when user_lnk_up is asserted. For a
Root Port, pl_directed_link_change must not
be set to 10 or 11 unless the attribute
RP_AUTO_SPD = 11.

• 00: No change
• 01: Link width
• 10: Link speed
• 11: Link width and speed (level-triggered)

pl_directed_link_speed Input Directed Target Link Speed: Specifies the target
link speed for a directed link change operation,
in conjunction with the
pl_directed_link_change[1:0] input. The target
link speed must not be set High unless the
pl_link_gen2_capable output is High.

• 0: 2.5 Gb/s
• 1: 5.0 Gb/s

pl_directed_link_width[1:0] Input Directed Target Link Width: Specifies the target
link width for a directed link change operation,
in conjunction with
pl_directed_link_change[1:0] input.

Encoding Target Link Width:

• 00: 1-Lane link
• 01: 2-Lane link
• 10: 4-Lane link
• 11: 8-Lane link

Table 2-11: Physical Layer Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

44 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 2: Core Overview

Configuration Interface
The Configuration (CFG) interface enables the user design to inspect the state of the
Endpoint for PCIe configuration space. The user provides a 10-bit configuration address,
which selects one of the 1024 configuration space doubleword (DWORD) registers. The
Endpoint returns the state of the selected register over the 32-bit data output port.
Table 2-14 defines the Configuration interface signals. See Design with Configuration
Space Registers and Configuration Interface, page 158 for usage.

pl_directed_change_done Output Directed Link Change Done: Indicates to the
user that the directed link speed change or
directed link width change is done.

pl_upstream_prefer_deemph Input Endpoint Preferred Transmitter De-emphasis:
Enables the Endpoint to control de-emphasis
used on the link at 5.0 Gb/s speeds.
pl_upstream_prefer_deemph can be changed
in conjunction with pl_directed_link_speed
and pl_directed_link_change[1:0] inputs when
transitioning from 2.5 Gb/s to 5.0 Gb/s data
rates. Value presented on
pl_upstream_prefer_deemph depends upon
the property of PCI Express physical
interconnect channel in use.

• 0: –6 dB de-emphasis recommended for
short, reflection dominated channels.

• 1: –3.5 dB de-emphasis recommended for
long, loss dominated channels.

Table 2-12: Role-Specific Physical Layer Interface Signals: Endpoint

Name Direction Description

pl_received_hot_rst Output Hot Reset Received: Indicates that an in-band hot reset
command has been received.

Table 2-13: Role-Specific Physical Layer Interface Signals: Root Port

Name Direction Description

pl_transmit_hot_rst Input Transmit Hot Reset: Active High. Directs the PCI
Express Port to transmit an In-Band Hot Reset.

Table 2-11: Physical Layer Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 45
UG477 March 1, 2011

Configuration Interface

Table 2-14: Configuration Interface Signals

Name Direction Description

cfg_mgmt_do[31:0] Output Configuration Data Out: A 32-bit data output port
used to obtain read data from the configuration
space inside the core.

cfg_mgmt_rd_wr_done Output Configuration Read Write Done: Read-write done
signal indicates a successful completion of the user
configuration register access operation.

• For a user configuration register read
operation, this signal validates the
cfg_mgmt_do[31:0] data-bus value.

• For a user configuration register write
operation, the assertion indicates completion of
a successful write operation.

cfg_mgmt_di[31:0] Input Configuration Data In: A 32-bit data input port
used to provide write data to the configuration
space inside the core.

cfg_mgmt_dwaddr[9:0] Input Configuration DWORD Address: A 10-bit address
input port used to provide a configuration register
DWORD address during configuration register
accesses.

cfg_mgmt_byte_en[3:0] Input Configuration Byte Enable: Byte enables for
configuration register write access.

cfg_mgmt_wr_en Input Configuration Write Enable: Write enable for
configuration register access.

cfg_mgmt_rd_en Input Configuration Read Enable: Read enable for
configuration register access.

cfg_mgmt_wr_readonly Input Management Write Readonly Bits: Write enable to
treat any ReadOnly bit in the current Management
Write as a RW bit, not including bits set by
attributes, reserved bits, and status bits.

cfg_status[15:0] Output Configuration Status: Status register from the
Configuration Space Header. Not supported.

cfg_command[15:0] Output Configuration Command: Command register
from the Configuration Space Header.

cfg_dstatus[15:0] Output Configuration Device Status: Device status
register from the PCI Express Capability Structure.

cfg_dcommand[15:0] Output Configuration Device Command: Device control
register from the PCI Express Capability Structure.

cfg_dcommand2[15:0] Output Configuration Device Command 2: Device control
2 register from the PCI Express Capability
Structure.

cfg_lstatus[15:0] Output Configuration Link Status: Link status register
from the PCI Express Capability Structure.

http://www.xilinx.com

46 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 2: Core Overview

cfg_lcommand[15:0] Output Configuration Link Command: Link control
register from the PCI Express Capability Structure.

cfg_aer_ecrc_gen_en Output Configuration AER - ECRC Generation Enable:
AER Capability and Control Register bit 6. When
asserted, indicates that ECRC Generation has been
enabled by the host.

cfg_aer_ecrc_check_en Output Configuration AER - ECRC Check Enable: AER
Capability and Control Register bit 8. When
asserted, indicates that ECRC Checking has been
enabled by the host.

cfg_pcie_link_state[2:0] Output PCI Express Link State: This encoded bus reports
the PCI Express Link State information to the user.

• 000: “L0”
• 001: “PPM L1”
• 010: “PPM L2/L3 Ready”
• 011: “PM_PME”
• 100: “in or transitioning to/from ASPM L0s”
• 101: “transitioning to/from PPM L1”
• 110: “transition to PPM L2/L3 Ready”
• 111: Reserved

cfg_trn_pending Input User Transaction Pending: If asserted, sets the
Transactions Pending bit in the Device Status
Register.

Note: The user is required to assert this input if the
User Application has not received a completion to
an upstream request.

cfg_dsn[63:0] Input Configuration Device Serial Number: Serial
Number Register fields of the Device Serial
Number extended capability.

cfg_pmcsr_pme_en Output PMCSR PME Enable: PME_En bit (bit 8) in the
Power Management Control/Status Register.

cfg_pmcsr_pme_status Output PMCSR PME_Status: PME_Status bit (bit 15) in the
Power Management Control/Status Register.

cfg_pmcsr_powerstate[1:0] Output PMCSR PowerState: PowerState bits (bits 1:0) in
the Power Management Control/Status Register.

cfg_pm_halt_aspm_l0s Input Halt ASPM L0s: When asserted, it prevents the
core from going into ASPM L0s. If the core is
already in L0s, it causes the core to return to L0.
cfg_pm_force_state, however, takes precedence
over this input.

cfg_pm_halt_aspm_l1 Input Halt ASPM L1: When asserted, it prevents the core
from going into ASPM L1. If the core is already in
L1, it causes the core to return to L0.
cfg_pm_force_state, however, takes precedence
over this input.

Table 2-14: Configuration Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 47
UG477 March 1, 2011

Configuration Interface

cfg_pm_force_state[1:0] Input Force PM State: Forces the Power Management
State machine to attempt to stay in or move to the
desired state.

• 00: Move to or stay in L0
• 01: Move to or stay in PPM L1
• 10: Move to or stay in ASPM L0s
• 11: Move to or stay in ASPM L1

cfg_pm_force_state_en Input Force PM State Transition Enable: Enables the
transition to/stay in the desired Power
Management state, as indicated by
cfg_pm_force_state. If attempting to move to a
desired state, cfg_pm_force_state_en must be held
asserted until cfg_pcie_link_state indicates a move
to the desired state.

Table 2-15: Role-Specific Configuration Interface Signals: Endpoint

Name Direction Description

cfg_bus_number[7:0] Output Configuration Bus Number: Provides the
assigned bus number for the device. The User
Application must use this information in the
Bus Number field of outgoing TLP requests.
Default value after reset is 00h. Refreshed
whenever a Type 0 Configuration Write
packet is received.

cfg_device_number[4:0] Output Configuration Device Number: Provides the
assigned device number for the device. The
User Application must use this information
in the Device Number field of outgoing TLP
requests. Default value after reset is 00000b.
Refreshed whenever a Type 0 Configuration
Write packet is received.

cfg_function_number[2:0] Output Configuration Function Number: Provides
the function number for the device. The User
Application must use this information in the
Function Number field of outgoing TLP
request. Function number is hardwired to
000b.

cfg_to_turnoff Output Configuration To Turnoff: Output that
notifies the user that a PME_TURN_Off
message has been received and the CMM
starts polling the cfg_turnoff_ok input
coming in from the user. After cfg_turnoff_ok
is asserted, CMM sends a PME_To_Ack
message to the upstream device.

Table 2-14: Configuration Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

48 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 2: Core Overview

cfg_turnoff_ok Input Configuration Turnoff OK: The User
Application can assert this to notify the
Endpoint that it is safe to turn off power.

cfg_pm_wake Input Configuration Power Management Wake: A
one-clock cycle assertion informs the core to
generate and send a Power Management
Wake Event (PM_PME) Message TLP to the
upstream link partner.

Note: The user is required to assert this input
only under stable link conditions as reported
on the cfg_pcie_link_state[2:0] bus. Assertion
of this signal when the PCI Express link is in
transition results in incorrect behavior on the
PCI Express link.

Table 2-16: Role-Specific Configuration Interface Signals: Root Port

Name Direction Description

cfg_ds_bus_number[7:0] Input Configuration Downstream Bus Number: Provides
the bus number (Requester ID) of the Downstream
Port. This is used in TLPs generated inside the core
and does not affect the TLPs presented on the
AXI4-Stream interface.

cfg_ds_device_number[4:0] Input Configuration Downstream Device Number:
Provides the device number (Requester ID) of the
Downstream Port. This is used in TLPs generated
inside the core and does not affect the TLPs
presented on the Transaction interface.

cfg_wr_rw1c_as_rw Input Configuration Write RW1C Bit as RW: Indicates that
the current write operation should treat any RW1C
bit as a RW bit. Normally, a RW1C bit is cleared by
writing a 1 to it, and can normally only be set by
internal core conditions. However, during a
configuration register access operation with this
signal asserted, for every bit on cfg_di that is 1, the
corresponding RW1C configuration register bit is
set to 1. A value of 0 on cfg_di during this operation
has no effect, and non-RW1C bits are unaffected
regardless of the value on cfg_di.

cfg_msg_received Output Message Received: Active High. Notifies the user
that a Message TLP was received on the Link.

cfg_msg_data[15:0] Output Message Requester ID: The Requester ID of the
Message was received. Valid only along with
assertion of cfg_msg_received.

Table 2-15: Role-Specific Configuration Interface Signals: Endpoint (Cont’d)

Name Direction Description

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 49
UG477 March 1, 2011

Configuration Interface

cfg_msg_received_
err_cor

Output Received ERR_COR Message: Active High.
Indicates that the core received an ERR_COR
Message. Valid only along with assertion of
cfg_msg_received. The Requester ID of this
Message Transaction is provided on
cfg_msg_data[15:0].

cfg_msg_received_
err_non_fatal

Output Received ERR_NONFATAL Message: Active High.
Indicates that the core received an
ERR_NONFATAL Message. Valid only along with
assertion of cfg_msg_received. The Requester ID of
this Message Transaction is provided on
cfg_msg_data[15:0].

cfg_msg_received_
err_fatal

Output Received ERR_FATAL Message: Active High.
Indicates that the core received an ERR_FATAL
Message. Valid only along with assertion of
cfg_msg_received. The Requester ID of this
Message Transaction is provided on
cfg_msg_data[15:0].

cfg_pm_send_pme_to Input Configuration Send Turn-off: Asserting this
active-Low input causes the Root Port to send Turn
Off Message. When the link partner responds with a
Turn Off Ack, this is reported on
cfg_msg_received_pme_to_ack, and the final
transition to L3 Ready is reported on
cfg_pcie_link_state. Tie-off to 1 for Endpoint.

cfg_msg_received_err_
pme_to_ack

Output Received PME_TO_Ack Message: Active High.
Indicates that the core received an PME_TO_Ack
Message. Valid only along with assertion of
cfg_msg_received. The Requester ID of this
Message Transaction is provided on
cfg_msg_data[15:0].

cfg_msg_received_
assert_inta

Output Received Assert_INTA Message: Active High.
Indicates that the core received an Assert INTA
Message. Valid only along with assertion of
cfg_msg_received. The Requester ID of this
Message Transaction is provided on
cfg_msg_data[15:0].

cfg_msg_received_
assert_intb

Output Received Assert_INTB Message: Active High.
Indicates that the core received an Assert_INTB
Message. Valid only along with assertion of
cfg_msg_received. The Requester ID of this
Message Transaction is provided on
cfg_msg_data[15:0].

Table 2-16: Role-Specific Configuration Interface Signals: Root Port (Cont’d)

Name Direction Description

http://www.xilinx.com

50 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 2: Core Overview

cfg_msg_received_
assert_intc

Output Received Assert_INTC Message: Active High.
Indicates that the core received an Assert_INTC
Message. Valid only along with assertion of
cfg_msg_received. The Requester ID of this
Message Transaction is provided on
cfg_msg_data[15:0].

cfg_msg_received_
assert_intd

Output Received Assert_INTD Message: Active High.
Indicates that the core received an Assert_INTD
Message. Valid only along with assertion of
cfg_msg_received. The Requester ID of this
Message Transaction is provided on
cfg_msg_data[15:0].

cfg_msg_received_
deassert_inta

Output Received Deassert_INTA Message: Active High.
Indicates that the core received a Deassert_INTA
Message. Valid only along with assertion of
cfg_msg_received. The Requester ID of this
Message Transaction is provided on
cfg_msg_data[15:0].

cfg_msg_received_
deassert_intb

Output Received Deassert_INTB Message: Active High.
Indicates that the core received a Deassert_INTB
Message. Valid only along with assertion of
cfg_msg_received. The Requester ID of this
Message Transaction is provided on
cfg_msg_data[15:0].

cfg_msg_received_
deassert_intc

Output Received Deassert_INTC Message: Active High.
Indicates that the core received a Deassert_INTC
Message. Valid only along with assertion of
cfg_msg_received. The Requester ID of this
Message Transaction is provided on
cfg_msg_data[15:0].

cfg_msg_received_
deassert_intd

Output Received Deassert_INTD Message: Active High.
Indicates that the core received a Deassert_INTD
Message. Valid only along with assertion of
cfg_msg_received. The Requester ID of this
Message Transaction is provided on
cfg_msg_data[15:0].

Table 2-16: Role-Specific Configuration Interface Signals: Root Port (Cont’d)

Name Direction Description

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 51
UG477 March 1, 2011

Interrupt Interface Signals

Interrupt Interface Signals
Table 2-17 defines the Interrupt interface signals.

Table 2-17: Configuration Interface Signals: Interrupt Interface - Endpoint Only

Name Direction Description

cfg_interrupt Input Configuration Interrupt: Interrupt-request signal. The User Application can
assert this input to cause the selected interrupt message type to be
transmitted by the core. The signal should be held Low until
cfg_interrupt_rdy is asserted.

cfg_interrupt_rdy Output Configuration Interrupt Ready: Interrupt grant signal. The simultaneous
assertion of cfg_interrupt_rdy and cfg_interrupt indicates that the core has
successfully transmitted the requested interrupt message.

cfg_interrupt_assert Input Configuration Legacy Interrupt Assert/Deassert Select: Selects between
Assert and Deassert messages for Legacy interrupts when cfg_interrupt is
asserted. Not used for MSI interrupts.

Value Message Type

0 Assert

1 Deassert

cfg_interrupt_di[7:0] Input Configuration Interrupt Data In: For MSIs, the portion of the Message Data
that the Endpoint must drive to indicate the MSI vector number, if
Multi-Vector Interrupts are enabled. The value indicated by
cfg_interrupt_mmenable[2:0] determines the number of lower-order bits of
Message Data that the Endpoint provides; the remaining upper bits of
cfg_interrupt_di[7:0] are not used. For Single-Vector Interrupts,
cfg_interrupt_di[7:0] is not used. For Legacy Interrupt messages
(Assert_INTx, Deassert_INTx), only INTA (00h) is supported.

cfg_interrupt_do[7:0] Output Configuration Interrupt Data Out: The value of the lowest eight bits of the
Message Data field in the Endpoint’s MSI capability structure. This value is
provided for informational purposes and backwards compatibility.

cfg_interrupt_mmenable[2:0] Output Configuration Interrupt Multiple Message Enable: This is the value of the
Multiple Message Enable field and defines the number of vectors the system
allows for multi-vector MSI. Values range from 000b to 101b. A value of
000b indicates that single-vector MSI is enabled, while other values indicate
the number of lower-order bits that can be overridden by
cfg_interrupt_di[7:0].

• 000, 0 bits
• 001, 1 bit
• 010, 2 bits
• 011, 3 bits
• 100, 4 bits
• 101, 5 bits

cfg_interrupt_msienable Output Configuration Interrupt MSI Enabled: Indicates that MSI messaging is
enabled.

• 0: Only Legacy (INTX) interrupts or MSI-X Interrupts can be sent.
• 1: Only MSI Interrupts should be sent.

http://www.xilinx.com

52 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 2: Core Overview

Error Reporting Signals
Table 2-18 defines the User Application error-reporting signals.

cfg_interrupt_msixenable Output Configuration Interrupt MSI-X Enabled: Indicates that the MSI-X messaging
is enabled.

• 0: Only Legacy (INTX) interrupts or MSI Interrupts can be sent.
• 1: Only MSI-X Interrupts should be sent.

cfg_interrupt_msixfm Output Configuration Interrupt MSI-X Function Mask: Indicates the state of the
Function Mask bit in the MSI-X Message Control field. If 0, each vector’s
Mask bit determines its masking. If 1, all vectors are masked, regardless of
their per-vector Mask bit states.

cfg_pciecap_interrupt_msgnum[4:0] Input Configuration PCIe Capabilities - Interrupt Message Number: This input sets
the Interrupt Message Number field in the PCI Express Capability register.
This input value must be adjusted by the user if only MSI is enabled and the
host adjusts the Multiple Message Enable field such that it invalidates the
current value.

Table 2-17: Configuration Interface Signals: Interrupt Interface - Endpoint Only (Cont’d)

Name Direction Description

Table 2-18: User Application Error-Reporting Signals

Port Name Direction Description

cfg_err_ecrc Input ECRC Error Report: The user can assert this
signal to report an ECRC error (end-to-end CRC).

cfg_err_ur Input Configuration Error Unsupported Request: The
user can assert this signal to report that an
unsupported request was received. This signal is
ignored if cfg_err_cpl_rdy is deasserted.

cfg_err_cpl_timeout(1) Input Configuration Error Completion Timeout: The
user can assert this signal to report a completion
timed out.

cfg_err_cpl_unexpect Input Configuration Error Completion Unexpected:
The user can assert this signal to report that an
unexpected completion was received.

cfg_err_cpl_abort Input Configuration Error Completion Aborted: The
user can assert this signal to report that a
completion was aborted. This signal is ignored if
cfg_err_cpl_rdy is deasserted.

cfg_err_posted Input Configuration Error Posted: This signal is used to
further qualify any of the cfg_err_* input signals.
When this input is asserted concurrently with
one of the other signals, it indicates that the
transaction that caused the error was a posted
transaction.

cfg_err_cor(1) Input Configuration Error Correctable Error: The user
can assert this signal to report that a correctable
error was detected.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 53
UG477 March 1, 2011

Error Reporting Signals

cfg_err_atomic_egress_blocked Input Configuration Error AtomicOp Egress Blocked:
The user asserts this signal to report that an
Atomic TLP was blocked.

cfg_err_internal_cor Input Configuration Error Corrected Internal: The user
asserts this signal to report that an Internal error
occurred and was corrected. This input is only
sampled if AER is enabled.

cfg_err_internal_uncor Input Configuration Error Uncorrectable Internal: The
user asserts this signal to report that an
Uncorrectable Internal error occurred. This input
is only sampled if AER is enabled.

cfg_err_malformed Input Configuration Error Malformed Error: The user
asserts this signal to report a Malformed Error.

cfg_err_mc_blocked Input Configuration Error MultiCast Blocked: The
user asserts this signal to report that a Multicast
TLP was blocked.

cfg_err_poisoned Input Configuration Error Poisoned TLP: The user can
assert this signal to report that a Poisoned TLP
was received. Normally, only used if attribute
DISABLE_RX_POISONED_RESP=TRUE.

cfg_err_no_recovery Input Configuration Error Cannot Recover: Used to
further qualify the cfg_err_poisoned and
cfg_err_cpl_timeout input signals. When this
input is asserted concurrently with one of these
signals, it indicates that the transaction that
caused these errors cannot be recovered from.
For a Completion Timeout, it means the user
elects not to attempt the Request again. For a
received Poisoned TLP, it means that the user
cannot continue operation. In either case,
assertion causes the corresponding error to not
be regarded as ANFE.

cfg_err_tlp_cpl_header[47:0] Input Configuration Error TLP Completion Header:
Accepts the header information from the user
when an error is signaled. This information is
required so that the core can issue a correct
completion, if required.

This information should be extracted from the
received error TLP and presented in the given
format:

[47:41] Lower Address

[40:29] Byte Count

[28:26] TC

[25:24] Attr

[23:8] Requester ID

[7:0] Tag

Table 2-18: User Application Error-Reporting Signals (Cont’d)

Port Name Direction Description

http://www.xilinx.com

54 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 2: Core Overview

cfg_err_cpl_rdy Output Configuration Error Completion Ready: When
asserted, this signal indicates that the core can
accept assertions on cfg_err_ur and
cfg_err_cpl_abort for Non-Posted Transactions.
Assertions on cfg_err_ur and cfg_err_cpl_abort
are ignored when cfg_err_cpl_rdy is deasserted.

cfg_err_locked Input Configuration Error Locked: This signal is used
to further qualify any of the cfg_err_* input
signals. When this input is asserted concurrently
with one of the other signals, it indicates that the
transaction that caused the error was a locked
transaction.

This signal is for use in Legacy mode. If the user
needs to signal an unsupported request or an
aborted completion for a locked transaction, this
signal can be used to return a Completion Locked
with UR or CA status.

Note: When not in Legacy mode, the core
automatically returns a Completion Locked, if
appropriate.

cfg_err_aer_headerlog[127:0] Input Configuration Error AER Header Log: AER
Header log for the signalled error.

cfg_err_aer_headerlog_set Output Configuration Error AER Header Log Set: When
asserted, indicates that Error AER Header Log is
Set in the case of a Single Header
implementation/Full in the case of a
Multi-Header implementation and the header
for user-reported error is not needed.

cfg_aer_interrupt_msgnum[4:0] Input Configuration AER Interrupt Message Number:
This input sets the AER Interrupt Message (Root
Port only) Number field in the AER Capability -
Root Error Status register.

If AER is enabled, this input must be driven to a
value appropriate for MSI or MSIx mode,
whichever is enabled. This input value must be
adjusted by the user if only MSI is enabled and
the host adjusts the Multiple Message Enable
field such that it invalidates the current value.

Notes:
1. The user should assert these signals only if the device power state is D0. Asserting these signals in

non-D0 device power states might result in an incorrect operation on the PCIe link. For additional
information, see the PCI Express Base Specification, rev. 2.1, Section 5.3.1.2.

Table 2-18: User Application Error-Reporting Signals (Cont’d)

Port Name Direction Description

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 55
UG477 March 1, 2011

Dynamic Reconfiguration Port Interface

Dynamic Reconfiguration Port Interface
The Dynamic Reconfiguration Port (DRP) interface allows for the dynamic change of
FPGA configuration memory bits of the 7 Series FPGAs Integrated Block for PCI Express
core. These configuration bits are represented as attributes for the PCIE_2_1 library
primitive, which is instantiated as part of this core. Table 2-19 defines the DRP interface
signals. For detailed usage information, see Using the Dynamic Reconfiguration Port
Interface, page 194.

Table 2-19: Dynamic Reconfiguration Port Interface Signals

Name Direction Description

pcie_drp_clk Input PCI Express DRP Clock: The rising edge of this signal
is the timing reference for all the other DRP signals.
Normally, drp_clk is driven with a global clock buffer.
The maximum frequency is defined in the
appropriate 7 Series FPGAs Data Sheet.

pcie_drp_en Input PCI Express DRP Data Enable: When asserted, this
signal enables a read or write operation. If drp_dwe is
deasserted, it is a read operation, otherwise a write
operation. For any given drp_clk cycle, all other input
signals are don’t cares if drp_den is not active.

pcie_drp_we Input PCI Express DRP Write Enable: When asserted, this
signal enables a write operation to the port (see
drp_den).

pcie_drp_addr[8:0] Input PCI Express DRP Address Bus: The value on this bus
specifies the individual cell that is written or read.
The address is presented in the cycle that drp_den is
active.

pcie_drp_di[15:0] Input PCI Express DRP Data Input: The value on this bus is
the data written to the addressed cell. The data is
presented in the cycle that drp_den and drp_dwe are
active, and is captured in a register at the end of that
cycle, but the actual write occurs at an unspecified
time before drp_drdy is returned.

pcie_drp_rdy Output PCI Express DRP Ready: This signal is a response to
drp_den to indicate that the DRP cycle is complete
and another DRP cycle can be initiated. In the case of
a DRP read, the drp_do bus must be captured on the
rising edge of drp_clk in the cycle that drp_drdy is
active. The earliest that drp_den can go active to start
the next port cycle is the same clock cycle that
drp_drdy is active.

pcie_drp_do[15:0] Output PCI Express DRP Data Out: If drp_dwe was inactive
when drp_den was activated, the value on this bus
when drp_drdy goes active is the data read from the
addressed cell. At all other times, the value on
drp_do[15:0] is undefined.

http://www.xilinx.com

56 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 2: Core Overview

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 57
UG477 March 1, 2011

Chapter 3

Getting Started Example Design

This chapter provides an overview of the 7 Series FPGA Integrated Block for PCI Express®
example design and instructions for generating the core. It also includes information about
simulating and implementing the example design using the provided demonstration test
bench.

For current information on generating, simulating, and implementing the core, refer to the
Release Notes provided with the core, when it is generated using the CORE Generator™
tool.

Integrated Block Endpoint Configuration Overview
The example simulation design for the Endpoint configuration of the integrated block
consists of two discrete parts:

• The Root Port Model, a test bench that generates, consumes, and checks PCI Express
bus traffic.

• The Programmed Input/Output (PIO) example design, a completer application for
PCI Express. The PIO example design responds to Read and Write requests to its
memory space and can be synthesized for testing in hardware.

Simulation Design Overview
For the simulation design, transactions are sent from the Root Port Model to the Integrated
Block core (configured as an Endpoint) and processed by the PIO example design.
Figure 3-1 illustrates the simulation design provided with the Integrated Block core. For
more information about the Root Port Model, see Root Port Model Test Bench for Endpoint
in Appendix A.

http://www.xilinx.com

58 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 3: Getting Started Example Design

X-Ref Target - Figure 3-1

Figure 3-1: Simulation Example Design Block Diagram

dsport

PCI Express Fabric

Endpoint Core
for PCI Express

PIO
Design

usrapp_txusrapp_rx

Endpoint DUT for PCI Express

usrapp_comOutput
Logs

Test
Program

Root Port
Model TPI for
PCI Express

UG477_c3_01_021611

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 59
UG477 March 1, 2011

Integrated Block Endpoint Configuration Overview

Implementation Design Overview
The implementation design consists of a simple PIO example that can accept read and
write transactions and respond to requests, as illustrated in Figure 3-2. Source code for the
example is provided with the core. For more information about the PIO example design,
see Appendix A, Example Design and Model Test Bench for Endpoint Configuration.

Example Design Elements
The PIO example design elements include:

• Core wrapper

• An example Verilog HDL or VHDL wrapper (instantiates the cores and example
design)

• A customizable demonstration test bench to simulate the example design

The example design has been tested and verified with Xilinx® ISE® v13.1 software and
these simulators:

• Synopsys VCS and VCS MX 2010.06

• Mentor Graphics ModelSim 6.6d

• Cadence IES 10.2

X-Ref Target - Figure 3-2

Figure 3-2: Implementation Example Design Block Diagram

7 Series FPGAs Integrated Block for PCI Express (Configured as Endpoint)

EP_TX EP_RX

ep_mem0

ep_mem1

ep_mem2

ep_mem3

EP_MEM

PIO_EP

PIO

PIO_TO_CTRL

UG477_c3_02_110310

http://www.xilinx.com

60 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 3: Getting Started Example Design

Generating the Core
To generate a core using the default values in the CORE Generator software Graphical User
Interface (GUI), follow these steps:

1. Start the CORE Generator tool.

For help starting and using the CORE Generator tool, see the Xilinx CORE Generator
Guide, available from the ISE software documentation web page.

2. Choose File > New Project.

3. Enter a project name and location, then click OK. This example uses
project_name.cpg and project_dir. The Project Options dialog box appears
(Figure 3-3).

X-Ref Target - Figure 3-3

Figure 3-3: New Project Dialog Box

UG477_c3_04_021611

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 61
UG477 March 1, 2011

Generating the Core

4. Set the project options (Figure 3-4):

From the Part tab, select these options:

• Family: Virtex7

• Device: xc7v285t

• Package: ffg1157

• Speed Grade: -3

Note: If an unsupported silicon device is selected, the core is dimmed (unavailable) in the list of
cores.

From the Generation tab, select these parameters and then click OK:

• Design Entry: Select Verilog or VHDL

• Vendor: Select ISE (for XST)

Note: Selecting Synplicity generates a sample Synplicity project file only for the top-level
example design. The underlying PCI Express core is still synthesized using XST.

5. Locate the core in the selection tree under Standard Bus Interfaces/PCI Express; then
double-click the core name to display the Integrated Block main screen.

X-Ref Target - Figure 3-4

Figure 3-4: Project Options

UG477_c3_06_012511

http://www.xilinx.com

62 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 3: Getting Started Example Design

6. In the Component Name field, enter a name for the core. <component_name> is used
in this example.

7. From the Device/Port Type drop-down menu, select the appropriate device/port type
of the core (Endpoint or Root Port).

8. Click Generate to generate the core using the default parameters. The core and its
supporting files, including the example design and model test bench, are generated in
the project directory. For detailed information about the example design files and
directories, see Directory Structure and File Contents, page 65. In addition, see the
README file.

X-Ref Target - Figure 3-5

Figure 3-5: Integrated Block Main Screen

UG477_c3_07_012511

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 63
UG477 March 1, 2011

Simulating the Example Design

Simulating the Example Design
The example design provides a quick way to simulate and observe the behavior of the core.

Endpoint Configuration
The simulation environment provided with the 7 Series FPGAs Integrated Block for
PCI Express core in Endpoint configuration performs simple memory access tests on the
PIO example design. Transactions are generated by the Root Port Model and responded to
by the PIO example design.

• PCI Express Transaction Layer Packets (TLPs) are generated by the test bench
transmit User Application (pci_exp_usrapp_tx). As it transmits TLPs, it also
generates a log file, tx.dat.

• PCI Express TLPs are received by the test bench receive User Application
(pci_exp_usrapp_rx). As the User Application receives the TLPs, it generates a log
file, rx.dat.

For more information about the test bench, see Root Port Model Test Bench for Endpoint in
Appendix A.

Setting Up for Simulation
To run the gate-level simulation, the Xilinx Simulation Libraries must be compiled for the
user system. See the Compiling Xilinx Simulation Libraries (COMPXLIB) in the Xilinx ISE
Synthesis and Verification Design Guide and the Xilinx ISE Software Manuals and Help.
Documents can be downloaded from www.xilinx.com/support/software_manuals.htm.

Simulator Requirements

7 Series device designs require a Verilog LRM-IEEE 1364-2005 encryption-compliant
simulator. This core supports these simulators:

• Mentor Graphics ModelSim

• Cadence IES (Verilog only)

• Synopsys VCS and VCS MX (Verilog only)

Running the Simulation
The simulation scripts provided with the example design support pre-implementation
(RTL) simulation. The existing test bench can be used to simulate with a
post-implementation version of the example design.

The pre-implementation simulation consists of these components:

• Verilog or VHDL model of the test bench

• Verilog or VHDL RTL example design

• The Verilog or VHDL model of the 7 Series FPGAs Integrated Block for PCI Express

1. To run the simulation, go to this directory:

<project_dir>/<component_name>/simulation/functional

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm

64 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 3: Getting Started Example Design

2. Launch the simulator and run the script that corresponds to the user simulation tool
using one of these:

• VCS > ./simulate_vcs.sh

• IES > ./simulate_ncsim.sh

• ModelSim > do simulate_mti.do

Implementing the Example Design
After generating the core, the netlists and the example design can be processed using the
Xilinx implementation tools. The generated output files include scripts to assist in running
the Xilinx software.

To implement the example design:

Open a command prompt or terminal window and type:

• Windows

ms-dos> cd <project_dir>\<component_name>\implement
ms-dos> implement.bat

• Linux

% cd <project_dir>/<component_name>/implement
% ./implement.sh

These commands execute a script that synthesizes, builds, maps, and place-and-routes the
example design, and then generates a post-par simulation model for use in timing
simulation. The resulting files are placed in the results directory and execute these
processes:

1. Removes data files from the previous runs.

2. Synthesizes the example design using XST based on the flow settings in the Project
Options window.

3. ngdbuild: Builds a Xilinx design database for the example design.

- Inputs:

Part-Package-Speed Grade selection:

XC7V285T-FFG1157-3

Example design UCF:

xilinx_pcie_2_1_ep_7x_01_lane_gen1_xc7v285t-ffg1157-3-PCIE_X0Y0.ucf

4. map: Maps design to the selected FPGA using the constraints provided.

5. par: Places cells onto FPGA resources and routes connectivity.

6. trce: Performs static timing analysis on design using constraints specified.

7. netgen: Generates a logical Verilog or VHDL HDL representation of the design and
an SDF file for post-layout verification.

These FPGA implementation related files are generated in the results directory:

• routed.v[hd]
Verilog or VHDL functional Model.

• routed.sdf
Timing model Standard Delay File.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 65
UG477 March 1, 2011

Directory Structure and File Contents

• mapped.mrp
Xilinx map report.

• routed.par
Xilinx place and route report.

• routed.twr
Xilinx timing analysis report.

Directory Structure and File Contents
The 7 Series FPGAs Integrated Block for PCI Express example design directories and their
associated files are defined in the sections that follow. Click a directory name to go to the
desired directory and its associated files.

Example Design
<project directory>topdirectory

Top-level project directory; name is user-defined

 <project directory>/<component name>
Core release notes readme file

 <component name>/doc
Product documentation

 <component name>/example_design
Verilog or VHDL design files

 <component name>/implement
Implementation script files

 implement/results
Contains implement script results

 implement/xst
Contains synthesis results, when XST is chosen as the synthesis tool

 <component name>/source
Core source files

 <component name>/simulation
Simulation scripts

 simulation/dsport (for Endpoint configuration only)
Root Port Bus Functional Model

 simulation/functional
Functional simulation files

 simulation/tests (for Endpoint configuration only)
Test command files

http://www.xilinx.com

66 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 3: Getting Started Example Design

<project directory>
The project directory contains all the CORE Generator tool project files.

<project directory>/<component name>
The component name directory contains the release notes in the readme file provided with
the core, which can include tool requirements, updates, and issue resolution.

<component name>/doc
The doc directory contains the PDF documentation provided with the core.

Table 3-1: Project Directory

Name Description

<project_dir>

<component_name>.xco CORE Generator software project-specific option
file; can be used as an input to the CORE
Generator tool.

<component_name>_flist.txt List of files delivered with core.

<component_name>.{veo|vho} Verilog or VHDL instantiation template.

<component_name>_xmdf.tcl Xilinx standard IP Core information file used by
Xilinx design tools.

Back to Top

Table 3-2: Component Name Directory

Name Description

<project_dir>/<component_name>

pcie_7x_readme.txt Release notes file.

Back to Top

Table 3-3: Doc Directory

Name Description

<project_dir>/<component_name>/doc

ug477_7Series_IntBlock
_PCIe.pdf

7 Series FPGAs Integrated Block for PCI Express User Guide

ds821_7series_pcie.pdf LogiCORE IP 7 Series FPGAs Integrated Block for PCI Express
Data Sheet

Back to Top

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 67
UG477 March 1, 2011

Directory Structure and File Contents

<component name>/example_design
The example_design directory contains the example design files provided with the core.
Table 3-4 shows the directory contents for an Endpoint configuration core.

<component name>/implement
The implement directory contains the core implementation script files.

implement/results

The results directory is created by the implement script. The implement script results are
placed in the results directory.

Table 3-4: Example Design Directory: Endpoint Configuration

Name Description

<project_dir>/<component_name>/example_design

xilinx_pcie_2_1_ep_7x_01_lane_
gen1_xc7v285t-ffg1157-3-PCIE_
X0Y0.ucf

Example design UCF. Filename varies by
Device/Port Type, lane width, maximum link
speed, part, package, PCIe block location, and
Xilinx Development Board selected.

xilinx_pcie_2_1_ep_7x.v[hd] Verilog or VHDL top-level PIO example design file.

pcie_app_7x.v[hd]

EP_MEM.v[hd]

PIO.v[hd]

PIO_EP.v[hd]

PIO_EP_MEM_ACCESS.v[hd]

PIO_TO_CTRL.v[hd]

PIO_[64|128].v[hd]

PIO_[64|128]_RX_ENGINE.v[hd]

PIO_[64|128]_TX_ENGINE.v[hd]

PIO example design files.

Back to Top

Table 3-5: Implement Directory

Name Description

<project_dir>/<component_name>/implement

implement.bat

implement.sh
DOS and Linux implementation scripts.

xilinx_pcie_2_1_ep_7x.prj XST file list for the core.

xilinx_pcie_2_1_ep_7x.xst XST command file.

xilinx_pcie_2_1_ep_7x.xcf XST synthesis constraints file.

Back to Top

Table 3-6: Results Directory

Name Description

<project_dir>/<component_name>/implement/results

Implement script result files.

Back to Top

http://www.xilinx.com

68 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 3: Getting Started Example Design

implement/xst

The xst directory is created by the XST script. The synthesis results are placed in the xst
directory.

<component name>/source
The source directory contains the generated core source files.

Table 3-7: XST Results Directory

Name Description

<project_dir>/<component_name>/implement/xst

XST result files.

Back to Top

Table 3-8: Source Directory

Name Description

<project_dir>/<component_name>/source

<component_name>.v Verilog or VHDL top-level solution wrapper for
the 7 Series FPGAs Integrated Block for PCI
Express

pcie_2_1_7x.v Solution Wrapper for the 7 Series FPGAs
Integrated Block for PCI Express

pcie_pipe_2_1.v

pcie_pipe_lane_v7.v

pcie_pipe_misc_v7.v

PIPE module for the 7 Series FPGAs Integrated
Block for PCI Express.

pcie_bram_top_7x.v

pcie_brams_7x.v

pcie_bram_7x.v

Block RAM module for the 7 Series FPGAs
Integrated Block for PCI Express.

pcie_gtx_7x.v

gtx_wrapper.v

GTX wrapper for the 7 Series FPGAs Integrated
Block for PCI Express.

axi_basic_top.v

axi_basic_rx.v

axi_basic_rx_pipeline.v

axi_basic_rx_null_gen.v

axi_basic_tx.v

axi_basic_tx_pipeline.v

axi_basic_tx_thrtl_ctl.v

AXI4-Stream Interface files for the 7 Series FPGAs
Integrated Block for PCI Express.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 69
UG477 March 1, 2011

Directory Structure and File Contents

<component name>/simulation
The simulation directory contains the simulation source files provided with the core.

simulation/dsport

The dsport directory contains the files for the Root Port model test bench.

pipe_clock.v

pipe_drp.v

pipe_rate.v

pipe_reset.v

pipe_sync.v

pipe_user.v

pipe_wrapper.v

qpll_drp.v

qpll_reset.v

qpll_wrapper.v

GTX module for the 7 Series FPGAs GTX
transceivers.

Back to Top

Table 3-8: Source Directory (Cont’d)

Name Description

Table 3-9: dsport Directory: Endpoint Configuration

Name Description

<project_dir>/<component_name>/simulation/dsport

pcie_2_1_rp_v7.v[hd]

pci_exp_expect_tasks.v

pci_exp_usrapp_cfg.v[hd]

pci_exp_usrapp_com.v

pci_exp_usrapp_pl.v[hd]

pci_exp_usrapp_rx.v[hd]

pci_exp_usrapp_tx.v[hd]

xilinx_pcie_2_1_rport_v7.v[hd]

test_interface.vhd

Root Port model files.

Back to Top

http://www.xilinx.com

70 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 3: Getting Started Example Design

simulation/functional

The functional directory contains functional simulation scripts provided with the core.

simulation/tests

Note: This directory exists for Endpoint configuration only.

The tests directory contains test definitions for the example test bench.

Table 3-10: Functional Directory

Name Description

<project_dir>/<component_name>/simulation/functional

board.f List of files for RTL simulations.

simulate_mti.do Simulation script for ModelSim.

simulate_ncsim.sh Simulation script for Cadence IES (Verilog only).

simulate_vcs.sh Simulation script for VCS (Verilog only).

xilinx_lib_vcs.f Points to the required SecureIP Model.

board_common.v
(Endpoint configuration only)

Contains test bench definitions (Verilog only).

board.v[hd] Top-level simulation module.

sys_clk_gen_ds.v[hd]
(Endpoint configuration only)

System differential clock source.

sys_clk_gen.v[hd] System clock source.

Back to Top

Table 3-11: Tests Directory

Name Description

<project_dir>/<component_name>/simulation/tests

sample_tests1.v

tests.v[hd]
Test definitions for example test bench.

Back to Top

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 71
UG477 March 1, 2011

Chapter 4

Generating and Customizing the Core

The 7 Series FPGAs Integrated Block for PCI Express® core is a fully configurable and
highly customizable solution. The 7 Series FPGAs Integrated Block for PCI Express is
customized using the CORE Generator™ software.

Note: The screen captures in this chapter are conceptual representatives of their subjects and
provide general information only. For the latest information, see the CORE Generator tool.

Customizing the Core using the CORE Generator Software
The CORE Generator software GUI for the 7 Series FPGA Integrated Block for PCI Express
consists of 12 screens:

• Screen 1: Basic Parameter Settings

• Screen 2: Base Address Registers

• Screen 3: PCI Registers

• Screens 4 and 5: Configuration Register Settings

• Screen 6: Interrupt Capabilities

• Screen 7: Power Management Registers

• Screen 8 and 9: PCI Express Extended Capabilities

• Screen 10: Pinout Selection

• Screens 11 and 12: Advanced Settings

http://www.xilinx.com

72 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 4: Generating and Customizing the Core

Basic Parameter Settings
The initial customization screen shown in Figure 4-1 is used to define the basic parameters
for the core, including the component name, lane width, and link speed.

Component Name

Base name of the output files generated for the core. The name must begin with a letter and
can be composed of these characters: a to z, 0 to 9, and “_.”

PCIe Device / Port Type

Indicates the PCI Express logical device type.

X-Ref Target - Figure 4-1

Figure 4-1: Screen 1: Integrated Block for PCI Express Parameters

UG477_c4_01_012511

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 73
UG477 March 1, 2011

Customizing the Core using the CORE Generator Software

Number of Lanes

The 7 Series FPGAs Integrated Block for PCI Express requires the selection of the initial
lane width. Table 4-1 defines the available widths and associated generated core. Wider
lane width cores are capable of training down to smaller lane widths if attached to a
smaller lane-width device. See Link Training: 2-Lane, 4-Lane, and 8-Lane Components,
page 189 for more information.

Link Speed

The 7 Series FPGAs Integrated Block for PCI Express allows the selection of Maximum
Link Speed supported by the device. Table 4-2 defines the lane widths and link speeds
supported by the device. Higher link speed cores are capable of training to a lower link
speed if connected to a lower link speed capable device.

Interface Width

The 7 Series FPGAs Integrated Block for PCI Express allows the selection of Interface
Width, as defined in Table 4-3. The default interface width set in the CORE Generator GUI
is the lowest possible interface width.

Table 4-1: Lane Width and Product Generated

Lane Width Product Generated

x1 1-Lane 7 Series FPGAs Integrated Block for PCI Express

x2 2-Lane 7 Series FPGAs Integrated Block for PCI Express

x4 4-Lane 7 Series FPGAs Integrated Block for PCI Express

x8 8-Lane 7 Series FPGAs Integrated Block for PCI Express

Table 4-2: Lane Width and Link Speed

Lane Width Link Speed

x1 2.5 Gb/s, 5 Gb/s

x2 2.5 Gb/s, 5 Gb/s

x4 2.5 Gb/s, 5 Gb/s

x8 2.5 Gb/s, 5 Gb/s

Table 4-3: Lane Width, Link Speed, and Interface Width

Lane Width
Link Speed

(Gb/s)
Interface Width

(Bits)

X1 2.5, 5.0 64

X2 2.5, 5.0 64

X4 2.5 64

X4 5.0 64, 128

X8 2.5 64, 128

X8 5.0 128

http://www.xilinx.com

74 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 4: Generating and Customizing the Core

Interface Frequency

It is possible to select the clock frequency of the core's user interface. Each lane width
provides multiple frequency choices: a default frequency and alternative frequencies, as
defined in Table 4-4. Where possible, Xilinx recommends using the default frequency.
Selecting the alternate frequencies does not result in a difference in throughput in the core,
but does allow the user application to run at an alternate speed.

Table 4-4: Recommended and Optional Transaction Clock (user_clk_out)
Frequencies

Product
Link Speed

(Gb/s)
Interface Width(1)

(Bits)
Recommended

Frequency (MHz)
Optional

Frequency (MHz)

1-lane 2.5 64 62.5 31.25, 125, 250

1-lane 5 64 62.5 125, 250

2-lane 2.5 64 62.5 125, 250

2-lane 5 64 125 250

4-lane 2.5 64 125 250

4-lane 5 64 250 -

4-lane 5 128 125 250

8-lane 2.5 64 250 -

8-lane 2.5 128 125 250

8-lane 5 128 250 -

Notes:
1. Interface Width is a static selection and does not change with dynamic Link Speed changes

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 75
UG477 March 1, 2011

Customizing the Core using the CORE Generator Software

Base Address Registers
The Base Address Register (BAR) screen shown in Figure 4-2 sets the base address register
space for the Endpoint configuration. Each BAR (0 through 5) represents a 32-bit
parameter.

Base Address Register Overview

The 7 Series FPGAs Integrated Block for PCI Express in Endpoint configuration supports
up to six 32-bit BARs or three 64-bit BARs, and the Expansion ROM BAR. The 7 Series
FPGAs Integrated Block for PCI Express in Root Port configuration supports up to two
32-bit BARs or one 64-bit BAR, and the Expansion ROM BAR.

BARs can be one of two sizes:

• 32-bit BARs: The address space can be as small as 16 bytes or as large as 2 gigabytes.
Used for Memory to I/O.

• 64-bit BARs: The address space can be as small as 128 bytes or as large as 8 exabytes.
Used for Memory only.

X-Ref Target - Figure 4-2

Figure 4-2: Screen 2: BAR Options - Endpoint
UG477_c4_02_012511

http://www.xilinx.com

76 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 4: Generating and Customizing the Core

All BAR registers share these options:

• Checkbox: Click the checkbox to enable the BAR; deselect the checkbox to disable the
BAR.

• Type: BARs can either be I/O or Memory.

• I/O: I/O BARs can only be 32-bit; the Prefetchable option does not apply to I/O
BARs. I/O BARs are only enabled for the Legacy PCI Express Endpoint core.

• Memory: Memory BARs can be either 64-bit or 32-bit and can be prefetchable.
When a BAR is set as 64 bits, it uses the next BAR for the extended address space
and makes the next BAR inaccessible to the user.

• Size: The available Size range depends on the PCIe® Device/Port Type and the Type
of BAR selected. Table 4-5 lists the available BAR size ranges.

• Prefetchable: Identifies the ability of the memory space to be prefetched.

• Value: The value assigned to the BAR based on the current selections.

For more information about managing the Base Address Register settings, see Managing
Base Address Register Settings.

Expansion ROM Base Address Register

If selected, the Expansion ROM is activated and can be a value from 2 KB to 4 GB.
According to the PCI 3.0 Local Bus Specification, the maximum size for the Expansion ROM
BAR should be no larger than 16 MB. Selecting an address space larger than 16 MB might
result in a non-compliant core.

Managing Base Address Register Settings

Memory, I/O, Type, and Prefetchable settings are handled by setting the appropriate GUI
settings for the desired base address register.

Memory or I/O settings indicate whether the address space is defined as memory or I/O.
The base address register only responds to commands that access the specified address
space. Generally, memory spaces less than 4 KB in size should be avoided. The minimum
I/O space allowed is 16 bytes; use of I/O space should be avoided in all new designs.

Prefetchability is the ability of memory space to be prefetched. A memory space is
prefetchable if there are no side effects on reads (that is, data is not destroyed by reading, as
from a RAM). Byte write operations can be merged into a single double word write, when
applicable.

When configuring the core as an Endpoint for PCIe (non-Legacy), 64-bit addressing must
be supported for all BARs (except BAR5) that have the prefetchable bit set. 32-bit
addressing is permitted for all BARs that do not have the prefetchable bit set. The
prefetchable bit related requirement does not apply to a Legacy Endpoint. The minimum

Table 4-5: BAR Size Ranges for Device Configuration

PCIe Device / Port Type BAR Type BAR Size Range

PCI Express Endpoint
32-bit Memory 128 Bytes – 2 Gigabytes

64-bit Memory 128 Bytes – 8 Exabytes

Legacy PCI Express Endpoint

32-bit Memory 16 Bytes – 2 Gigabytes

64-bit Memory 16 Bytes – 8 Exabytes

I/O 16 Bytes – 2 Gigabytes

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 77
UG477 March 1, 2011

Customizing the Core using the CORE Generator Software

memory address range supported by a BAR is 128 bytes for a PCI Express Endpoint and
16 bytes for a Legacy PCI Express Endpoint.

Disabling Unused Resources

For best results, disable unused base address registers to conserve system resources. A
base address register is disabled by deselecting unused BARs in the GUI.

PCI Registers
The PCI Registers screen shown in Figure 4-3 is used to customize the IP initial values,
class code, and Cardbus CIS pointer information.

ID Initial Values

• Vendor ID: Identifies the manufacturer of the device or application. Valid identifiers
are assigned by the PCI Special Interest Group to guarantee that each identifier is
unique. The default value, 10EEh, is the Vendor ID for Xilinx. Enter a vendor
identification number here. FFFFh is reserved.

X-Ref Target - Figure 4-3

Figure 4-3: PCI Registers: Screen 3

UG477_c4_03_012511

http://www.xilinx.com

78 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 4: Generating and Customizing the Core

• Device ID: A unique identifier for the application; the default value, which depends
on the configuration selected, is 70<link speed><link width>h. This field can be any
value; change this value for the application.

• Revision ID: Indicates the revision of the device or application; an extension of the
Device ID. The default value is 00h; enter values appropriate for the application.

• Subsystem Vendor ID: Further qualifies the manufacturer of the device or
application. Enter a Subsystem Vendor ID here; the default value is 10EE. Typically,
this value is the same as Vendor ID. Setting the value to 0000h can cause compliance
testing issues.

• Subsystem ID: Further qualifies the manufacturer of the device or application. This
value is typically the same as the Device ID; the default value depends on the lane
width and link speed selected. Setting the value to 0000h can cause compliance
testing issues.

Class Code

The Class Code identifies the general function of a device, and is divided into three
byte-size fields:

• Base Class: Broadly identifies the type of function performed by the device.

• Sub-Class: More specifically identifies the device function.

• Interface: Defines a specific register-level programming interface, if any, allowing
device-independent software to interface with the device.

Class code encoding can be found at www.pcisig.com.

Class Code Look-up Assistant

The Class Code Look-up Assistant provides the Base Class, Sub-Class and Interface values
for a selected general function of a device. This Look-up Assistant tool only displays the
three values for a selected function. The user must enter the values in Class Code for these
values to be translated into device settings.

Cardbus CIS Pointer

Used in cardbus systems and points to the Card Information Structure for the cardbus
card. If this field is non-zero, an appropriate Card Information Structure must exist in the
correct location. The default value is 0000_0000h; the value range is
0000_0000h-FFFF_FFFFh.

http://www.xilinx.com
www.pcisig.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 79
UG477 March 1, 2011

Customizing the Core using the CORE Generator Software

Configuration Register Settings
The Configuration Registers screens shown in Figure 4-4 and Figure 4-5 show the options
for the Device Capabilities and Device Capabilities2 Registers, the Block RAM
Configuration Options, the Link Capabilities Register, Link Control2 Register, and the Link
Status Register.
X-Ref Target - Figure 4-4

Figure 4-4: Screen 4: Configuration Settings

UG477_c4_04_012511

http://www.xilinx.com

80 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 4: Generating and Customizing the Core

Capabilities Register

• Capability Version: Indicates the PCI-SIG defined PCI Express capability structure
version number; this value cannot be changed.

• Device Port Type: Indicates the PCI Express logical device type.

• Slot Implemented: Indicates the PCI Express Link associated with this port is
connected to a slot. Only valid for a Root Port of a PCI Express Root Complex or a
Downstream Port of a PCI Express Switch.

• Capabilities Register: Displays the value of the Capabilities register presented by the
integrated block, and is not editable.

X-Ref Target - Figure 4-5

Figure 4-5: Screen 5: Configuration Settings

UG477_c4_05_012511

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 81
UG477 March 1, 2011

Customizing the Core using the CORE Generator Software

Device Capabilities Register

• Max Payload Size: Indicates the maximum payload size that the device/function can
support for TLPs.

• Extended Tag Field: Indicates the maximum supported size of the Tag field as a
Requester. When selected, indicates 8-bit Tag field support. When deselected,
indicates 5-bit Tag field support.

• Extended Tag Default: When this field is checked, indicates the default value of bit 8
of the Device Control register is set to 1 to support the Extended Tag Enable Default
ECN.

• Phantom Functions: Indicates the support for use of unclaimed function numbers to
extend the number of outstanding transactions allowed by logically combining
unclaimed function numbers (called Phantom Functions) with the Tag identifier. See
Section 2.2.6.2 of the PCI Express Base Specification, rev. 2.1 for a description of Tag
Extensions. This field indicates the number of most significant bits of the function
number portion of Requester ID that are logically combined with the Tag identifier.

• Acceptable L0s Latency: Indicates the acceptable total latency that an Endpoint can
withstand due to the transition from L0s state to the L0 state.

• Acceptable L1 Latency: Indicates the acceptable latency that an Endpoint can
withstand due to the transition from L1 state to the L0 state.

• Device Capabilities Register: Displays the value of the Device Capabilities register
presented by the integrated block and is not editable.

Block RAM Configuration Options

• Buffering Optimized for Bus Mastering Applications: Causes the device to advertise
to its Link Partner credit settings that are optimized for Bus Mastering applications.

• Performance Level: Selects the Performance Level settings, which determines the
Receiver and Transmitter Sizes. The table displayed specifies the Receiver and
Transmitter settings - number of TLPs buffered in the Transmitter, the Receiver Size,
the Credits advertised by the Core to the Link Partner and the Number of Block RAMs
required for the configuration, corresponding to the Max Payload Size selected, for
each of the Performance Level options.

• Finite Completions: If selected, causes the device to advertise to the Link Partner the
actual amount of space available for Completions in the Receiver. For an Endpoint,
this is not compliant to the PCI Express Base Specification, rev. 2.1, as Endpoints are
required to advertise an infinite amount of completion space.

Device Capabilities 2 Register

• Completion Timeout Disable Supported: Indicates support for Completion Timeout
Disable mechanism

• Completion Timeout Ranges Supported: Indicates Device Function support for the
optional Completion Timeout mechanism. It is strongly recommended that the
Completion Timeout mechanism not expire in less than 10 ms.

• Device Capabilities2 Register: Displays the value of the Device Capabilities2
Register sent to the Core and is not editable.

• UR Atomic: If checked, the core automatically responds to Atomic Operation requests
with an Unsupported Request. If unchecked, the core passes Atomic Operations TLPs
to the user.

http://www.xilinx.com

82 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 4: Generating and Customizing the Core

• 32-bit AtomicOp Completer Support: Indicates 32-bit AtomicOp Completer support.

• 64-bit AtomicOp Completer Support: Indicates 64-bit AtomicOp Completer support.

• 128-bit CAS Completer Support: Indicates 128-bit Compare And Swap completer
support.

• TPH Completer Supported: Indicates the level of support for TPH completer.

Link Capabilities Register

This section is used to set the Link Capabilities register.

• Supported Link Speed: Indicates the supported link speed of the given PCI Express
Link. This value is set to the Link Speed specified in the first GUI screen and is not
editable.

• ASPM Optionality: When checked, this field disables ASPM.

• Maximum Link Width: This value is set to the initial lane width specified in the first
GUI screen and is not editable.

• DLL Link Active Reporting Capability: Indicates the optional Capability of
reporting the DL_Active state of the Data Link Control and Management State
Machine.

• Link Capabilities Register: Displays the value of the Link Capabilities register sent to
the core and is not editable.

Link Control Register

• Read Completion Boundary: Indicates the Read Completion Boundary for the Root
Port.

• Link Control Register: Displays the value of the Link Control Register sent to the core
and is not editable.

Link Control 2 Register

• Target Link Speed: Sets an upper limit on the link operational speed. This is used to
set the target Compliance Mode speed. The value is set to the supported link speed
and can be edited only if the link speed is set to 5.0 Gb/s.

• Hardware Autonomous Speed Disable: When checked, this field disables the
hardware from changing the link speed for device specific reasons other than
attempting to correct unreliable link operation by reducing link speed.

• De-emphasis: Sets the level of de-emphasis for an Upstream component, when the
Link is operating at 5.0 Gb/s. This feature is not editable.

• Link Control 2 Register: Displays the value of the Link Control 2 Register sent to the
core and is not editable.

Link Status Register

• Enable Slot Clock Configuration: Indicates that the Endpoint uses the
platform-provided physical reference clock available on the connector. Must be
cleared if the Endpoint uses an independent reference clock.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 83
UG477 March 1, 2011

Customizing the Core using the CORE Generator Software

Interrupt Capabilities
The Interrupt Settings screen shown in Figure 4-6 sets the Legacy Interrupt Settings, MSI
Capabilities, and MSI-X Capabilities.

Legacy Interrupt Settings

• Enable INTX: Enables the ability of the PCI Express function to generate INTx
interrupts.

• Interrupt PIN: Indicates the mapping for Legacy Interrupt messages. A setting of
“None” indicates no Legacy Interrupts are used.

Note: Only INT A is supported.

MSI Capabilities

• Enable MSI Capability Structure: Indicates that the MSI Capability structure exists.

• 64 bit Address Capable: Indicates that the function is capable of sending a 64-bit
Message Address.

X-Ref Target - Figure 4-6

Figure 4-6: Screen 6: Interrupt Capabilities

UG477_c4_06_012511

http://www.xilinx.com

84 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 4: Generating and Customizing the Core

• Multiple Message Capable: Selects the number of MSI vectors to request from the
Root Complex.

• Per Vector Masking Capable: Indicates that the function supports MSI per-vector
Masking.

MSI-X Capabilities

• Enable MSIx Capability Structure: Indicates that the MSI-X Capability structure
exists.

Note: This Capability Structure needs at least one Memory BAR to be configured.

• MSIx Table Settings: Defines the MSI-X Table Structure.

• Table Size: Specifies the MSI-X Table Size.

• Table Offset: Specifies the Offset from the Base Address Register that points to the
Base of the MSI-X Table.

• BAR Indicator: Indicates the Base Address Register in the Configuration Space that
is used to map the function’s MSI-X Table, onto Memory Space. For a 64-bit Base
Address Register, this indicates the lower DWORD.

• MSIx Pending Bit Array (PBA) Settings: Defines the MSI-X Pending Bit Array (PBA)
Structure.

• PBA Offset: Specifies the Offset from the Base Address Register that points to the
Base of the MSI-X PBA.

• PBA BAR Indicator: Indicates the Base Address Register in the Configuration
Space that is used to map the function’s MSI-X PBA, onto Memory Space.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 85
UG477 March 1, 2011

Customizing the Core using the CORE Generator Software

Power Management Registers
The Power Management Registers screen shown in Figure 4-7 includes settings for the
Power Management Registers, power consumption and power dissipation options.

• Device Specific Initialization: This bit indicates whether special initialization of this
function is required (beyond the standard PCI configuration header) before the
generic class device driver is able to use it. When selected, this option indicates that
the function requires a device specific initialization sequence following transition to
the D0 uninitialized state. See section 3.2.3 of the PCI Bus Power Management Interface
Specification Revision 1.2.

• D1 Support: When selected, this option indicates that the function supports the D1
Power Management State. See section 3.2.3 of the PCI Bus Power Management Interface
Specification Revision 1.2.

• D2 Support: When selected, this option indicates that the function supports the D2
Power Management State. See section 3.2.3 of the PCI Bus Power Management Interface
Specification Revision 1.2.

X-Ref Target - Figure 4-7

Figure 4-7: Power Management Registers: Screen 7

UG477_c4_07_012511

http://www.xilinx.com

86 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 4: Generating and Customizing the Core

• PME Support From: When this option is selected, it indicates the power states in
which the function can assert cfg_pm_wake. See section 3.2.3 of the PCI Bus Power
Management Interface Specification Revision 1.2.

• No Soft Reset: Checking this box indicates that if the device transitions from D3hot to
D0 because of a Power State Command, it does not perform an internal reset and
Configuration context is preserved. Disabling this option is not supported.

Power Consumption

The 7 Series FPGAs Integrated Block for PCI Express always reports a power budget of
0W. For information about power consumption, see section 3.2.6 of the PCI Bus Power
Management Interface Specification Revision 1.2.

Power Dissipated

The 7 Series FPGAs Integrated Block for PCI Express always reports a power dissipation of
0W. For information about power dissipation, see section 3.2.6 of the PCI Bus Power
Management Interface Specification Revision 1.2.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 87
UG477 March 1, 2011

Customizing the Core using the CORE Generator Software

PCI Express Extended Capabilities
The PCIe Extended Capabilities screen shown in Figure 4-8 includes settings for Device
Serial Number Capability, Virtual Channel Capability, Vendor Specific Capability, and
optional user-defined Configuration capabilities.

Device Serial Number Capability

• Device Serial Number Capability: An optional PCIe Extended Capability containing
a unique Device Serial Number. When this Capability is enabled, the DSN identifier
must be presented on the Device Serial Number input pin of the port. This Capability
must be turned on to enable the Virtual Channel and Vendor Specific Capabilities

X-Ref Target - Figure 4-8

Figure 4-8: Screen 8: PCIe Extended Capabilities

UG477_c4_08_012511

http://www.xilinx.com

88 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 4: Generating and Customizing the Core

Virtual Channel Capability

• Virtual Channel Capability: An optional PCIe Extended Capability which allows the
user application to be operated in TCn/VC0 mode. Checking this allows Traffic Class
filtering to be supported.

• Reject Snoop Transactions (Root Port Configuration Only): When enabled, any
transactions for which the No Snoop attribute is applicable, but is not set in the TLP
header, can be rejected as an Unsupported Request.

Vendor Specific Capability

• Vendor Specific Capability: An optional PCIe Extended Capability that allows PCI
Express component vendors to expose Vendor Specific Registers. When checked,
enables Xilinx specific Loopback Control.

User-Defined Configuration Capabilities: Endpoint Configuration Only

• PCI Configuration Space Enable: Allows the user application to add/implement PCI
Legacy capability registers. This option should be selected if the user application
implements a legacy capability configuration space. This option enables the routing of
Configuration Requests to addresses outside the built-in PCI-Compatible
Configuration Space address range to the AXI4-Stream interface.

• PCI Configuration Space Pointer: Sets the starting Dword aligned address of the user
definable PCI Compatible Configuration Space. The available DWORD address range
is 2Ah - 3Fh.

• PCI Express Extended Configuration Space Enable: Allows the user application to
add/implement PCI Express Extended capability registers. This option should be
selected if the user application implements such an extended capability configuration
space. This enables the routing of Configuration Requests to addresses outside the
built-in PCI Express Extended Configuration Space address range to the User
Application.

• PCI Configuration Space Pointer: Sets the starting DWORD aligned address of the
PCI Express Extended Configuration Space implemented by the user application. This
action enables routing of Configuration Requests with DWORD addresses greater
than or equal to the value set in the user application. The available address range
depends on the PCIe Extended Capabilities selected. For more information, see
Chapter 5, Designing with the Core.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 89
UG477 March 1, 2011

Customizing the Core using the CORE Generator Software

AER Capability

• Enable AER Capability: An optional PCIe Extended Capability that allows Advanced
Error Reporting.

• Multiheader: Indicates support for multiple-header buffering for the AER header log
field. (Not supported for the 7 Series FPGAs Integrated Block for PCI Express.)

• Permit Root Error Update: If TRUE, permits the AER Root Status and Error Source ID
registers to be updated. If FALSE, these registers are forced to 0.

• ECRC Check Capable: Indicates the core can check ECRC.

• Optional Error Support: Indicates which option error conditions in the Uncorrectable
and Correctable Error Mask/Severity registers are supported. If an error box is
unchecked, the corresponding bit in the Mask/Severity register is hardwired to 0.

X-Ref Target - Figure 4-9

Figure 4-9: Optional Extended Capabilities: Screen 9

UG477_c4_09_012511

http://www.xilinx.com

90 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 4: Generating and Customizing the Core

RBAR Capability

• Enable RBAR Capability: An optional PCIe Extended Capability that allows
Resizable BARs.

• Number of RBARs: Number of resizeable BARs in the Cap Structure, which depends
on the number of BARs enabled.

• BARn Size Supported: RBAR Size Supported vector for RBAR Capability Register (0
through 5)

• BARn Index Value: Sets the index of the resizeable BAR from among the enabled
BARs

• RBARn Init Value: RBAR Initial Value for the RBAR Control BAR Size field.

ECRC

• Receive ECRC Check: Enables ECRC checking of received TLPs.

• 0 = Do not check

• 1 = Always check

• 3 = Check if enabled by the ECRC check enable bit of the AER Capability
Structure

• Received ECRC Check Trim: Enables TD bit clear and ECRC trim on received TLPs.

• Disable RX Poisoned Resp: Disables the core from sending a message and setting
status bits due to receiving a Poisoned TLP.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 91
UG477 March 1, 2011

Customizing the Core using the CORE Generator Software

Pinout Selection
The Pinout Selection screen shown in Figure 4-10 includes options for pinouts specific to
Xilinx Development Boards and PCIe Block Location.

• Xilinx Development Boards: Selects the Xilinx Development Board to enable the
generation of Xilinx Development Board specific constraints files.

• PCIe Block Location Selection: Selects from the PCIe Blocks available to enable
generation of location specific constraint files and pinouts. When options “X0Y0 &
X0Y1” or “X0Y2 & X0Y3” are selected, constraints files for both PCIe Block locations
are generated, and the constraints file for the X0Y0 or X0Y3 location is used.

This option is not available if a Xilinx Development Board is selected.

X-Ref Target - Figure 4-10

Figure 4-10: Screen 10: Pinout Selection

UG477_c4_10_012511

http://www.xilinx.com

92 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 4: Generating and Customizing the Core

Advanced Settings
The Advanced Settings screens shown in Figure 4-11 and Figure 4-12 include settings for
Transaction Layer, Link Layer, Physical Layer, DRP Ports, and Reference Clock Frequency
options.
X-Ref Target - Figure 4-11

Figure 4-11: Screen 11: Advanced Settings 1

UG477_c4_11_012511

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 93
UG477 March 1, 2011

Customizing the Core using the CORE Generator Software

Transaction Layer Module

• Enable Message Routing: Controls if message TLPs are also received on the
AXI4-Stream interface.

• Endpoint:

• Unlock and PME_Turn_Off Messages

• Root Port:

• Error Messages - Error Correctable, Error Non-Fatal, Error Fatal

• Assert/Deassert INT Messages - INTA, INTB, INTC, INTD

• Power Management Messages - PM_PME, PME_TO_ACK

• Receive Non-Posted Request (Non-Posted Flow Control)

• The rx_np_req signal prevents the user application from buffering Non-Posted
TLPs. When rx_np_req is asserted, one Non-Posted TLP is requested from the
integrated block. This signal cannot be used in conjunction with rx_np_ok. Every
time that rx_np_req is asserted, one TLP is presented on the receive interface;
whereas, every time that rx_np_ok is deasserted, the user application needs to
buffer up to two additional Non-Posted TLPs.

X-Ref Target - Figure 4-12

Figure 4-12: Screen 12: Advanced Settings 2

UG477_c4_12_012511

http://www.xilinx.com

94 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 4: Generating and Customizing the Core

• Pipeline Registers for Transaction Block RAM Buffers: Selects the Pipeline registers
enabled for the Transaction Buffers. Pipeline registers can be enabled on either the
Write path or both the Read and Write paths of the Transaction Block RAM buffers.

Link Layer Module

• Override ACK/NAK Latency Timer: Checking this box enables the user to override
the ACK/NAK latency timer values set in the device. Use of this feature could cause
the ACK timeout values to be non-compliant to the PCI Express Base Specification, rev.
2.1. This setting can be used to perform advanced debugging operations. Any
modifications to default attributes must be made only if directed by Xilinx Technical
Support.

• ACK Latency Timer Override Function: This setting determines how the override
value is used by the device with respect to the ACK/NAK Latency Timer Value in the
device. Options are “Absolute”, “Add”, and “Subtract”. The first two settings could
cause the ACK timeout values to be non-compliant with the PCI Express Base
Specification, rev. 2.1.

• ACK Latency Timer Override Value: This setting determines the ACK/NAK latency
timer value used by the device depending on if the ACK Latency Timer Override
Function enabled. The built-in table value depends on the Negotiated Link Width and
Programmed MPS of the device.

• Override Replay Timer: Checking this box enables the user to override the replay
timer values set in the device. Use of this feature could cause the replay timeout
values to be non-compliant to the PCI Express Base Specification, rev. 2.1. This setting
can be used to perform advanced debugging operations. Any modifications to default
attributes must be made only if directed by Xilinx Technical Support.

• Replay Timer Override Function: This setting determines how the override value is
used by the device with respect to the replay timer value in the device. Options are
“Absolute”, “Add”, and “Subtract”. The first two settings could cause the replay
timeout values to be non-compliant with the PCI Express Base Specification, rev. 2.1.

• Replay Timer Override Value: This setting determines the replay timer value used by
the device depending on if the Replay Timer Override Function enabled. The built-in
table value depends on the Negotiated Link Width and Programmed MPS of the
device. The user must ensure that the final timeout value does not overflow the 15-bit
timeout value.

Advanced Physical Layer

• Enable Lane Reversal: When checked, enables the Lane Reversal feature.

• Force No Scrambling: Used for diagnostic purposes only and should never be
enabled in a working design. Setting this bit results in the data scramblers being
turned off so that the serial data stream can be analyzed.

• Upconfigure Capable: When unchecked, the port is advertised as “Not Upconfigure
Capable” during Link Training.

• Disable TX ASPM L0s: Recommended for a link that interconnects a 7 series FPGA to
any Xilinx component. This prevents the device transmitter from entering the L0s
state.

• Link Number: Specifies the link number advertised by the device in TS1 and TS2
ordered sets during Link training. Used in downstream facing mode only.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 95
UG477 March 1, 2011

Customizing the Core using the CORE Generator Software

• ATS

• UR_INV_REQ: When this box is checked, the core handles received ATS
Invalidate request messages as unsupported requests. When this box is
unchecked, the core passes received ATS Invalidate request messages to the user.

• UR_PRS_RESPONSE: When this box is checked, the core handles received ATS
Page Request Group Response messages as unsupported requests. When this box
is unchecked, the core passes received ATS PRG Response messages to the user.

Debug Ports

• PCIe DRP Ports: Checking this box enables the generation of DRP ports for the PCIe
Hard Block, giving users dynamic control over the PCIe Hard Block attributes. This
setting can be used to perform advanced debugging. Any modifications to the PCIe
default attributes must be made only if directed by Xilinx Technical Support.

Reference Clock Frequency

Selects the frequency of the reference clock provided on sys_clk. For important information
about clocking the 7 Series FPGA Integrated Block for PCI Express, see Clocking and Reset
of the Integrated Block Core, page 190.

Silicon Revision

Selects the silicon revision.

http://www.xilinx.com

96 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 4: Generating and Customizing the Core

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 97
UG477 March 1, 2011

Chapter 5

Designing with the Core

This chapter provides design instructions for the 7 Series FPGAs Integrated Block for
PCI Express® user interface and assumes knowledge of the PCI Express Transaction Layer
Packet (TLP) header fields. Header fields are defined in PCI Express Base Specification v2.1,
in the “Transaction Layer Specification” chapter.

This chapter includes these design guidelines:

• Designing with the Transaction Layer Interface

• Designing with the Physical Layer Control and Status Interface

• Design with Configuration Space Registers and Configuration Interface

• Power Management

• Generating Interrupt Requests

• Link Training: 2-Lane, 4-Lane, and 8-Lane Components

• Lane Reversal

• Clocking and Reset of the Integrated Block Core

• Using the Dynamic Reconfiguration Port Interface

http://www.xilinx.com

98 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Designing with the Transaction Layer Interface

Designing with the 64-Bit Transaction Layer Interface

TLP Format on the AXI4-Stream Interface

Data is transmitted and received in Big-Endian order as required by the PCI Express Base
Specification. See the “Transaction Layer Specification” chapter of the PCI Express Base
Specification for detailed information about TLP packet ordering. Figure 5-1 represents a
typical 32-bit addressable Memory Write Request TLP (as illustrated in the “Transaction
Layer Specification” chapter of the specification).
.

When using the AXI4-Stream interface, packets are arranged on the entire 64-bit datapath.
Figure 5-2 shows the same example packet on the AXI4-Stream interface. Byte 0 of the
packet appears on s_axis_tx_tdata[31:24] (transmit) or m_axis_rx_tdata[31:24] (receive) of
the first QWORD, byte 1 on s_axis_tx_tdata[23:16] or m_axis_rx_tdata[23:16], and so forth.
Byte 8 of the packet then appears on s_axis_tx_tdata[31:24] or m_axis_rx_tdata[31:24] of
the second QWORD. The Header section of the packet consists of either three or four
DWORDs, determined by the TLP format and type as described in section 2.2 of the
PCI Express Base Specification.

X-Ref Target - Figure 5-1

Figure 5-1: PCI Express Base Specification Byte Order

+0

Byte 0 > R Fmt
x 0 Type R TC Rsvd T

D
E
P Attr R Length

Byte 4 > Requester ID Tag Last DW
BE

1st DW
BE

Byte 8 >

Byte 12 >

Address[31:2] R

Data 0

Byte 16 >

Byte 20 >

Data 1

Data 2

Byte 24 > TLP Digest

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

UG477_c5_01_110410

X-Ref Target - Figure 5-2

Figure 5-2: Endpoint Integrated Block Byte Order

UG477_c5_02_092110

AXI Bit 63 32 31 0
AXI Byte

PCIe Byte
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Clock 0
x 0

Clock 1

+2 +1 +0 +7 +6 +5 +4 +3
+3 +4 +5 +6 +7 +0 +1

Data[31:0] Address [31:2] R

Requester ID Tag Last DW
BE Length 1st DW

BE R Fmt
Type R TC R T

D
E
P Attr R

+2

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 99
UG477 March 1, 2011

Designing with the Transaction Layer Interface

Packets sent to the core for transmission must follow the formatting rules for Transaction
Layer Packets (TLPs) as specified in the “Transaction Layer Specification” chapter of the
PCI Express Base Specification. The User Application is responsible for ensuring its packets’
validity. The core does not check that a packet is correctly formed and this can result in
transferring a malformed TLP. The exact fields of a given TLP vary depending on the type
of packet being transmitted.

Transmitting Outbound Packets

Basic TLP Transmit Operation

The 7 Series FPGAs Integrated Block for PCI Express core automatically transmits these
types of packets:

• Completions to a remote device in response to Configuration Space requests.

• Error-message responses to inbound requests that are malformed or unrecognized by
the core.

Note: Certain unrecognized requests, for example, unexpected completions, can only be
detected by the User Application, which is responsible for generating the appropriate response.

The User Application is responsible for constructing these types of outbound packets:

• Memory, Atomic Ops, and I/O Requests to remote devices.

• Completions in response to requests to the User Application, for example, a Memory
Read Request.

• Completions in response to user-implemented Configuration Space requests, when
enabled. These requests include PCI™ legacy capability registers beyond address BFh
and PCI Express extended capability registers beyond address 1FFh.

Note: For important information about accessing user-implemented Configuration Space while
in a low-power state, see Power Management, page 182.

When configured as an Endpoint, the 7 Series FPGAs Integrated Block for PCI Express core
notifies the User Application of pending internally generated TLPs that arbitrate for the
transmit datapath by asserting tx_cfg_req (1b). The User Application can choose to give
priority to core-generated TLPs by asserting tx_cfg_gnt (1b) permanently, without regard
to tx_cfg_req. Doing so prevents User-Application-generated TLPs from being transmitted
when a core-generated TLP is pending. Alternatively, the User Application can reserve
priority for a User-Application-generated TLP over core-generated TLPs, by deasserting
tx_cfg_gnt (0b) until the user transaction is complete. When the user transaction is
complete, the User Application can assert tx_cfg_gnt (1b) for at least one clock cycle to
allow the pending core-generated TLP to be transmitted. Users must not delay asserting
tx_cfg_gnt indefinitely, because this might cause a completion timeout in the Requester.
See the PCI Express Base Specification for more information on the Completion Timeout
Mechanism.

The integrated block does not do any filtering on the Base/Limit registers (Root Port only).
The user is responsible for determining if filtering is required. These registers can be read
out of the Type 1 Configuration Header space via the Configuration interface (see Design
with Configuration Space Registers and Configuration Interface, page 158).

Table 2-9, page 33 defines the transmit User Application signals. To transmit a TLP, the
User Application must perform this sequence of events on the transmit Transaction
interface:

1. The User Application logic asserts s_axis_tx_tvalid and presents the first TLP QWORD
on s_axis_tx_tdata[63:0]. If the core is asserting s_axis_tx_tready, the QWORD is

http://www.xilinx.com

100 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

accepted immediately; otherwise, the User Application must keep the QWORD
presented until the core asserts s_axis_tx_tready.

2. The User Application asserts s_axis_tx_tvalid and presents the remainder of the TLP
QWORDs on s_axis_tx_tdata[63:0] for subsequent clock cycles (for which the core
asserts s_axis_tx_tready).

3. The User Application asserts s_axis_tx_tvalid and s_axis_tx_tlast together with the last
QWORD data. If all eight data bytes of the last transfer are valid, they are presented on
s_axis_tx_tdata[63:0] and s_axis_tx_tstrb is driven to 0xFF; otherwise, the four
remaining data bytes are presented on s_axis_tx_tdata[31:0], and s_axis_tx_tstrb is
driven to 0x0F.

4. At the next clock cycle, the User Application deasserts s_axis_tx_tvalid to signal the
end of valid transfers on s_axis_tx_tdata[63:0].

Figure 5-3 illustrates a 3-DW TLP header without a data payload; an example is a 32-bit
addressable Memory Read request. When the User Application asserts s_axis_tx_tlast, it
also places a value of 0x0F on s_axis_tx_tstrb, notifying the core that only
s_axis_tx_tdata[31:0] contains valid data.
X-Ref Target - Figure 5-3

Figure 5-3: TLP 3-DW Header without Payload

UG477_c5_03_110410

user_clock_out

s_axis_tx_tdata[63:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[7:0]

(tx_err_fwd)s_axis_tx_tuser[1]

(tx_str)s_axis_tx_tuser[2]

(tx_src_dsc)s_axis_tx_tuser[3]

tx_terr_drop

H1H0 --H2

FFh 0Fh

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 101
UG477 March 1, 2011

Designing with the Transaction Layer Interface

Figure 5-4 illustrates a 4-DW TLP header without a data payload; an example is a 64-bit
addressable Memory Read request. When the User Application asserts s_axis_tx_tlast, it
also places a value of 0xFF on s_axis_tx_tstrb, notifying the core that s_axis_tx_tdata[63:0]
contains valid data.

Figure 5-5 illustrates a 3-DW TLP header with a data payload; an example is a 32-bit
addressable Memory Write request. When the User Application asserts s_axis_tx_tlast, it
also puts a value of 0xFF on s_axis_tx_tstrb, notifying the core that s_axis_tx_tdata[63:0]
contains valid data.

X-Ref Target - Figure 5-4

Figure 5-4: TLP with 4-DW Header without Payload

X-Ref Target - Figure 5-5

Figure 5-5: TLP with 3-DW Header with Payload

UG477_c5_04_110410

user_clk_out

s_axis_tx_tdata[63:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[7:0]

(tx_err_fwd)s_axis_tx_tuser[1]

(tx_str)s_axis_tx_tuser[2]

(tx_src_dsc)s_axis_tx_tuser[3]

tx_terr_drop

H1H0 H3H2

FFh

user_clock_out

s_axis_tx_tdata[63:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[7:0]

(terr_fwd)s_axis_tx_tuser[1]

(str)s_axis_tx_tuser[2]

(src_dsc)s_axis_tx_tuser[3]

tx_terr_drop

H1H0 D0H2 D2D1 Dn-2Dn-3 DnDn-1

FFh FFh

UG477_c5_05_021511

http://www.xilinx.com

102 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Figure 5-6 illustrates a 4-DW TLP header with a data payload; an example is a 64-bit
addressable Memory Write request. When the User Application asserts s_axis_tx_tlast, it
also places a value of 0x0F on s_axis_tx_tstrb, notifying the core that only
s_axis_tx_tdata[31:0] contains valid data.

Presenting Back-to-Back Transactions on the Transmit Interface

The User Application can present back-to-back TLPs on the transmit AXI4-Stream
interface to maximize bandwidth utilization. Figure 5-7 illustrates back-to-back TLPs
presented on the transmit interface. The User Application keeps s_axis_tx_tvalid asserted
and presents a new TLP on the next clock cycle after asserting s_axis_tx_tlast for the
previous TLP.

Source Throttling on the Transmit Datapath

The Transaction interface lets the User Application throttle back if it has no data to present
on s_axis_tx_tdata[63:0]. When this condition occurs, the User Application deasserts
s_axis_tx_tvalid, which instructs the core AXI4-Stream interface to disregard data
presented on s_axis_tx_tdata[63:0]. Figure 5-8 illustrates the source throttling mechanism,

X-Ref Target - Figure 5-6

Figure 5-6: TLP with 4-DW Header with Payload

X-Ref Target - Figure 5-7

Figure 5-7: Back-to-Back Transaction on the Transmit Interface

user_clk_out

s_axis_tx_tdata[63:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[7:0]

(terr_fwd)s_axis_tx_tuser[1]

(str)s_axis_tx_tuser[2]

(src_dsc)s_axis_tx_tuser[3]

tx_terr_drop

H1H0 H3H2 D1D0 D3D2 Dn-1Dn-2 --Dn

FFh 0Fh

UG477_c5_06_021511

UG477_c5_07_101410

user_clk_out

s_axis_tx_tdata[63:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[7:0]

H1H0 D0H2 D2D1 D4D3 H1H0 D0H2 D2D1

FFh FFh

TLP1 TLP2

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 103
UG477 March 1, 2011

Designing with the Transaction Layer Interface

where the User Application does not have data to present every clock cycle, and for this
reason must deassert s_axis_tx_tvalid during these cycles.

Destination Throttling of the Transmit Datapath

The core AXI4-Stream interface throttles the transmit User Application if there is no space
left for a new TLP in its transmit buffer pool. This can occur if the link partner is not
processing incoming packets at a rate equal to or greater than the rate at which the User
Application is presenting TLPs. Figure 5-9 illustrates the deassertion of s_axis_tx_tready to
throttle the User Application when the internal transmit buffers of the core are full. If the
core needs to throttle the User Application, it does so after the current packet has
completed. If another packet starts immediately after the current packet, the throttle occurs
immediately after tlast.

If the core transmit AXI4-Stream interface accepts the start of a TLP by asserting
s_axis_tx_tready, it is guaranteed to accept the complete TLP with a size up to the value
contained in the Max_Payload_Size field of the PCI Express Device Capability Register
(offset 04H). To stay compliant to the PCI Express Base Specification users should not violate
the Max_Payload_Size field of the PCI Express Device Control Register (offset 08H). The
core transmit AXI4-Stream interface deasserts s_axis_tx_tready only under these
conditions:

• After it has accepted the TLP completely and has no buffer space available for a new
TLP.

X-Ref Target - Figure 5-8

Figure 5-8: Source Throttling on the Transmit Interface

X-Ref Target - Figure 5-9

Figure 5-9: Destination Throttling on the Transmit Interface

UG477_c5_08_101410

user_clk_out

s_axis_tx_tdata[63:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_asix_tx_tstrb[7:0] FFh

UG477_c5_09_101410

user_clock_out

s_axis_tx_tdata
 [63:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

tx_buf_av[5:0] 0d 1d 0d 1d 0d

TLP1 TLP2

New Buffer Available New Buffer Available

http://www.xilinx.com

104 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

• When the core is transmitting an internally generated TLP (Completion TLP because
of a Configuration Read or Write, error Message TLP or error response as requested
by the User Application on the cfg_err interface), after it has been granted use of the
transmit datapath by the User Application, by assertion of tx_cfg_gnt. The core
subsequently asserts s_axis_tx_tready after transmitting the internally generated TLP.

• When the Power State field in Power Management Control/Status Register (offset
0x4) of the PCI Power Management Capability Structure is changed to a non-D0 state.
When this occurs, any ongoing TLP is accepted completely and s_axis_tx_tready is
subsequently deasserted, disallowing the User Application from initiating any new
transactions for the duration that the core is in the non-D0 power state

On deassertion of s_axis_tx_tready by the core, the User Application needs to hold all
control and data signals until the core asserts s_axis_tx_tready.

Discontinuing Transmission of Transaction by Source

The core AXI4-Stream interface lets the User Application terminate transmission of a TLP
by asserting (tx_src_dsc) s_axis_tx_tuser[3]. Both s_axis_tx_tvalid and s_axis_tx_tready
must be asserted together with tx_src_dsc for the TLP to be discontinued. The signal
tx_src_dsc must not be asserted at the beginning of a new packet. It can be asserted on any
cycle after the first beat of a new packet has been accepted by the core up to and including
the assertion of s_axis_tx_tlast. Asserting src_dsc has no effect if no TLP transaction is in
progress on the transmit interface. Figure 5-10 illustrates the User Application
discontinuing a packet using tx_src_dsc. Asserting src_dsc with s_axis_tx_tlast is optional.

If streaming mode is not used, (tx_str) s_axis_tx_tuser[2] = 0b, and the packet is
discontinued, then the packet is discarded before being transmitted on the serial link. If
streaming mode is used (tx_str = 1b), the packet is terminated with the EDB symbol on the
serial link.

Discarding of Transaction by Destination

The core transmit AXI4-Stream interface discards a TLP for three reasons:

• PCI Express Link goes down.

• Presented TLP violates the Max_Payload_Size field of the PCI Express Device
Capability Register (offset 04H). It is the user’s responsibility to not violate the
Max_Payload_Size field of the Device Control Register (offset 08H).

• (tx_str) s_axis_tx_tuser[2] is asserted and data is not presented on consecutive clock
cycles, that is, s_axis_tx_tvalid is deasserted in the middle of a TLP transfer.

X-Ref Target - Figure 5-10

Figure 5-10: Source Driven Transaction Discontinue on the Transmit Interface

UG477_c5_10_110410

user_clock_out

s_axis_tx_tdata[63:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[7:0]

(tx_src_dsc) s_axis_tx_tuser[3]

H1H0 D0H2 D2D1 D4D3

FFh

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 105
UG477 March 1, 2011

Designing with the Transaction Layer Interface

When any of these occur, the transmit AXI4-Stream interface continues to accept the
remainder of the presented TLP and asserts tx_terr_drop no later than the second clock
cycle following the s_axis_tx_tlast of the discarded TLP. Figure 5-11 illustrates the core
signaling that a packet was discarded using tx_terr_drop.

Packet Data Poisoning on the Transmit AXI4-Stream Interface

The User Application uses either of these mechanisms to mark the data payload of a
transmitted TLP as poisoned:

• Set EP = 1 in the TLP header. This mechanism can be used if the payload is known to
be poisoned when the first DWORD of the header is presented to the core on the
AXI4-Stream interface.

• Assert (tx_err_fwd) s_axis_tx_tuser[1] for at least one valid data transfer cycle any
time during the packet transmission, as shown in Figure 5-12. This causes the core to
set EP = 1 in the TLP header when it transmits the packet onto the PCI Express fabric.
This mechanism can be used if the User Application does not know whether a packet
could be poisoned at the start of packet transmission. Use of terr_fwd is not
supported for packets when (tx_str) s_axis_tx_tuser[2] is asserted (streamed transmit
packets). In streaming mode, users can optionally discontinue the packet if it becomes
corrupted. See Discontinuing Transmission of Transaction by Source, page 104 for
details on discontinuing packets.

When ECRC is being used, instead of setting the EP bit of the TLP to forward an error, the
User Application should nullify TLPs with errors by asserting the
src_dsc(s_axis_tx_tuser[3]) block input for the TLP and report the error using the cfg_err
interface.

X-Ref Target - Figure 5-11

Figure 5-11: Discarding of Transaction by Destination of Transmit Interface

UG477_c5_11_110410

user_clk_out

s_axis_tx_tdata[63:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[7:0]

(tx_src_dsc)s_axis_tx_tuser[3]

tx_terr_drop

H1H0 D0H2 --D1 H1H0 D0H2 --D1

FFh 0Fh FFh 0Fh

Dropped TLP Valid TLP

http://www.xilinx.com

106 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Streaming Mode for Transactions on the Transmit Interface

The 7 Series FPGAs Integrated Block for PCI Express core allows the User Application to
enable Streaming (cut-through) mode for transmission of a TLP, when possible, to reduce
latency of operation. To enable this feature, the User Application must hold (tx_str)
s_axis_tx_tuser[2] asserted for the entire duration of the transmitted TLP. The User
Application must also present valid frames on every clock cycle until the final cycle of the
TLP. In other words, the User Application must not deassert s_axis_tx_tvalid for the
duration of the presented TLP. Source throttling of the transaction while in streaming
mode of operation causes the transaction to be dropped (tx_terr_drop is asserted) and a
nullified TLP to be signaled on the PCI Express link. Figure 5-13 illustrates the streaming
mode of operation, where the first TLP is streamed and the second TLP is dropped because
of source throttling.

X-Ref Target - Figure 5-12

Figure 5-12: Packet Data Poisoning on the Transmit Interface

UG477_c5_12_110410

user_clk_out

s_axis_tx_tdata[63:0]

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[7:0]

(tx_err_fwd)s_axis_tx_tuser[1]

FFh FFh 0Fh

Poisoned TLP

X-Ref Target - Figure 5-13

Figure 5-13: Streaming Mode on the Transmit Interface

UG477_c5_13_110410

user_clk_out

s_axis_tx_tdata[63:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[7:0]

(tx_str)s_axis_tx_tuser[2]

tx_terr_drop

FFh FFh FFh

TLP1 TLP2

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 107
UG477 March 1, 2011

Designing with the Transaction Layer Interface

Using ECRC Generation

The integrated block supports automatic ECRC generation. To enable this feature, the User
Application must assert (tx_ecrc_gen) s_axis_tx_tuser[0] at the beginning of a TLP on the
transmit AXI4-Stream interface. This signal can be asserted through the duration of the
packet, if desired. If the outgoing TLP does not already have a digest, the core generates
and appends one and sets the TD bit. There is a single-clock cycle deassertion of
s_axis_tx_tready at the end-of-packet to allow for insertion of the digest. Figure 5-14
illustrates ECRC generation operation.

Receiving Inbound Packets

Basic TLP Receive Operation

Table 2-10, page 36 defines the receive AXI4-Stream interface signals. This sequence of
events must occur on the receive AXI4-Stream interface for the Endpoint core to present a
TLP to the User Application logic:

1. When the User Application is ready to receive data, it asserts m_axis_rx_tready.

2. When the core is ready to transfer data, the core asserts m_axis_rx_tvalid and presents
the first complete TLP QWORD on m_axis_rx_tdata[63:0].

3. The core keeps m_axis_rx_tvalid asserted, and presents TLP QWORDs on
m_axis_rx_tdata[63:0] on subsequent clock cycles (provided the User Application
logic asserts m_axis_rx_tready).

4. The core then asserts m_axis_rx_tvalid with m_axis_rx_tlast and presents either the
last QWORD on s_axis_tx_tdata[63:0] and a value of 0xFF on m_axis_rx_tstrb or the
last DWORD on s_axis_tx_tdata[31:0] and a value of 0x0F on m_axis_rx_tstrb.

5. If no further TLPs are available at the next clock cycle, the core deasserts
m_axis_rx_tvalid to signal the end of valid transfers on m_axis_rx_tdata[63:0].

Note: The User Application should ignore any assertions of m_axis_rx_tlast, m_axis_rx_tstrb, and
m_axis_rx_tdata unless m_axis_rx_tvalid is concurrently asserted. Signal m_axis_rx_tvalid never
deasserts mid-packet.

X-Ref Target - Figure 5-14

Figure 5-14: ECRC Generation

user_clk_out

s_axis_tx_tdata[63:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[7:0]

(tx_ecrc_gen) s_axis_tx_tuser[0]

H1H0 D0H2 D2D1 D4D3 H1H0 D0H2 D2D1

FFh FFh

TLP1 TLP2

UG477_c5_14_110410

http://www.xilinx.com

108 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Figure 5-15 shows a 3-DW TLP header without a data payload; an example is a 32-bit
addressable Memory Read request. When the core asserts m_axis_rx_tlast, it also places a
value of 0x0F on m_axis_rx_tstrb, notifying the user that only m_axis_rx_tdata[31:0]
contains valid data.

Figure 5-16 shows a 4-DW TLP header without a data payload; an example is a 64-bit
addressable Memory Read request. When the core asserts m_axis_rx_tlast, it also places a
value of 0xFF on m_axis_rx_tstrb, notifying the user that m_axis_rx_tdata[63:0] contains
valid data.

X-Ref Target - Figure 5-15

Figure 5-15: TLP 3-DW Header without Payload

X-Ref Target - Figure 5-16

Figure 5-16: TLP 4-DW Header without Payload

UG477_c5_15_110410

user_clk_out

m_axis_rx_tdata[63:0]

m_axis_rx_tready

m_axis_rx_tvalid

m_axis_rx_tlast

m_axis_rx_tstrb[7:0]

(rx_err_fwd) m_axis_rx_tuser[1]

(rx_bar_hit[7:0]) m_axis_rx_tuser[9:2]

H1H0 --H3

FFh 0Fh

UG477_c5_16_110410

user_clk_out

m_axis_rx_tdata[63:0]

m_axis_rx_tready

m_axis_rx_tvalid

m_axis_rx_tlast

m_axis_rx_tstrb[7:0]

(rx_err_fwd) m_axis_rx_tuser[1]

(rx_bar_hit[7:0]) m_axis_rx_tuser[9:2]

H1H0 H3H2

FFh

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 109
UG477 March 1, 2011

Designing with the Transaction Layer Interface

Figure 5-17 shows a 3-DW TLP header with a data payload; an example is a 32-bit
addressable Memory Write request. When the core asserts m_axis_rx_tlast, it also places a
value of 0xFF on m_axis_rx_tstrb, notifying the user that m_axis_rx_tdata[63:0] contains
valid data.

Figure 5-18 shows a 4-DW TLP header with a data payload; an example is a 64-bit
addressable Memory Write request. When the core asserts m_axis_rx_tlast, it also places a
value of 0x0F on m_axis_rx_tstrb, notifying the user that only m_axis_rx_tdata[31:0]
contains valid data.

X-Ref Target - Figure 5-17

Figure 5-17: TLP 3-DW Header with Payload

X-Ref Target - Figure 5-18

Figure 5-18: TLP 4-DW Header with Payload

UG477_c5_17_110410

user_clock_out

m_axis_rx_tdata[63:0]

m_axis_rx_tready

m_axis_rx_tvalid

m_axis_rx_tlast

m_axis_rx_tstrb[7:0]

(rx_err_fwd)m_axis_rx_tuser[1]

(rx_bar_hit[7:0])m_axis_rx_tuser[9:2]

H1H0 D0H2 D2D1 D4D3

FFh

00000010b

UG477_c5_18_110410

user_clk_out

m_axis_rx_tdata[63:0]

m_axis_rx_tready

m_axis_rx_tvalid

m_axis_rx_tlast

m_axis_rx_tstrb[7:0]

(rx_err_fwd)m_axis_rx_tuser[1]

(rx_bar_hit[7:0])m_axis_rx_tuser[9:2]

rx_np_ok

H1H0 H3H2 D1D0 --D2

FFh 0Fh

00110000b

http://www.xilinx.com

110 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Throttling the Datapath on the Receive AXI4-Stream Interface

The User Application can stall the transfer of data from the core at any time by deasserting
m_axis_rx_tready. If the user deasserts m_axis_rx_tready while no transfer is in progress
and if a TLP becomes available, the core asserts m_axis_rx_tvalid and presents the first
TLP QWORD on m_axis_rx_tdata[63:0]. The core remains in this state until the user asserts
m_axis_rx_tready to signal the acceptance of the data presented on m_axis_rx_tdata[63:0].
At that point, the core presents subsequent TLP QWORDs as long as m_axis_rx_tready
remains asserted. If the user deasserts m_axis_rx_tready during the middle of a transfer,
the core stalls the transfer of data until the user asserts m_axis_rx_tready again. There is no
limit to the number of cycles the user can keep m_axis_rx_tready deasserted. The core
pauses until the user is again ready to receive TLPs.

Figure 5-19 illustrates the core asserting m_axis_rx_tvalid along with presenting data on
m_axis_rx_tdata[63:0]. The User Application logic inserts wait states by deasserting
m_axis_rx_tready. The core does not present the next TLP QWORD until it detects
m_axis_rx_tready assertion. The User Application logic can assert or deassert
m_axis_rx_tready as required to balance receipt of new TLP transfers with the rate of TLP
data processing inside the application logic.

Receiving Back-to-Back Transactions on the Receive Interface

The User Application logic must be designed to handle presentation of back-to-back TLPs
on the receive AXI4-Stream interface by the core. The core can assert m_axis_rx_tvalid for
a new TLP at the clock cycle after m_axis_rx_tlast assertion for the previous TLP.
Figure 5-20 illustrates back-to-back TLPs presented on the receive interface.

X-Ref Target - Figure 5-19

Figure 5-19: User Application Throttling Receive TLP

UG477_c5_19_101410

user_clk_out

m_axis_rx_tdata[63:0]

m_axis_rx_tready

m_axis_rx_tvalid

m_axis_rx_tlast

X-Ref Target - Figure 5-20

Figure 5-20: Receive Back-to-Back Transactions

UG477_c5_20_101410

user_clk_out

m_axis_rx_tdata[63:0]

m_axis_rx_tready

m_axis_rx_tvalid

m_axis_rx_tlast

TLP1 TLP2

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 111
UG477 March 1, 2011

Designing with the Transaction Layer Interface

If the User Application cannot accept back-to-back packets, it can stall the transfer of the
TLP by deasserting m_axis_rx_tready as discussed in the Throttling the Datapath on the
Receive AXI4-Stream Interface section. Figure 5-21 shows an example of using
m_axis_rx_tready to pause the acceptance of the second TLP.

Packet Re-ordering on Receive Interface

Transaction processing in the core receiver is fully compliant with the PCI transaction
ordering rules, described in Chapter 2 of the PCI Express Base Specification. The transaction
ordering rules allow Posted and Completion TLPs to bypass blocked Non-Posted TLPs.

The 7 Series FPGAs Integrated Block for PCI Express provides two mechanisms for User
Applications to manage their Receiver Non-Posted Buffer space. The first of the two
mechanisms, Receive Non-Posted Throttling, is the use of rx_np_ok to prevent the 7 Series
FPGAs Integrated Block for PCI Express core from presenting more than two Non-Posted
requests after deassertion of the rx_np_ok signal. The second mechanism, Receive Request
for Non-Posted, allows user-controlled Flow Control of the Non-Posted queue, using the
rx_np_req signal.

The Receive Non-Posted Throttling mechanism assumes that the User Application
normally has space in its receiver for non-Posted TLPs and the User Application would
throttle the core specifically for Non-Posted requests. The Receive Request for Non-Posted
mechanism assumes that the User Application requests the core to present a Non-Posted
TLP as and when it has space in its receiver. The two mechanisms are mutually exclusive,
and only one can be active for a design. This option must be selected while generating and
customizing the core. When the Receive Non-Posted Request option is selected in the
Advanced Settings, the Receive Request for Non-Posted mechanism is enabled and any
assertion/deassertion of rx_np_ok is ignored and vice-versa. The two mechanisms are
described in further detail in the next subsections.

X-Ref Target - Figure 5-21

Figure 5-21: User Application Throttling Back-to-Back TLPs

UG477_c5_21_101410

user_clk_out

m_axis_rx_tdata[63:0]

m_axis_rx_tready

m_axis_rx_tvalid

m_axis_rx_tlast

m_axis_rx_tstrb[7:0] FFh 0Fh

TLP1 TLP2

http://www.xilinx.com

112 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Receive Non-Posted Throttling (Receive Non-Posted Request Disabled)

If the User Application can receive Posted and Completion Transactions from the core, but
is not ready to accept Non-Posted Transactions, the User Application can deassert
rx_np_ok, as shown in Figure 5-22. The User Application must deassert rx_np_ok at least
two clock cycles before m_axis_rx_tlast of the second-to-last Non-Posted TLP the user can
accept. While rx_np_ok is deasserted, received Posted and Completion Transactions pass
Non-Posted Transactions. After the User Application is ready to accept Non-Posted
Transactions, it must reassert rx_np_ok. Previously bypassed Non-Posted Transactions are
presented to the User Application before other received TLPs. There is no limit as to how
long rx_np_ok can be deasserted, however users must take care to not deassert rx_np_ok
for extended periods, because this can cause a completion timeout in the Requester. See the
PCI Express Base Specification for more information on the Completion Timeout Mechanism.

Packet re-ordering allows the User Application to optimize the rate at which Non-Posted
TLPs are processed, while continuing to receive and process Posted and Completion TLPs
in a non-blocking fashion. The rx_np_ok signaling restrictions require that the User
Application be able to receive and buffer at least three Non-Posted TLPs. This algorithm
describes the process of managing the Non-Posted TLP buffers:

Consider that Non-Posted_Buffers_Available denotes the size of Non-Posted buffer
space available to the User Application. The size of the Non-Posted buffer space is
greater than three Non-Posted TLPs. Non-Posted_Buffers_Available is decremented
when Non-Posted TLP is accepted for processing from the core, and is incremented
when Non-Posted TLP is drained for processing by the User Application.

For every clock cycle do {
if (Non-Posted_Buffers_Available <= 3) {
if (Valid transaction Start-of-Frame accepted by user application) {
Extract TLP Format and Type from the 1st TLP DW
if (TLP type == Non-Posted) {
Deassert rx_np_ok on the following clock cycle
- or -
Other optional user policies to stall NP transactions

} else {
}

}
} else { // Non-Posted_Buffers_Available > 3
Assert rx_np_ok on the following clock cycle.

}
}

X-Ref Target - Figure 5-22

Figure 5-22: Receive Interface Non-Posted Throttling
UG477_c5_22_101410

user_clk_out

m_axis_rx_tdata[63:0]

m_axis_rx_tready

m_axis_rx_tvalid

m_axis_rx_tlast

rx_np_ok

H1H0 H3H2 H1H0 H3H2 H1H0 D0H2

Non-Posted TLP1 Non-Posted TLP2 Posted/Cpl TLP3

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 113
UG477 March 1, 2011

Designing with the Transaction Layer Interface

Receive Request for Non-Posted (Receive Non-Posted Request Enabled)

The 7 Series FPGAs Integrated Block for PCI Express allows the User Application to
control Flow Control Credit return for the Non-Posted queue using the rx_np_req signal.
When the User Application has space in its receiver to receive a Non-Posted Transaction, it
must assert rx_np_req for one clock cycle for every Non-Posted Transaction that the User
Application can accept. This enables the integrated block to present one Non-Posted
transaction from its receiver queues to the Core Transaction interface, as shown in
Figure 5-23 and return one Non-Posted Credit to the connected Link partner.

The 7 Series FPGAs Integrated Block for PCI Express maintains a count of up to
12 Non-Posted Requests from the User Application. In other words, the core remembers
assertions of rx_np_req even if no Non-Posted TLPs are present in the receive buffer and
presents received Non-Posted TLPs to the user, if requests have been previously made by
the User Application. If the core has no outstanding requests from the User Application
and received Non-Posted TLPs are waiting in the receive buffer, received Posted and
Completion Transactions pass the waiting Non-Posted Transactions. After the user is ready
to accept a Non-Posted TLP, asserting rx_np_req for one or more cycles causes that number
of waiting Non-Posted TLPs to be delivered to the user at the next available TLP boundary.
In other words, any Posted or Completion TLP currently on the user application interface
finishes before waiting Non-Posted TLPs are presented to the user application. If there are
no Posted or Completion TLPs being presented to the user and a Non-Posted TLP is
waiting, assertion of rx_np_req causes the Non-Posted TLP to be presented to the user.
TLPs are delivered to the User Application in order except when the user is throttling
Non-Posted TLPs, allowing Posted and Completion TLPs to pass. When the user starts
accepting Non-Posted TLPs again, ordering is still maintained with any subsequent Posted
or Completion TLPs. If the User Application can accept all Non-Posted Transactions as
they are received and does not care about controlling the Flow Control Credit return for the
Non-Posted queue, the user should keep this signal asserted.

X-Ref Target - Figure 5-23

Figure 5-23: Receive Interface Request for Non-Posted Transaction

user_clk_out

m_axis_rx_tdata[63:0]

m_axis_rx_tready

m_axis_rx_tvalid

m_axis_rx_tlast

rx_np_req

H1H0 D0H2 D2D1 D4D3 H1H0 --H2 H1H0 D0H2 D2D1 H1H0 --H2 H1H0 --H2

Posted TLP1 Non-Posted TLP2 Posted/Cpl TLP3 Non-Posted TLP4 Non-Posted TLP5

UG477_c5_75_020311

http://www.xilinx.com

114 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Packet Data Poisoning and TLP Digest on the Receive AXI4-Stream Interface

To simplify logic within the User Application, the core performs automatic pre-processing
based on values of TLP Digest (TD) and Data Poisoning (EP) header bit fields on the
received TLP.

All received TLPs with the Data Poisoning bit in the header set (EP = 1) are presented to
the user. The core asserts the (rx_err_fwd) m_axis_rx_tuser[1] signal for the duration of
each poisoned TLP, as illustrated in Figure 5-24.

If the TLP Digest bit field in the TLP header is set (TD = 1), the TLP contains an End-to-End
CRC (ECRC). The core performs these operations based on how the user configured the
core during core generation:

• If the Trim TLP Digest option is on, the core removes and discards the ECRC field
from the received TLP and clears the TLP Digest bit in the TLP header.

• If the Trim TLP Digest option is off, the core does not remove the ECRC field from the
received TLP and presents the entire TLP including TLP Digest to the User
Application receiver interface.

See Chapter 4, Generating and Customizing the Core, for more information about how to
enable the Trim TLP Digest option during core generation.

X-Ref Target - Figure 5-24

Figure 5-24: Receive Transaction Data Poisoning

UG477_c5_23_110410

user_clk_out

m_axis_rx_tdata[63:0]

m_axis_rx_tready

m_axis_rx_tvalid

m_axis_rx_tlast

m_axis_rx_tstrb[7:0]

(rx_err_fwd) m_axis_rx_tuser[1]

FFh FFh

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 115
UG477 March 1, 2011

Designing with the Transaction Layer Interface

ECRC Error on the 64-Bit Receive AXI4-Stream Interface

The 7 Series FPGAs Integrated Block for PCI Express core checks the ECRC on incoming
transaction packets, when ECRC checking is enabled in the core. When it detects an ECRC
error in a transaction packet, the core signals this error to the user by simultaneously
asserting m_axis_rx_tuser[0] (rx_ecrc_err) and m_axis_rx_tlast as illustrated in
Figure 5-25.

Packet Base Address Register Hit on the Receive AXI4-Stream Interface

The 7 Series FPGAs Integrated Block for PCI Express in Root Port configuration does not
perform any BAR decoding/filtering.

The 7 Series FPGAs Integrated Block for PCI Express in Endpoint configuration decodes
incoming Memory and I/O TLP request addresses to determine which Base Address
Register (BAR) in the core's Type0 configuration space is being targeted, and indicates the
decoded base address on (rx_bar_hit[7:0]) m_axis_rx_tuser[9:2]. For each received
Memory or I/O TLP, a minimum of one and a maximum of two (adjacent) bit(s) are set to
1b. If the received TLP targets a 32-bit Memory or I/O BAR, only one bit is asserted. If the
received TLP targets a 64-bit Memory BAR, two adjacent bits are asserted. If the core
receives a TLP that is not decoded by one of the BARs (that is, a misdirected TLP), then the
core drops it without presenting it to the user and it automatically generates an
Unsupported Request message. Even if the core is configured for a 64-bit BAR, the system
might not always allocate a 64-bit address, in which case only onerxbar_hit[7:0] signal is
asserted. Overlapping BAR apertures are not allowed.

Table 5-1 illustrates mapping between rx_bar_hit[7:0] and the BARs, and the
corresponding byte offsets in the core Type0 configuration header.

X-Ref Target - Figure 5-25

Figure 5-25: ECRC Error on 64-Bit Receive AXI4-Stream Interface

Table 5-1: (rx_bar_hit[7:0]) m_axis_rx_tuser[9:2] to Base Address Register
Mapping

rx_bar_hit[x] m_axis_rx_tuser[x] BAR Byte Offset

0 2 0 10h

1 3 1 14h

2 4 2 18h

3 5 3 1Ch

4 6 4 20h

user_clk_out

m_axis_rx_tdata[63:0]

m_axis_rx_tready

m_axis_rx_tvalid

m_axis_rx_tlast

m_axis_rx_tstrb[7:0]

(rx_ecrc_err) m_axis_rx_tuser[0]

FFh FFh

UG477_c5_73_012511

http://www.xilinx.com

116 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

For a Memory or I/O TLP Transaction on the receive interface, (rx_bar_hit[7:0])
m_axis_rx_tuser[9:2] is valid for the entire TLP, starting with the assertion of
m_axis_rx_tvalid, as shown in Figure 5-26. When receiving non-Memory and non-I/O
transactions, signal rx_bar_hit[7:0] is undefined.

The (rx_bar_hit[7:0]) m_axis_rx_tuser[9:2] signal enables received Memory and I/O
transactions to be directed to the appropriate destination apertures within the User
Application. By utilizing rx_bar_hit[7:0], application logic can inspect only the lower order
Memory and I/O address bits within the address aperture to simplify decoding logic.

5 7 5 24h

6 8 Expansion ROM BAR 30h

0 9 Reserved –

X-Ref Target - Figure 5-26

Figure 5-26: BAR Target Determination Using rx_bar_hit

Table 5-1: (rx_bar_hit[7:0]) m_axis_rx_tuser[9:2] to Base Address Register
Mapping (Cont’d)

rx_bar_hit[x] m_axis_rx_tuser[x] BAR Byte Offset

UG477_c5_24_110410

user_clk_out

m_axis_rx_tdata[63:0]

m_axis_rx_tready

m_axis_rx_tvalid

m_axis_rx_tlast

(rx_bar_hit[7:0])m_axis_rx_tuser[9:2] 0000010b 0001100b

TLP1 TLP2

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 117
UG477 March 1, 2011

Designing with the Transaction Layer Interface

Packet Transfer During Link-Down Event on Receive AXI4-Stream Interface

The loss of communication with the link partner is signaled by deassertion of user_lnk_up.
When user_lnk_up is deasserted, it effectively acts as a Hot Reset to the entire core. For this
reason, all TLPs stored inside the core or being presented to the receive interface are
irrecoverably lost. A TLP in progress on the Receive AXI4-Stream interface is presented to
its correct length, according to the Length field in the TLP header. However, the TLP is
corrupt and should be discarded by the User Application. Figure 5-27 illustrates the packet
transfer discontinue scenario.
X-Ref Target - Figure 5-27

Figure 5-27: Receive Transaction Discontinue
UG477_c5_25_101410

user_clk_out

user_lnk_up

m_axis_rx_tdata[63:0]

m_axis_rx_tready

m_axis_rx_tvalid

m_axis_rx_tlast

H1H0 D0H2 D2D1 PAD PAD

original TLP data was lost

http://www.xilinx.com

118 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Designing with the 128-Bit Transaction Layer Interface
Note: The Transaction interface width and frequency never change with a lane width/speed
upconfigure or downconfigure.

TLP Format in the AXI4-Stream Interface

Data is transmitted and received in Big-Endian order as required by the PCI Express Base
Specification. See Chapter 2 of the PCI Express Base Specification for detailed information
about TLP packet ordering. Figure 5-28 represents a typical 32-bit addressable Memory
Write Request TLP (as illustrated in Chapter 2 of the specification).

When using the Transaction interface, packets are arranged on the entire 128-bit datapath.
Figure 5-29 shows the same example packet on the AXI4-Stream interface. PCIe Byte 0 of
the packet appears on s_axis_tx_tdata[31:24] (transmit) or m_axis_rx_tdata[31:24] (receive)
of the first DWORD, byte 1 on s_axis_tx_tdata[23:16] or m_axis_rx_tdata[23:16], and so
forth. The Header section of the packet consists of either three or four DWORDs,
determined by the TLP format and type as described in section 2.2 of the PCI Express Base
Specification.

Packets sent to the core for transmission must follow the formatting rules for Transaction
Layer Packets (TLPs) as specified in Chapter 2 of the PCI Express Base Specification. The
User Application is responsible for ensuring its packets’ validity. The core does not check
that a packet is correctly formed and this can result in transferring a malformed TLP. The
exact fields of a given TLP vary depending on the type of packet being transmitted.

X-Ref Target - Figure 5-28

Figure 5-28: PCI Express Base Specification Byte Order

+0

Byte 0 > R Fmt
x 0 Type R TC Rsvd T

D
E
P Attr R Length

Byte 4 > Requester ID Tag Last DW
BE

1st DW
BE

Byte 8 >

Byte 12 >

Address[31:2] R

Data 0

Byte 16 >

Byte 20 >

Data 1

Data 2

Byte 24 > TLP Digest

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

UG477_c5_26_110410

X-Ref Target - Figure 5-29

Figure 5-29: Endpoint Integrated Block Byte Order

UG477_c5_27_110410

Clock 0

Clock1

Data DW 0

TLP Digest Data DW2

[127:96] [95:64] [63:32] [31:0]

Data DW 1

Header DW 2 Header DW 1 Header DW 0

PCIe Byte

AXI Byte
AXI Bit

+12 +13 +14 +15 +8 +9 +10 +11 +4 +5 +6 +7 +0 +1 +2 +3

+15 +14 +13 +12 +11 +10 +9 +8 +7 +6 +5 +4 +3 +2 +1 +0

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 119
UG477 March 1, 2011

Designing with the Transaction Layer Interface

Transmitting Outbound Packets

Basic TLP Transmit Operation

The 7 Series FPGAs Integrated Block for PCI Express core automatically transmits these
types of packets:

• Completions to a remote device in response to Configuration Space requests.

• Error-message responses to inbound requests that are malformed or unrecognized by
the core.

Note: Certain unrecognized requests, for example, unexpected completions, can only be
detected by the User Application, which is responsible for generating the appropriate response.

The User Application is responsible for constructing these types of outbound packets:

• Memory, Atomic Ops, and I/O Requests to remote devices.

• Completions in response to requests to the User Application, for example, a Memory
Read Request.

When configured as an Endpoint, the 7 Series FPGAs Integrated Block for PCI Express
core notifies the User Application of pending internally generated TLPs that arbitrate
for the transmit datapath by asserting tx_cfg_req (1b). The User Application can
choose to give priority to core-generated TLPs by asserting tx_cfg_gnt (1b)
permanently, without regard to tx_cfg_req. Doing so prevents
User-Application-generated TLPs from being transmitted when a core-generated TLP
is pending. Alternatively, the User Application can reserve priority for a
User-Application-generated TLP over core-generated TLPs, by deasserting tx_cfg_gnt
(0b) until the user transaction is complete. After the user transaction is complete, the
User Application can assert tx_cfg_gnt (1b) for at least one clock cycle to allow the
pending core-generated TLP to be transmitted. Users must not delay asserting
tx_cfg_gnt indefinitely, because this might cause a completion timeout in the
Requester. See the PCI Express Base Specification for more information on the
Completion Timeout Mechanism.

• The integrated block does not do any filtering on the Base/Limit registers (Root Port
only). The user is responsible for determining if filtering is required. These registers
can be read out of the Type 1 Configuration Header space via the Configuration
interface (see Design with Configuration Space Registers and Configuration Interface,
page 158).

Table 2-9, page 33 defines the transmit User Application signals. To transmit a TLP, the
User Application must perform this sequence of events on the transmit AXI4-Stream
interface:

1. The User Application logic asserts s_axis_tx_tvalid, and presents the first TLP
Double-Quad Word (DQWORD = 128 bits) on s_axis_tx_tdata[127:0]. If the core is
asserting s_axis_tx_tready, the DQWORD is accepted immediately; otherwise, the
User Application must keep the DQWORD presented until the core asserts
s_axis_tx_tready.

2. The User Application asserts s_axis_tx_tvalid and presents the remainder of the TLP
DQWORDs on s_axis_tx_tdata[127:0] for subsequent clock cycles (for which the core
asserts s_axis_tx_tready).

http://www.xilinx.com

120 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

3. The User Application asserts s_axis_tx_tvalid and s_axis_tx_tlast together with the last
DQWORD data. The user must ensure that the strobe field is selected for the final data
cycle to create a packet of length equivalent to the length field in the packet header. For
more information on the s_axis_tx_tstrb[15:0] signaling, refer to Table 5-2 and
Table 5-3.

4. At the next clock cycle, the User Application deasserts s_axis_tx_tvalid to signal the
end of valid transfers on s_axis_tx_tdata[127:0].

This section uses the notation Hn and Dn to denote Header QWn and Data QWn,
respectively. Table 5-2 lists the possible single-cycle packet signaling where s_axis_tx_tlast
is asserted in the same cycle.

Table 5-3 lists the possible signaling for ending a multicycle packet. If a packet ends in the
lower QW of the data bus, the next packet cannot start in the upper QW of that beat. All
packets must start in the lowest DW of the data bus in a new beat. Signal
s_axis_tx_tstrb[15:0] indicates which DWORD of the data bus contains EOF.

Table 5-2: TX: EOF Scenarios, Single Cycle

s_axis_tx_tdata[127:0]

H3 H2 H1 H0 -- H2 H1 H0 D0 H2 H1 H0

s_axis_tx_tlast 1 1 1

s_axis_tx_tstrb[15:0] 0xFFFF 0x0FFF 0xFFFF

Table 5-3: TX: EOF Scenarios, Multicycle

s_axis_tx_tdata[127:0]

D3 D2 D1 D0 -- D2 D1 D0 -- -- D1 D0 -- -- -- D0

s_axis_tx_tlast 1 1 1 1

s_axis_tx_tstrb[15:0] 0xFFFF 0x0FFF 0x00FF 0x000F

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 121
UG477 March 1, 2011

Designing with the Transaction Layer Interface

Figure 5-30 illustrates a 3-DW TLP header without a data payload; an example is a 32-bit
addressable Memory Read request. When the User Application asserts s_axis_tx_tlast, it
also places a value of 0x0FFF on s_axis_tx_tstrb[15:0], notifying the core that only
s_axis_tx_tdata[95:0] contains valid data.

Figure 5-31 illustrates a 4-DW TLP header without a data payload; an example is a 64-bit
addressable Memory Read request. When the User Application asserts s_axis_tx_tlast, it
also places a value of 0xFFFF on s_axis_tx_tstrb[15:0] notifying the core that
s_axis_tx_tdata[127:0] contains valid data and the EOF occurs in the upper-most DW.

X-Ref Target - Figure 5-30

Figure 5-30: TLP 3-DW Header without Payload

X-Ref Target - Figure 5-31

Figure 5-31: TLP with 4-DW Header without Payload

UG477_c5_28_110410

user_clock_out

s_axis_tx_tdata[127:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[15:0]

(tx_err_fwd) s_axis_tx_tuser[1]

(tx_str) s_axis_tx_tuser[2]

(tx_src_dsc) s_axis_tx_tuser[3]

tx_terr_drop

--H2H1H0

0FFFh

UG477_c5_29_110410

user_clock_out

s_axis_tx_tdata[127:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[15:0]

(tx_err_fwd) s_axis_tx_tuser[1]

(tx_str) s_axis_tx_tuser[2]

(tx_src_dsc) s_axis_tx_tuser[3]

H3H2H1H0

FFFFh

http://www.xilinx.com

122 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Figure 5-32 illustrates a 3-DW TLP header with a data payload; an example is a 32-bit
addressable Memory Write request. When the User Application asserts s_axis_tx_tlast, it
also puts a value of 0x0FFF on s_axis_tx_tstrb[15:0] notifying the core that
s_axis_tx_tdata[95:0] contains valid data and the EOF occurs in DWORD 2.

Figure 5-33 illustrates a 4-DW TLP header with a data payload. When the User Application
asserts s_axis_tx_tlast, it also places a value of 0x00FF on s_axis_tx_tstrb[15:0], notifying
the core that only s_axis_tx_tdata[63:0] contains valid data.

X-Ref Target - Figure 5-32

Figure 5-32: TLP with 3-DW Header with Payload

X-Ref Target - Figure 5-33

Figure 5-33: TLP with 4-DW Header with Payload

UG477_c5_30_110410

user_clk_out

s_axis_tx_tdata[127:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[15:0]

(tx_err_fwd)s_axis_tx_tuser[1]

(tx_str)s_axis_tx_tuser[2]

(tx_src_dsc)s_axis_tx_tuser[3]

tx_terr_drop

D0H2H1H0 D4D3D2D1 --D7D6D5

FFFFh 0FFFh

user_clock_out

s_axis_tx_tdata[127:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[15:0]

(terr_fwd) s_axis_tx_tuser[1]

(str) s_axis_tx_tuser[2]

(src_dsc) s_axis_tx_tuser[3]

H3H2H1H0 D3D2D1D0 ----DnDn-1

FFFFh 00FFh

UG477_c5_31_021511

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 123
UG477 March 1, 2011

Designing with the Transaction Layer Interface

Presenting Back-to-Back Transactions on the Transmit Interface

The User Application can present back-to-back TLPs on the transmit AXI4-Stream
interface to maximize bandwidth utilization. Figure 5-34 illustrates back-to-back TLPs
presented on the transmit interface, with the restriction that all TLPs must start in the
lowest DW of the data bus [31:0]. The User Application keeps s_axis_tx_tvalid asserted
and presents a new TLP on the next clock cycle after asserting s_axis_tx_tlast for the
previous TLP.

Source Throttling on the Transmit Datapath

The AXI4-Stream interface lets the User Application throttle back if it has no data to
present on s_axis_tx_tdata[127:0]. When this condition occurs, the User Application
deasserts s_axis_tx_tvalid, which instructs the core AXI4-Stream interface to disregard
data presented on s_axis_tx_tdata[127:0]. Figure 5-35 illustrates the source throttling
mechanism, where the User Application does not have data to present every clock cycle,
and therefore must deassert s_axis_tx_tvalid during these cycles.

X-Ref Target - Figure 5-34

Figure 5-34: Back-to-Back Transaction on the Transmit Interface

UG477_c5_32_101410

user_clk_out

s_axis_tx_tdata[127:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[15:0]

H4H2H1H0 --D2D1D0 H3H2H1H0 ------D0

FFFFh 0FFFh FFFFh 000Fh

TLP1 TLP2

X-Ref Target - Figure 5-35

Figure 5-35: Source Throttling on the Transmit Datapath

UG477_c5_33_101410

user_clock_out

s_axis_tx_tdata[127:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[15:0]

H3H2H1H0 D3D2D1D0 D7D6D5D4 D11D10D9D8

FFFFh

http://www.xilinx.com

124 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Destination Throttling of the Transmit Datapath

The core AXI4-Stream interface throttles the transmit User Application if there is no space
left for a new TLP in its transmit buffer pool. This can occur if the link partner is not
processing incoming packets at a rate equal to or greater than the rate at which the User
Application is presenting TLPs. Figure 5-36 illustrates the deassertion of s_axis_tx_tready
to throttle the User Application when the core's internal transmit buffers are full. If the core
needs to throttle the User Application, it does so after the current packet has completed. If
another packet starts immediately after the current packet, the throttle occurs immediately
after s_axis_tx_tlast.

If the core transmit AXI4-Stream interface accepts the start of a TLP by asserting
s_axis_tx_tready, it is guaranteed to accept the complete TLP with a size up to the value
contained in the Max_Payload_Size field of the PCI Express Device Capability Register
(offset 04H). To stay compliant to the PCI Express Base Specification users should not violate
the Max_Payload_Size field of the PCI Express Device Control Register (offset 08H). The
core transmit AXI4-Stream interface deasserts s_axis_tx_tready only under these
conditions:

• After it has accepted the TLP completely and has no buffer space available for a new
TLP.

• When the core is transmitting an internally generated TLP (Completion TLP because
of a Configuration Read or Write, error Message TLP or error response as requested
by the User Application on the cfg_err interface), after it has been granted use of the
transmit datapath by the User Application, by assertion of tx_cfg_gnt, the core
subsequently asserts s_axis_tx_tready after transmitting the internally generated TLP.

• When the Power State field in the Power Management Control/Status Register (offset
0x4) of the PCI Power Management Capability Structure is changed to a non-D0 state,
any ongoing TLP is accepted completely and s_axis_tx_tready is subsequently
deasserted, disallowing the User Application from initiating any new transactions for
the duration that the core is in the non-D0 power state.

On deassertion of s_axis_tx_tready by the core, the User Application needs to hold all
control and data signals until the core asserts s_axis_tx_tready.

X-Ref Target - Figure 5-36

Figure 5-36: Destination Throttling of the Endpoint Transmit Interface

UG477_c5_34_101410

user_clk_out

s_axis_tx_tdata[127:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[15:0]

tx_buf_av

H3H2H1H0 D3D2D1D0 ----D5D4 D0H2H1H0 ------D1

FFFFh 00FFh FFFFh 000Fh

00h 02h 00h 02h 00h

TLP 1 TLP 2

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 125
UG477 March 1, 2011

Designing with the Transaction Layer Interface

Discontinuing Transmission of Transaction by Source

The core AXI4-Stream interface lets the User Application terminate transmission of a TLP
by asserting (tx_src_dsc) s_axis_tx_tuser[3]. Both s_axis_tx_tvalid and s_axis_tx_tready
must be asserted together with tx_src_dsc for the TLP to be discontinued. The signal
tx_src_dsc must not be asserted at the beginning of a TLP. It can be asserted on any cycle
after the first beat of a new TLP up to and including the assertion of s_axis_tx_tlast.
Asserting tx_src_dsc has no effect if no TLP transaction is in progress on the transmit
interface. Figure 5-37 illustrates the User Application discontinuing a packet using
tx_src_dsc. Asserting s_axis_tx_tlast together with tx_src_dsc is optional.

If streaming mode is not used, (tx_str) s_axis_tx_tuser[2] = 0b, and the packet is
discontinued, then the packet is discarded before being transmitted on the serial link. If
streaming mode is used (tx_str = 1b), the packet is terminated with the EDB symbol on the
serial link.
X-Ref Target - Figure 5-37

Figure 5-37: Source Driven Transaction Discontinue on the Transmit Interface

UG477_c5_35_110410

user_clock_out

s_axis_tx_tdata[63:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[7:0]

(tx_src_dsc) s_axis_tx_tuser[3]

H1H0 D0H2 D2D1 D4D3

FFh

http://www.xilinx.com

126 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Discarding of Transaction by Destination

The core transmit AXI4-Stream interface discards a TLP for three reasons:

• The PCI Express Link goes down.

• Presented TLP violates the Max_Payload_Size field of the Device Capability Register
(offset 04H) for PCI Express. It is the user’s responsibility to not violate the
Max_Payload_Size field of the Device Control Register (offset 08H).

• (tx_str) s_axis_tx_tuser[2] is asserted and data is not presented on consecutive clock
cycles, that is, s_axis_tx_tvalid is deasserted in the middle of a TLP transfer.

When any of these occur, the transmit AXI4-Stream interface continues to accept the
remainder of the presented TLP and asserts tx_terr_drop no later than the third clock cycle
following the EOF of the discarded TLP. Figure 5-38 illustrates the core signaling that a
packet was discarded using tx_terr_drop.

X-Ref Target - Figure 5-38

Figure 5-38: Discarding of Transaction by Destination on the Transmit Interface

UG477_c5_36_101410

user_clk_out

s_axis_tx_tdata[127:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

tx_terr_drop

TLP1 TLP2

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 127
UG477 March 1, 2011

Designing with the Transaction Layer Interface

Packet Data Poisoning on the Transmit AXI4-Stream Interface

The User Application uses either of these two mechanisms to mark the data payload of a
transmitted TLP as poisoned:

• Set EP = 1 in the TLP header. This mechanism can be used if the payload is known to
be poisoned when the first DWORD of the header is presented to the core on the
AXI4-Stream interface.

• Assert (tx_err_fwd) s_axis_tx_tuser[1] for at least one valid data transfer cycle any
time during the packet transmission, as shown in Figure 5-39. This causes the core to
set EP = 1 in the TLP header when it transmits the packet onto the PCI Express fabric.
This mechanism can be used if the User Application does not know whether a packet
could be poisoned at the start of packet transmission. Use of tx_err_fwd is not
supported for packets when (tx_str) s_axis_tx_tuser[2] is asserted (streamed transmit
packets). In streaming mode, users can optionally discontinue the packet if it becomes
corrupted. See Discontinuing Transmission of Transaction by Source, page 104 for
details on discontinuing packets.

X-Ref Target - Figure 5-39

Figure 5-39: Packet Data Poisoning on the Transmit Interface

UG477_c5_37_110410

user_clock_out

s_axis_tx_tdata[127:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[15:0]

(tx_err_fwd) s_axis_tx_tuser[1]

H3H2H1H0 D3D2D1D0 D7D6D5D4 ----D9D8

FFFFh 00FFh

http://www.xilinx.com

128 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Streaming Mode for Transactions on the Transmit Interface

The 7 Series FPGAs Integrated Block for PCI Express core allows the User Application to
enable Streaming (cut-through) mode for transmission of a TLP, when possible, to reduce
latency of operation. To enable this feature, the User Application must assert (tx_str)
s_axis_tx_tuser[2] for the entire duration of the transmitted TLP. In addition, the User
Application must present valid frames on every clock cycle until the final cycle of the TLP.
In other words, the User Application must not deassert s_axis_tx_tvalid for the duration of
the presented TLP. Source throttling of the transaction while in streaming mode of
operation causes the transaction to be dropped (tx_terr_drop is asserted) and a nullified
TLP to be signaled on the PCI Express link. Figure 5-40 illustrates the streaming mode of
operation, where the first TLP is streamed and the second TLP is dropped because of
source throttling.

X-Ref Target - Figure 5-40

Figure 5-40: Streaming Mode on the Transmit Interface

UG477_c5_38_110410

user_clk_out

s_axis_tx_tdata[127:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

(tx_str) s_axis_tx_tuser[2]

tx_terr_drop

TLP1 TLP2

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 129
UG477 March 1, 2011

Designing with the Transaction Layer Interface

Using ECRC Generation (128-Bit Interface)

The integrated block supports automatic ECRC generation. To enable this feature, the User
Application must assert (tx_ecrc_gen) s_axis_tx_tuser[0] at the beginning of a TLP on the
transmit AXI4-Stream interface. This signal can be asserted through the duration of the
packet, if desired. If the outgoing TLP does not already have a digest, the core generates
and appends one and sets the TD bit. There is a single-clock cycle deassertion of
s_axis_tx_tready at the end of packet to allow for insertion of the digest. Figure 5-41
illustrates ECRC generation operation.

Receiving Inbound Packets

Basic TLP Receive Operation

Table 2-10, page 36 defines the receive AXI4-Stream interface signals. This sequence of
events must occur on the receive AXI4-Stream interface for the Endpoint core to present a
TLP to the User Application logic:

1. When the User Application is ready to receive data, it asserts m_axis_rx_tready.

2. When the core is ready to transfer data, the core asserts (rx_is_sof[4])
m_axis_rx_tuser[14] and presents the first complete TLP DQWORD on
m_axis_rx_tdata[127:0].

3. The core then deasserts (rx_is_sof[4]) m_axis_rx_tuser[14], keeps m_axis_rx_tvalid
asserted, and presents TLP DQWORDs on m_axis_rx_tdata[127:0] on subsequent
clock cycles (provided the User Application logic asserts m_axis_rx_tready). Signal
(rx_is_eof[4]) m_axis_rx_tuser[21] is asserted to signal the end of a TLP.

4. If no further TLPs are available at the next clock cycle, the core deasserts
m_axis_rx_tvalid to signal the end of valid transfers on m_axis_rx_tdata[127:0].

Note: The User Application should ignore any assertions of rx_is_sof, rx_is_eof, and
m_axis_rx_tdata unless m_axis_rx_tvalid is concurrently asserted. Signal m_axis_rx_tvalid never
deasserts mid-packet.

X-Ref Target - Figure 5-41

Figure 5-41: ECRC Generation Waveforms (128-Bit Interface)

user_clk_out

s_axis_tx_tdata[127:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

s_axis_tx_tstrb[15:0]

(tx_ecrc_gen) s_axis_tx_tuser[0]

H4H2H1H0 --D2D1D0 H3H2H1H0 ------D0

FFFFh 0FFFh FFFFh 000Fh

TLP1 TLP2

UG477_c5_39_110410

http://www.xilinx.com

130 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Signal (rx_is_sof[4:0]) m_axis_rx_tuser[14:0] indicates whether or not a new packet has
been started in the data stream, and if so, where the first byte of the new packet is located.
Because new packets are at a minimum of three DWORDs in length for PCI Express, there
is always, at most, one new packet start for a given clock cycle in the 128-bit interface.

The rx_is_sof[2:0] signal is always deasserted for the 128-bit interface; users can decode
rx_is_sof[3:2] to determine in which DWORD the EOF occurs:

• rx_is_sof = 5'b10000 - SOF located at byte 0 (DWORD 0)

• rx_is_sof = 5'b11000 - SOF located at byte 8 (DWORD 2)

• rx_is_sof = 5'b0XXXX - SOF not present

Signal (rx_is_eof[4:0]) m_axis_rx_tuser[21:17] indicates whether or not a current packet is
ending in the data stream, and if so, where the last byte of the current packet is located.
Because packets are at a minimum of three DWORDs in length for PCI Express, there is
always, at most, one packet ending for a given clock cycle in the 128-bit interface.

The rx_is_eof[1:0] signal is always asserted for the 128-bit interface; users can decode
rx_is_eof[3:2] to determine in which DWORD the EOF occurs. These rx_is_eof values are
valid for PCI Express:

• rx_is_eof = 5'b10011 - EOF located at byte 3 (DWORD 0)

• rx_is_eof = 5'b10111 - EOF located at byte 7 (DWORD 1)

• rx_is_eof = 5'b11011 - EOF located at byte 11 (DWORD 2)

• rx_is_eof = 5'b11111 - EOF located at byte 15 (DWORD 3)

• rx_is_eof = 5'b0XXXX - EOF not present

Table 5-4 through Table 5-7 use the notation Hn and Dn to denote Header DWORD n and
Data DWORD n, respectively. Table 5-4 list the signaling for all the valid cases where a
packet can start and end within a single beat (single-cycle TLP).

Bit Description

rx_is_sof[3:0] Binary encoded byte location of SOF: 4'b0000 = byte 0, 4'b1111 = byte 15

rx_is_sof[4] Assertion indicates a new packet has been started in the current RX data.

Bit Description

rx_is_eof[3:0] Binary encoded byte location of EOF: 4'b0000 = byte 0, 4'b1111 = byte 15

rx_is_eof[4] Assertion indicates a packet is ending in the current RX data.

Table 5-4: Single-Cycle SOF and EOF Scenarios (Header and Header with Data)

m_axis_rx_tdata[127:0]

H3 H2 H1 H0 -- H2 H1 H0 D0 H2 H1 H0

rx_is_sof[4] 1b 1b 1b

rx_is_sof[3:0] 0000b 0000b 0000b

rx_is_eof[4] 1b 1b 1b

rx_is_eof[3:0] 1111b 1011b 1111b

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 131
UG477 March 1, 2011

Designing with the Transaction Layer Interface

Table 5-5 lists the signaling for all multicycle, non-straddled TLP SOF scenarios.

Table 5-6 lists the possible signaling for ending a multicycle packet. If a packet ends in the
lower QWORD of the data bus, the next packet can start in the upper QWORD of that beat
(see Straddle cases, Table 5-7). rx_is_eof[3:2] indicates which DW the EOF occurs

Table 5-7 lists the possible signaling for a straddled data transfer beat. A straddled data
transfer beat occurs when one packet ends in the lower QWORD and a new packet starts in
the upper QWORD of the same cycle. Straddled data transfers only occur in the receive
direction.

Table 5-5: Multicycle, Non-Straddled SOF Scenarios

m_axis_rx_tdata[127:0]

H3 H2 H1 H0(1) D0 H2 H1 H0(2) H1 H0 -- --(3)

rx_is_sof[4] 1b 1b 1b

rx_is_sof[3:0] 0000b 0000b 1000b

rx_is_eof[4] 0b 0b 0b

rx_is_eof[3:0] xxxxb xxxxb xxxxb

Notes:
1. Data begins on the next clock cycle.
2. Data continues on the next clock cycle.
3. Remainder of header and possible data on the next clock cycle.

Table 5-6: Receive - EOF Scenarios (Data)

m_axis_rx_tdata[127:0]

D3 D2 D1 D0 -- D2 D1 D0 -- -- D1 D0 -- -- -- D0

rx_is_sof[4] 0b 0b 0b 0b

rx_is_sof[3:0] 0000b 0000b 0000b 0000b

rx_is_eof[4] 1b 1b 1b 1b

rx_is_eof[3:0] 1111b 1011b 0111b 0011b

Table 5-7: Receive - Straddle Cases SOF and EOF

m_axis_rx_tdata[127:0]

H1 H0 Dn Dn–1 H1 H0 -- Dn

rx_is_sof[4] 1b 1b

rx_is_sof[3:0] 1000b 1000b

rx_is_eof[4] 1b 1b

rx_is_eof[3:0] 0111b 0011b

http://www.xilinx.com

132 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Figure 5-42 shows a 3-DWORD TLP header without a data payload; an example is a 32-bit
addressable Memory Read request. When the core asserts rx_is_eof[4], it also places a
value of 1011b on rx_is_eof[3:0], notifying the user that EOF occurs on byte 11
(DWORD 2) and only m_axis_rx_tdata[95:0] contains valid data.
X-Ref Target - Figure 5-42

Figure 5-42: TLP 3-DWORD Header without Payload

UG477_c5_40_110410

user_clk_out

m_axis_rx_tdata[127:0]

m_axis_rx_tready

m_axis_rx_tvalid

(rx_err_fwd)m_axis_rx_tuser[1]

(rx_bar_hit[7:0])m_axis_rx_tuser[9:2]

(rx_is_sof[4:0])m_axis_rx_tuser[14:10]

(rx_is_eof[4:0])m_axis_rx_tuser[21:17]

rx_np_ok

--H2H1H0

10000b

11011b

SOF H0

EOF H2

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 133
UG477 March 1, 2011

Designing with the Transaction Layer Interface

Figure 5-43 shows a 4-DWORD TLP header without a data payload. When the core asserts
(rx_is_eof[4]) m_axis_rx_tuser[21], it also places a value of 1111b on (rx_is_eof[3:0])
m_axis_rx_tuser[20:17], notifying the user that the EOF occurs on byte 15 (DWORD 3) and
m_axis_rx_tdata[127:0] contains valid data.
X-Ref Target - Figure 5-43

Figure 5-43: TLP 4-DWORD Header without Payload

UG477_c5_41_110410

user_clk_out

m_axis_rx_tdata[127:0]

m_axis_rx_tready

m_axis_rx_tvalid

(rx_err_fwd) m_axis_rx_tuser[1]

(rx_bar_hit[7:0]) m_axis_rx_tuser[9:2]

(rx_is_sof[4:0]) m_axis_rx_tuser[14:10]

(rx_is_eof[4:0]) m_axis_rx_tuser[21:17]

H3H2H1H0

10000b

11111b

SOF H0

EOF H3

http://www.xilinx.com

134 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Figure 5-44 shows a 3-DW TLP header with a data payload; an example is a 32-bit
addressable Memory Write request. When the core asserts (rx_is_eof[4])
m_axis_rx_tuser[21], it also places a value of 1111b on (rx_is_eof[3:0])
m_axis_rx_tuser[20:17], notifying the user that EOF occurs on byte 15 (DWORD 3) and
m_axis_rx_tdata[127:0] contains valid data.

Figure 5-45 shows a 4-DWORD TLP header with a data payload; an example is a 64-bit
addressable Memory Write request. When the core asserts (rx_is_eof[4])
m_axis_rx_tuser[21], it also places a value of 0011b on (rx_is_eof[3:0])
m_axis_rx_tuser[20:17], notifying the user that EOF occurs on byte 3 (DWORD 0) and only
m_axis_rx_tdata[31:0] contains valid data.

X-Ref Target - Figure 5-44

Figure 5-44: TLP 3-DWORD Header with Payload

X-Ref Target - Figure 5-45

Figure 5-45: TLP 4-DWORD Header with Payload

UG477_c5_42_110410

user_clock_out

m_axis_rx_tdata[127:0]

m_axis_rx_tready

m_axis_rx_tvalid

(rx_err_fwd) m_axis_rx_tuser[1]

(rx_bar_hit[7:0]) m_axis_rx_tuser[9:2]

(rx_is_sof[4:0]) m_axis_rx_tuser[14:10]

(rx_is_eof[4:0]) m_axis_rx_tuser[21:17]

D0H2H1H0 D4D3D2D1

10000b 00000b

00000b 11111b

SOF H0

EOF D4

UG477_c5_43_110410

user_clock_out

m_axis_rx_tdata[127:0]

m_axis_rx_tready

m_axis_rx_tvalid

(rx_err_fwd)m_axis_rx_tuser[1]

(rx_bar_hit[7:0])m_axis_rx_tuser[9:2]

(rx_is_sof[4:0])m_axis_rx_tuser[14:10]

(rx_is_eof[4:0])m_axis_rx_tuser[21:17]

rx_np_ok

H3H2H1H0 D3D2D1D0 ------D4

00000110b

10000b 00000b

00000b 10011b

SOF H0

EOF D4

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 135
UG477 March 1, 2011

Designing with the Transaction Layer Interface

Throttling the Datapath on the Receive Interface

The User Application can stall the transfer of data from the core at any time by deasserting
m_axis_rx_tready. If the user deasserts m_axis_rx_tready while no transfer is in progress
and if a TLP becomes available, the core asserts m_axis_rx_tvalid and (rx_is_sof[4])
m_axis_rx_tuser[14] and presents the first TLP DQWORD on m_axis_rx_tdata[127:0]. The
core remains in this state until the user asserts m_axis_rx_tready to signal the acceptance of
the data presented on m_axis_rx_tdata[127:0]. At that point, the core presents subsequent
TLP DQWORDs as long as m_axis_rx_tready remains asserted. If the user deasserts
m_axis_rx_tready during the middle of a transfer, the core stalls the transfer of data until
the user asserts m_axis_rx_tready again. There is no limit to the number of cycles the user
can keep m_axis_rx_tready deasserted. The core pauses until the user is again ready to
receive TLPs.

Figure 5-46 illustrates the core asserting m_axis_rx_tvalid and (rx_is_sof[4])
m_axis_rx_tuser[14] along with presenting data on m_axis_rx_tdata[127:0]. The User
Application logic inserts wait states by deasserting m_axis_rx_tready. The core does not
present the next TLP DQWORD until it detects m_axis_rx_tready assertion. The User
Application logic can assert or deassert m_axis_rx_tready as required to balance receipt of
new TLP transfers with the rate of TLP data processing inside the application logic.

X-Ref Target - Figure 5-46

Figure 5-46: User Application Throttling Receive TLP

UG477_c5_44_110410

user_clock_out

m_axis_rx_tdata[127:0]

m_axis_rx_tready

m_axis_rx_tvalid

(rx_is_sof[4:0])m_axis_rx_tuser[14:10]

(rx_is_eof[4:0])m_axis_rx_tuser[21:17]

H3H2H1H0 D3D2D1D0 D7D6D5D4 ----D9D8

10000b 00000b

00000b 10111b

SOF H0

EOF D9

http://www.xilinx.com

136 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Receiving Back-to-Back Transactions on the Receive Interface

The User Application logic must be designed to handle presentation of back-to-back TLPs
on the receive AXI4-Stream interface by the core. The core can assert (rx_is_sof[4])
m_axis_rx_tuser[14] for a new TLP at the clock cycle after (rx_is_eof[4])
m_axis_rx_tuser[21] assertion for the previous TLP. Figure 5-47 illustrates back-to-back
TLPs presented on the receive interface.

If the User Application cannot accept back-to-back packets, it can stall the transfer of the
TLP by deasserting m_axis_rx_tready as discussed in the Throttling the Datapath on the
Receive Interface section. Figure 5-48 shows an example of using m_axis_rx_tready to
pause the acceptance of the second TLP.

X-Ref Target - Figure 5-47

Figure 5-47: Receive Back-to-Back Transactions

UG477_c5_45_110410

user_clk_out

m_axis_rx_tdata[127:0]

m_axis_rx_tready

m_axis_rx_tvalid

(rx_is_sof[4:0])m_axis_rx_tuser[14:10]

(rx_is_eof[4:0])m_axis_rx_tuser[21:17]

D0H2H1H0 D4D3D2D1 --D7D6D5 D0H2H1H0 D4D3D2D1 ------D5

00000b 10000b 00000b 10000b 00000b

00000b 11011b 00000b 10011b 00000b

TLP1 TLP2

SOF H0 SOF H0

EOF D7 EOF D5

X-Ref Target - Figure 5-48

Figure 5-48: User Application Throttling Back-to-Back TLPs

UG477_c5_46_110410

user_clk_out

m_axis_rx_tdata[127:0]

m_axis_rx_tready

m_axis_rx_tvalid

(rx_is_sof[4:0])m_axis_rx_tuser[14:10]

(rx_is_eof[4:0])m_axis_rx_tuser[21:17]

D0H2H1H0D4D3D2D1 H3H2H1H0 D3D2D1D0

00000b 10000b 00000b 10000b 00000b 00000b

00000b 11111b 00000b 11111b 00000b

TLP1 TLP2

SOF H0 SOF H0

EOF D4 EOF D3

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 137
UG477 March 1, 2011

Designing with the Transaction Layer Interface

Receiving Straddled Packets on the Receive AXI4-Stream Interface

The User Application logic must be designed to handle presentation of straddled TLPs on
the receive AXI4-Stream interface by the core. The core can assert (rx_is_sof[4])
m_axis_rx_tuser[14] for a new TLP on the same clock cycle as (rx_is_eof[4])
m_axis_rx_tuser[21] for the previous TLP, when the previous TLP ends in the lower
QWORD. Figure 5-49 illustrates straddled TLPs presented on the receive interface.

In Figure 5-49, the first packet is a 3-DWORD packet with 64 bits of data and the second
packet is a 3-DWORD packet that begins on the lower QWORD portion of the bus. In the
figure, assertion of (rx_is_eof[4]) m_axis_rx_tuser[21] and(rx_is_eof[3:0])
m_axis_rx_tuser[20:17] = 0011b indicates that the EOF of the previous TLP occurs in bits
[31:0].

Packet Re-ordering on the Receive AXI4-Stream Interface

Transaction processing in the core receiver is fully compliant with the PCI transaction
ordering rules. The transaction ordering rules allow Posted and Completion TLPs to
bypass blocked Non-Posted TLPs.

The 7 Series FPGAs Integrated Block for PCI Express provides two mechanisms for User
Applications to manage their Receiver Non-Posted Buffer space. The first of the two
mechanisms, Receive Non-Posted Throttling, is the use of rx_np_ok to prevent the 7 Series
FPGAs Integrated Block for PCI Express core from presenting more than two Non-Posted
requests after deassertion of the rx_np_ok signal. The second mechanism, Receive Request
for Non-Posted, allows user-controlled Flow Control of the Non-Posted queue, using the
rx_np_req signal.

The Receive Non-Posted Throttling mechanism assumes that the User Application
normally has space in its receiver for non-Posted TLPs and the User Application would
throttle the core specifically for Non-Posted requests. The Receive Request for Non-Posted
mechanism assumes that the User Application requests the core to present a Non-Posted
TLP as and when it has space in its receiver. The two mechanisms are mutually exclusive,
and only one can be active for a design. This option must be selected while generating and
customizing the core. When the Receive Non-Posted Request option is selected in the
Advanced Settings, the Receive Request for Non-Posted mechanism is enabled and any
assertion/deassertion of rx_np_ok is ignored and vice-versa. The two mechanisms are
described in further detail in the next subsections.

X-Ref Target - Figure 5-49

Figure 5-49: Receive Straddled Transactions

UG477_c5_47_110410

user_clk_out

m_axis_rx_tdata[127:0]

m_axis_rx_tready

m_axis_rx_tvalid

(rx_is_sof[4:0]) m_axis_rx_tuser[14:10]

(rx_is_eof[4:0]) m_axis_rx_tuser[21:17]

D0H2H1H0 H1H0--D1 ------H2

10000b 11000b 00000b

00011b 10011b 10011b

SOF H0 SOF H0

EOF D1 EOF H2

http://www.xilinx.com

138 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Receive Non-Posted Throttling (Receive Non-Posted Request Disabled)

If the User Application can receive Posted and Completion Transactions from the core, but
is not ready to accept Non-Posted Transactions, the User Application can deassert
rx_np_ok, as shown in Figure 5-50. The User Application must deassert rx_np_ok at least
one clock cycle before (rx_is_eof[4]) m_axis_rx_tuser[21] of the second-to-last Non-Posted
TLP the user can accept. When rx_np_ok is deasserted, received Posted and Completion
Transactions pass Non-Posted Transactions. After the User Application is ready to accept
Non-Posted Transactions, it must reassert rx_np_ok. Previously bypassed Non-Posted
Transactions are presented to the User Application before other received TLPs.

Packet re-ordering allows the User Application to optimize the rate at which Non-Posted
TLPs are processed, while continuing to receive and process Posted and Completion TLPs
in a non-blocking fashion. The rx_np_ok signaling restrictions require that the User
Application be able to receive and buffer at least three Non-Posted TLPs. This algorithm
describes the process of managing the Non-Posted TLP buffers:

Consider that Non-Posted_Buffers_Available denotes the size of Non-Posted buffer
space available to User Application. The size of the Non-Posted buffer space is greater
than three Non-Posted TLPs. Non-Posted_Buffers_Available is decremented when a
Non-Posted TLP is accepted for processing from the core, and is incremented when the
Non-Posted TLP is drained for processing by the User Application.

For every clock cycle do {
if (Non-Posted_Buffers_Available <= 3) {
if (Valid transaction Start-of-Frame accepted by user application) {
Extract TLP Format and Type from the 1st TLP DW
if (TLP type == Non-Posted) {
Deassert rx_np_ok on the following clock cycle
- or -
Other optional user policies to stall NP transactions

} else {
}

}
} else { // Non-Posted_Buffers_Available > 3
Assert rx_np_ok on the following clock cycle.

}
}

X-Ref Target - Figure 5-50

Figure 5-50: Receive Interface Non-Posted Throttling

UG477_c5_48_110410

user_clk_out

m_axis_rx_tdata[127:0]

m_axis_rx_tready

m_axis_rx_tvalid

 (rx_is_sof[4:0])
m_axis_rx_tuser[14:0]

 (rx_is_eof[4:0])
m_axis_rx_tuser[21:17]

rx_np_ok

H3H2H1H0 H3H2H1H0 D0H2H1H0

10000b 10000b 10000b

11111b 11111b 11111b

Non-Posted TLP1 Non-Posted TLP2 Posted/Cpl TLP3

SOF H0 SOF H0 SOF H0

EOF H3 EOF H3 EOF D0

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 139
UG477 March 1, 2011

Designing with the Transaction Layer Interface

Receive Request for Non-Posted (Receive Non-Posted Request Enabled)

The 7 Series FPGAs Integrated Block for PCI Express allows the User Application to
control Flow Control Credit return for the Non-Posted queue using the rx_np_req signal.
When the User Application has space in its receiver to receive a Non-Posted Transaction, it
must assert rx_np_req for one clock cycle for every Non-Posted Transaction that the User
Application can accept. This enables the integrated block to present one Non-Posted
transaction from its receiver queues to the Core Transaction interface, as shown in
Figure 5-51 and return one Non-Posted Credit to the connected Link partner.

The 7 Series FPGAs Integrated Block for PCI Express maintains a count of up to
12 Non-Posted Requests from the User Application. In other words, the core remembers
assertions of rx_np_req even if no Non-Posted TLPs are present in the receive buffer and
presents received Non-Posted TLPs to the user, if requests have been previously made by
the User Application. If the core has no outstanding requests from the User Application
and received Non-Posted TLPs are waiting in the receive buffer, received Posted and
Completion Transactions pass the waiting Non-Posted Transactions. After the user is ready
to accept a Non-Posted TLP, asserting rx_np_req for one or more cycles causes that number
of waiting Non-Posted TLPs to be delivered to the user at the next available TLP boundary.
In other words, any Posted or Completion TLP currently on the user application interface
finishes before waiting Non-Posted TLPs are presented to the user application. If there are
no Posted or Completion TLPs being presented to the user and a Non-Posted TLP is
waiting, assertion of rx_np_req causes the Non-Posted TLP to be presented to the user.
TLPs are delivered to the User Application in order except when the user is throttling
Non-Posted TLPs, allowing Posted and Completion TLPs to pass. When the user starts
accepting Non-Posted TLPs again, ordering is still maintained with any subsequent Posted
or Completion TLPs. If the User Application can accept all Non-Posted Transactions as
they are received and does not care about controlling the Flow Control Credit return for the
Non-Posted queue, the user should keep this signal asserted.

X-Ref Target - Figure 5-51

Figure 5-51: Receive Interface Request for Non-Posted Transaction

user_clk_out

m_axis_rx_tdata[127:0]

m_axis_rx_tready

m_axis_rx_tvalid

(rx_is_sof[4:0]) m_axis_rx_tuser[14:10]

(rx_is_eof[4:0]) m_axis_rx_tuser[21:17]

rx_np_req

D0H2H1H0D4D3D2D1--H2H1H0D0H2H1H0 ----D2D1 H3H2H1H0--H2H1H0

10000b 00000b 10000b 10000b 00000b 00000b 10000b 10000b

00011b 11111b 11011b 00011b 10111b 00011b 11111b 11011b

Posted TLP1 Posted/Cpl TLP3 Non-Posted TLP5

Non-Posted TLP2 Non-Posted TLP4

SOF H0 SOF H0 SOF H0 SOF H0 SOF H0

EOF D4 EOF H2 EOF D2 EOF H3 EOF H2

UG477_c5_76_020311

http://www.xilinx.com

140 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Packet Data Poisoning and TLP Digest on the Receive AXI4-Stream Interface

To simplify logic within the User Application, the core performs automatic pre-processing
based on values of TLP Digest (TD) and Data Poisoning (EP) header bit fields on the
received TLP.

All received TLPs with the Data Poisoning bit in the header set (EP = 1) are presented to
the user. The core asserts the (rx_err_fwd) m_axis_rx_tuser[1] signal for the duration of
each poisoned TLP, as illustrated in Figure 5-52.

If the TLP Digest bit field in the TLP header is set (TD = 1), the TLP contains an End-to-End
CRC (ECRC). The core performs these operations based on how the user configured the
core during core generation:

• If the Trim TLP Digest option is on, the core removes and discards the ECRC field
from the received TLP and clears the TLP Digest bit in the TLP header.

• If the Trim TLP Digest option is off, the core does not remove the ECRC field from the
received TLP and presents the entire TLP including TLP Digest to the User
Application receiver interface.

See Chapter 4, Generating and Customizing the Core, for more information about how to
enable the Trim TLP Digest option during core generation.

X-Ref Target - Figure 5-52

Figure 5-52: Receive Transaction Data Poisoning

UG477_c5_49_110410

user_clk_out

m_axis_rx_tdata[127:0]

m_axis_rx_tready

m_axis_rx_tvalid

(rx_err_fwd)m_axis_rx_tuser[1]

(rx_is_sof[4:0])m_axis_rx_tuser[14:10]

(rx_is_eof[4:0])m_axis_rx_tuser[21:17]

D0H2H1H0 D4D3D2D1 --D7D6D5

00000b 10000b 00000b

00000b 11011b 00000b

SOF H0

EOF D7

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 141
UG477 March 1, 2011

Designing with the Transaction Layer Interface

ECRC Error on the 128-Bit Receive AXI4-Stream Interface

The 7 Series FPGAs Integrated Block for PCI Express core checks the ECRC on incoming
transaction packets, when ECRC checking is enabled in the core. When it detects an ECRC
error in a transaction packet, the core signals this error to the user by simultaneously
asserting m_axis_rx_tuser[0] (rx_ecrc_err) and m_axis_rx_tuser[21:17] (rx_is_eof[4:0]), as
illustrated in Figure 5-53.
X-Ref Target - Figure 5-53

Figure 5-53: ECRC Error on 128-Bit Receive AXI4-Stream Interface

user_clk_out

m_axis_rx_tdata[127:0]

m_axis_rx_tready

m_axis_rx_tvalid

(rx_ecrc_err)m_axis_rx_tuser[0]

(is_sof)m_axis_rx_tuser[14:10]

(is_eof)m_axis_rx_tuser[21:17]

D0H2H1H0 D4D3D2D1 --D7D6D5

00000b 10000b 00000b

00000b 11011b 00000b

SOF H0

EOF D7

UG477_c5_74_012511

http://www.xilinx.com

142 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Packet Base Address Register Hit on the Receive AXI4-Stream Interface

The core decodes incoming Memory and I/O TLP request addresses to determine which
Base Address Register (BAR) in the core's Type0 configuration space is being targeted, and
indicates the decoded base address on (rx_bar_hit[7:0]) m_axis_rx_tuser[8:2]. For each
received Memory or I/O TLP, a minimum of one and a maximum of two (adjacent) bit(s)
are set to 0. If the received TLP targets a 32-bit Memory or I/O BAR, only one bit is
asserted. If the received TLP targets a 64-bit Memory BAR, two adjacent bits are asserted.
If the core receives a TLP that is not decoded by one of the BARs, then the core drops it
without presenting it to the user, and it automatically generates an Unsupported Request
message. Even if the core is configured for a 64-bit BAR, the system might not always
allocate a 64-bit address, in which case only one rx_bar_hit[7:0] signal is asserted.

Table 5-8 illustrates mapping between rx_bar_hit[7:0] and the BARs, and the
corresponding byte offsets in the core Type0 configuration header.

For a Memory or I/O TLP Transaction on the receive interface, rx_bar_hit[7:0] is valid for
the entire TLP, starting with the assertion of (rx_is_sof[4]) m_axis_rx_tuser[14], as shown
in Figure 5-54. For straddled data transfer beats, rx_bar_hit[7:0] corresponds to the new
packet (the packet corresponding to rx_is_sof[4). When receiving non-Memory and
non-I/O transactions, rx_bar_hit[7:0] is undefined.

Table 5-8: rx_bar_hit to Base Address Register Mapping

rx_bar_hit[x] m_axis_rx_tuser[x] BAR Byte Offset

0 2 0 10h

1 3 1 14h

2 4 2 18h

3 5 3 1Ch

4 6 4 20h

5 7 5 24h

6 8 Expansion ROM BAR 30h

7 9 Reserved –

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 143
UG477 March 1, 2011

Designing with the Transaction Layer Interface

The (rx_bar_hit[7:0]) m_axis_rx_tuser[9:2] signal enables received Memory and I/O
transactions to be directed to the appropriate destination apertures within the User
Application. By utilizing rx_bar_hit[7:0], application logic can inspect only the lower order
Memory and I/O address bits within the address aperture to simplify decoding logic.

Packet Transfer Discontinue on the Receive AXI4-Stream Interface

The loss of communication with the link partner is signaled by deassertion of user_lnk_up.
When user_lnk_up is deasserted, it effectively acts as a Hot Reset to the entire core and all
TLPs stored inside the core or being presented to the receive interface are irrecoverably
lost. A TLP in progress on the Receive AXI4-Stream interface is presented to its correct
length, according to the Length field in the TLP header. However, the TLP is corrupt and
should be discarded by the User Application. Figure 5-55 illustrates packet transfer
discontinue scenario.

X-Ref Target - Figure 5-54

Figure 5-54: BAR Target Determination Using rx_bar_hit

UG477_c5_50_110410

user_clk_out

m_axis_rx_tdata[127:0]

m_axis_rx_tready

m_axis_rx_tvalid

 (rx_is_sof[4:0])
m_axis_rx_tuser[14:10]

 (rx_is_eof[4:0])
m_axis_rx_tuser[21:17]

 (rx_bar_hit[7:0])
m_axis_rx_tuser[9:2]

H3H2H1H0 D3D2D1D0 D7D6D5D4 D0H2H1H0 D4D3D2D1 D8D7D6D5

10000b 00000b 10000b 00000b

00011b 11111b 00011b 11111b

0000010b 0001100b

TLP1 TLP2

SOF H0 SOF H0

EOF D7 EOF D8

X-Ref Target - Figure 5-55

Figure 5-55: Receive Transaction Discontinue

UG477_c5_51_110410

user_clk_out

user_lnk_up

m_axis_rx_tdata[127:0]

m_axis_rx_tready

m_axis_rx_tvalid

(rx_is_sof[4:0])m_axis_rx_tuser[14:10]

(rx_is_eof[4:0])m_axis_rx_tuser[21:17]

D0H2H1H0 D4D3D2D1 D8D7D6D5 PAD PAD

10000b 00000b

00000b 11111b

original TLP data was lost

http://www.xilinx.com

144 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Transaction Processing on the Receive AXI4-Stream Interface
Transaction processing in the 7 Series FPGAs Integrated Block for PCI Express is fully
compliant with the PCI Express Received TLP handling rules, as specified in the PCI
Express Base Specification, rev. 2.1.

The 7 Series FPGAs Integrated Block for PCI Express performs checks on received
Transaction Layer Packets (TLPs) and passes valid TLPs to the User Application. It handles
erroneous TLPs in the manner indicated in Table 5-9 and Table 5-10. Any errors associated
with a TLP that are presented to the User Application for which the core does not check
must be signaled by the User Application logic using the cfg_err_* interface.

Table 5-9 and Table 5-10 describe the packet disposition implemented in the 7 Series
FPGAs Integrated Block for PCI Express based on received TLP type and condition of
core/TLP error for the Endpoint and Root Port configurations.

Table 5-9: TLP Disposition on the Receive AXI4-Stream Interface: Endpoint

TLP Type Condition of Core or TLP Error Core Response to TLP

Memory Read

Memory Write

Atomic Ops

I/O Read

I/O Write

BAR Miss Unsupported Request

Received when in Non-D0 PM
State

Unsupported Request

Neither of the above conditions TLP presented to User Application

Memory Read Locked

Received by a non-Legacy
PCI Express Endpoint

Unsupported Request

Legacy
Endpoint

BAR Miss Unsupported Request

Received when in
Non-D0 PM State

Unsupported Request

Neither of above
conditions

TLP presented to User Application

Configuration Read/Write Type 0
Internal Config Space

TLP consumed by the core, to read/write
internal Configuration Space and a
CplD/Cpl is generated

User-Defined Config Space TLP presented to User Application

Configuration Read/Write Type 1 Received by an Endpoint Unsupported Request

Completion

Completion Locked

Requester ID Miss Unexpected Completion

Received when in Non-D0 PM
State

Unexpected Completion

Neither of above conditions TLP presented to User Application

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 145
UG477 March 1, 2011

Designing with the Transaction Layer Interface

Messages

Set Slot Power Limit Received by an Endpoint

TLP consumed by the core and used to
program the Captured Slot Power Limit
Scale/Value fields of the Device Capabilities
Register

PM_PME

PME_TO_Ack
Received by an Endpoint Unsupported Request

PM_Active_State_NAK

PME_Turn_Off
Received by an Endpoint

TLP consumed by the core and used to
control Power Management

Unlock

Received by a non-Legacy
Endpoint

Ignored

Received by a Legacy Endpoint TLP presented to User Application(1)

INTX Received by an Endpoint Fatal Error

Error_Fatal

Error Non-Fatal

Error Correctable

Received by an Endpoint Unsupported Request

Vendor Defined Type 0

Vendor Defined Type 1
Received by an Endpoint TLP presented to User Application(1)

Hot Plug Messages Received by an Endpoint TLP dropped by the core

Notes:
1. The TLP is indicated on the cfg_msg* interface and also appears on the m_axis_rx_* interface only if enabled in the GUI.

Table 5-9: TLP Disposition on the Receive AXI4-Stream Interface: Endpoint (Cont’d)

TLP Type Condition of Core or TLP Error Core Response to TLP

http://www.xilinx.com

146 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Atomic Operations
The 7 Series FPGAs Integrated Block for PCI Express supports both sending and receiving
Atomic operations (Atomic Ops) as defined in the PCI Express Base Specification v2.1. The
specification defines three TLP types that allow advanced synchronization mechanisms
amongst multiple producers and/or consumers. The integrated block treats Atomic Ops
TLPs as Non-Posted Memory Transactions. The three TLP types are:

• FetchAdd

• Swap

• CAS (Compare And Set)

Applications that request Atomic Ops must create the TLP in the User Application and
send via the transmit AXI4-Stream interface. Applications that respond (complete) to
Atomic Ops must receive the TLP from the receive AXI4-Stream interface, create the
appropriate completion TLP in the User Application, and send the resulting completion
via the transmit AXI4-Stream interface.

Table 5-10: TLP Disposition on the Receive AXI4-Stream Interface: Root Port

TLP Type Condition of Core or TLP Error Core Response to TLP

Memory Read

Memory Write

Atomic Ops

I/O Read

I/O Write

BAR Miss
No BAR Filtering in Root Port configuration:
TLP presented to User Application

Received when in Non-D0 PM
State Unsupported Request

Neither of the above conditions TLP presented to User Application

Memory Read Locked Received by a Root Port TLP presented to User Application

Configuration Read / Write Type 0 Received by a Root Port Unsupported Request

Configuration Read / Write Type 1 Received by a Root Port Unsupported Request

Completion

Completion Locked
Received by a Root Port TLP presented to User Application

Messages

Set Slot Power Limit Received by a Root Port Unsupported Request

PM_PME

PME_TO_Ack
Received by a Root Port TLP presented to User Application(1)

PM_Active_State_NAK Received by a Root Port Unsupported Request

PME_Turn_Off Received by a Root Port Fatal Error

Unlock Received by a Root Port Fatal Error

INTX Received by a Root Port TLP presented to User Application(1)

Error_Fatal

Error Non-Fatal

Error Correctable

Received by a Root Port TLP presented to User Application(1)

Vendor Defined Type 0

Vendor Defined Type 1
Received by a Root Port TLP presented to User Application(1)

Hot Plug Messages Received by a Root Port TLP dropped by the core

Notes:
1. The TLP is indicated on the cfg_msg* interface and also appears on the m_axis_rx* interface only if enabled in the GUI.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 147
UG477 March 1, 2011

Designing with the Transaction Layer Interface

Core Buffering and Flow Control

Maximum Payload Size

TLP size is restricted by the capabilities of both link partners. After the link is trained, the
root complex sets the MAX_PAYLOAD_SIZE value in the Device Control register. This
value is equal to or less than the value advertised by the core's Device Capability register.
The advertised value in the Device Capability register of the Integrated Block core is either
128, 256, 512, or 1024 bytes, depending on the setting in the CORE Generator™ software
GUI (1024 is not supported for the 8-lane, 5.0 Gb/s 128-bit core). For more information
about these registers, see section 7.8 of the PCI Express Base Specification. The value of the
core’s Device Control register is provided to the User Application on the
cfg_dcommand[15:0] output. See Design with Configuration Space Registers and
Configuration Interface, page 158 for information about this output.

Transmit Buffers

The Integrated Block for PCI Express transmit AXI4-Stream interface provides tx_buf_av,
an instantaneous indication of the number of Max_Payload_Size buffers available for use
in the transmit buffer pool. Table 5-11 defines the number of transmit buffers available and
maximum supported payload size for a specific core.

Each buffer can hold one maximum sized TLP. A maximum sized TLP is a TLP with a
4-DWORD header plus a data payload equal to the MAX_PAYLOAD_SIZE of the core (as
defined in the Device Capability register) plus a TLP Digest. After the link is trained, the
root complex sets the MAX_PAYLOAD_SIZE value in the Device Control register. This
value is equal to or less than the value advertised by the core’s Device Capability register.
For more information about these registers, see section 7.8 of the PCI Express Base
Specification. A TLP is held in the transmit buffer of the core until the link partner
acknowledges receipt of the packet, at which time the buffer is released and a new TLP can
be loaded into it by the User Application.

For example, if the Capability Max Payload Size selected for the Endpoint core is 256 bytes,
and the performance level selected is high, there are 29 total transmit buffers. Each of these
buffers can hold at a maximum one 64-bit Memory Write Request (4-DWORD header) plus
256 bytes of data (64 DWORDs) plus TLP Digest (one DWORD) for a total of 69 DWORDs.
This example assumes the root complex sets the MAX_PAYLOAD_SIZE register of the
Device Control register to 256 bytes, which is the maximum capability advertised by this
core. For this reason, at any given time, this core could have 29 of these 69 DWORD TLPs
waiting for transmittal. There is no sharing of buffers among multiple TLPs, so even if user

Table 5-11: Transmit Buffers Available

Capability Max
Payload Size

(Bytes)

Performance Level(1)

Good (Minimize Block RAM Usage) High (Maximize Performance)

128 26 32

256 14 29

512 15 30

1024(2) 15 31

Notes:
1. Performance level is set through a CORE Generator software GUI selection.
2. 1024 is not supported for the 8-lane, 5.0 Gb/s, 128-bit core.

http://www.xilinx.com

148 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

is sending smaller TLPs such as 32-bit Memory Read request with no TLP Digest totaling
three DWORDs only per TLP, each transmit buffer still holds only one TLP at any time.

The internal transmit buffers are shared between the User Application and the core's
configuration management module (CMM). Because of this, the tx_buf_av bus can
fluctuate even if the User Application is not transmitting packets. The CMM generates
completion TLPs in response to configuration reads or writes, interrupt TLPs at the request
of the User Application, and message TLPs when needed.

The Transmit Buffers Available indication enables the User Application to completely
utilize the PCI transaction ordering feature of the core transmitter. The transaction
ordering rules allow for Posted and Completion TLPs to bypass Non-Posted TLPs. See
section 2.4 of the PCI Express Base Specification for more information about ordering rules.

The core supports the transaction ordering rules and promotes Posted and Completion
packets ahead of blocked Non-Posted TLPs. Non-Posted TLPs can become blocked if the
link partner is in a state where it momentarily has no Non-Posted receive buffers available,
which it advertises through Flow Control updates. In this case, the core promotes
Completion and Posted TLPs ahead of these blocked Non-Posted TLPs. However, this can
only occur if the Completion or Posted TLP has been loaded into the core by the User
Application. By monitoring the tx_buf_av bus, the User Application can ensure there is at
least one free buffer available for any Completion or Posted TLP. Promotion of Completion
and Posted TLPs only occurs when Non-Posted TLPs are blocked; otherwise packets are
sent on the link in the order they are received from the User Application.

Receiver Flow Control Credits Available

The Integrated Block for PCI Express provides the User Application information about the
state of the receiver buffer pool queues. This information represents the current space
available for the Posted, Non-Posted, and Completion queues.

One Header Credit is equal to either a 3- or 4-DWORD TLP Header and one Data Credit is
equal to 16 bytes of payload data. Table 5-12 provides values on credits available
immediately after user_lnk_up assertion but before the reception of any TLP. If space
available for any of the above categories is exhausted, the corresponding credit available
signals indicate a value of zero. Credits available return to initial values after the receiver
has drained all TLPs.

Table 5-12: Transaction Receiver Credits Available Initial Values

Credit Category
Performance

Level

Capability Maximum Payload Size

128 Byte 256 Byte 512 Byte 1024 Byte

Non-Posted Header Good
12

High

Non-Posted Data Good
12

High

Posted Header Good
32

High

Posted Data Good 77 77 154 308

High 154 154 308 616

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 149
UG477 March 1, 2011

Designing with the Transaction Layer Interface

The User Application can use the fc_ph[7:0], fc_pd[11:0], fc_nph[7:0], fc_npd[11:0],
fc_cplh[7:0], fc_cpld[11:0], and fc_sel[2:0] signals to efficiently utilize and manage receiver
buffer space available in the core and the core application. For additional information, see
Flow Control Credit Information.

Integrated Block for PCI Express Endpoint cores have a unique requirement where the
User Application must use advanced methods to prevent buffer overflows when
requesting Non-Posted Read Requests from an upstream component. According to the
specification, a PCI Express Endpoint is required to advertise infinite storage credits for
Completion Transactions in its receivers. This means that Endpoints must internally
manage Memory Read Requests transmitted upstream and not overflow the receiver when
the corresponding Completions are received. The User Application transmit logic must
use Completion credit information presented to modulate the rate and size of Memory
Read requests, to stay within the instantaneous Completion space available in the core
receiver. For additional information, see Appendix E, Managing Receive-Buffer Space for
Inbound Completions.

Flow Control Credit Information

Using the Flow Control Credit Signals

The integrated block provides the User Application with information about the state of the
Transaction Layer transmit and receive buffer credit pools. This information represents the
current space available, as well as the credit “limit” and “consumed” information for the
Posted, Non-Posted, and Completion pools.

Table 2-7, page 31 defines the Flow Control Credit signals. Credit status information is
presented on these signals:

• fc_ph[7:0]

• fc_pd[11:0]

• fc_nph[7:0]

• fc_npd[11:0]

• fc_cplh[7:0]

• fc_cpld[11:0]

Collectively, these signals are referred to as fc_*.

The fc_* signals provide information about each of the six credit pools defined in the
PCI Express Base Specification: Header and Data Credits for Each of Posted, Non-Posted,
and Completion.

Completion Header Good
36

High

Completion Data Good 77 77 154 308

High 154 154 308 616

Table 5-12: Transaction Receiver Credits Available Initial Values (Cont’d)

Credit Category
Performance

Level

Capability Maximum Payload Size

128 Byte 256 Byte 512 Byte 1024 Byte

http://www.xilinx.com

150 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Six different types of flow control information can be read by the User Application. The
fc_sel[2:0] input selects the type of flow control information represented by the fc_*
outputs. The Flow Control Information Types are shown in Table 5-13.

The fc_sel[2:0] input can be changed on every clock cycle to indicate a different Flow
Control Information Type. There is a two clock-cycle delay between the value of fc_sel[2:0]
changing and the corresponding Flow Control Information Type being presented on the
fc_* outputs for the 64-bit interface and a four clock cycle delay for the 128-bit interface.
Figure 5-56 and Figure 5-57 illustrate the timing of the Flow Control Credits signals for the
64-bit and 128-bit interfaces, respectively.

The output values of the fc_* signals represent credit values as defined in the PCI Express
Base Specification. One Header Credit is equal to either a 3- or 4-DWORD TLP Header and
one Data Credit is equal to 16 bytes of payload data. Initial credit information is available
immediately after user_lnk_up assertion, but before the reception of any TLP. Table 5-14
defines the possible values presented on the fc_* signals. Initial credit information varies
depending on the size of the receive buffers within the integrated block and the Link
Partner.

Table 5-13: Flow Control Information Types

fc_sel[2:0] Flow Control Information Type

000 Receive Credits Available Space

001 Receive Credits Limit

010 Receive Credits Consumed

011 Reserved

100 Transmit Credits Available Space

101 Transmit Credit Limit

110 Transmit Credits Consumed

111 Reserved

X-Ref Target - Figure 5-56

Figure 5-56: Flow Control Credits for the 64-Bit Interface

X-Ref Target - Figure 5-57

Figure 5-57: Flow Control Credits for the 128-Bit Interface

UG477_c5_52_101410

user_clk_out

fc_sel[2:0]

fc_*

000b 001b 110b

RX Avail RX Limit TX Consumed

UG477_c5_53_101410

user_clk_out

fc_sel[2:0]

fc_*

000b 001b 110b

RX Avail RX Limit TX Consumed

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 151
UG477 March 1, 2011

Designing with the Transaction Layer Interface

Receive Credit Flow Control Information

Receive Credit Flow Control Information can be obtained by setting fc_sel[2:0] to 000b,
001b, or 010b. The Receive Credit Flow Control information indicates the current status of
the receive buffers within the integrated block.

Receive Credits Available Space: fc_sel[2:0] = 000b

Receive Credits Available Space shows the credit space available in the integrated block’s
Transaction Layer local receive buffers for each credit pool. If space available for any of the
credit pools is exhausted, the corresponding fc_* signal indicates a value of zero. Receive
Credits Available Space returns to its initial values after the User Application has drained
all TLPs from the integrated block.

In the case where infinite credits have been advertised to the Link Partner for a specific
Credit pool, such as Completion Credits for Endpoints, the User Application should use
this value along with the methods described in Appendix E, Managing Receive-Buffer
Space for Inbound Completions, to avoid completion buffer overflow.

Receive Credits Limit: fc_sel[2:0] = 001b

Receive Credits Limit shows the credits granted to the link partner. The fc_* values are
initialized with the values advertised by the integrated block during Flow Control
initialization and are updated as a cumulative count as TLPs are read out of the
Transaction Layer's receive buffers via the AXI4-Stream interface. This value is referred to
as CREDITS_ALLOCATED within the PCI Express Base Specification.

In the case where infinite credits have been advertised for a specific credit pool, the Receive
Buffer Credits Limit for that pool always indicates zero credits.

Receive Credits Consumed: fc_sel[2:0] = 010b

Receive Buffer Credits Consumed shows the credits consumed by the link partner (and
received by the integrated block). The initial fc_* values are always zero and are updated as
a cumulative count, as packets are received by the Transaction Layers receive buffers. This
value is referred to as CREDITS_RECEIVED in the PCI Express Base Specification.

Transmit Credit Flow Control Information

Transmit Credit Flow Control Information can be obtained by setting fc_sel[2:0] to 100b,
101b, or 110b. The Transmit Credit Flow Control information indicates the current status
of the receive buffers within the Link Partner.

Transmit Credits Available Space: fc_sel[2:0] = 100b

Transmit Credits Available Space indicates the available credit space within the receive
buffers of the Link Partner for each credit pool. If space available for any of the credit pools
is exhausted, the corresponding fc_* signal indicates a value of zero or negative. Transmit
Credits Available Space returns to its initial values after the integrated block has
successfully sent all TLPs to the Link Partner.

Table 5-14: fc_* Value Definition

Header Credit Value Data Credit Value Meaning

00 – 7F 000 – 7FF User credits

FF-80 FFF-800 Negative credits available(1)

7F 7FF Infinite credits available(1)

Notes:
1. Only Transmit Credits Available Space indicate Negative or Infinite credits available.

http://www.xilinx.com

152 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

If the value is negative, more header or data has been written into the integrated block’s
local transmit buffers than the Link Partner can currently consume. Because the block does
not allow posted packets to pass completions, a posted packet that is written is not
transmitted if there is a completion ahead of it waiting for credits (as indicated by a zero or
negative value). Similarly, a completion that is written is not transmitted if a posted packet
is ahead of it waiting for credits. The User Application can monitor the Transmit Credits
Available Space to ensure that these temporary blocking conditions do not occur, and that
the bandwidth of the PCI Express Link is fully utilized by only writing packets to the
integrated block that have sufficient space within the Link Partner’s Receive buffer.
Non-Posted packets can always be bypassed within the integrated block; so, any Posted or
Completion packet written passes Non-Posted packets waiting for credits.

The Link Partner can advertise infinite credits for one or more of the three traffic types.
Infinite credits are indicated to the user by setting the Header and Data credit outputs to
their maximum value as indicated in Table 5-14.

Transmit Credits Limit: fc_sel[2:0] = 101b

Transmit Credits Limit shows the receive buffer limits of the Link Partner for each credit
pool. The fc_* values are initialized with the values advertised by the Link Partner during
Flow Control initialization and are updated as a cumulative count as Flow Control updates
are received from the Link Partner. This value is referred to as CREDITS_LIMIT in the PCI
Express Base Specification.

In the case where infinite credits have been advertised for a specific Credit pool, the
Transmit Buffer Credits Limit always indicates zero credits for that pool.

Transmit Credits Consumed: fc_sel[2:0] = 110b

Transmit Credits Consumed show the credits consumed of the Receive Buffer of the Link
Partner by the integrated block. The initial value is always zero and is updated as a
cumulative count, as packets are transmitted to the Link Partner. This value is referred to
as CREDITS_CONSUMED in the PCI Express Base Specification.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 153
UG477 March 1, 2011

Designing with the Physical Layer Control and Status Interface

Designing with the Physical Layer Control and Status Interface
Physical Layer Control and Status enables the User Application to change link width and
speed in response to data throughput and power requirements.

Design Considerations for a Directed Link Change
These points should be considered during a Directed Link Change:

• Link change operation must be initiated only when user_lnk_up is asserted and the
core is in the L0 state, as indicated by the signal pl_ltssm_state[5:0].

• Link Width Change should not be used when Lane Reversal is enabled.

• Target Link Width of a Link Width Change operation must be equal to or less than the
width indicated by pl_initial_link_width output.

• When pl_link_upcfg_cap is set to 1b, the PCI Express link is Upconfigure capable.
This allows the link width to be varied between the Initial Negotiated Link Width and
any smaller link width supported by both the Port and link partner (this is for link
reliability or application reasons).

• If a link is not Upconfigure capable, the Negotiated link width can only be varied to a
width less than the Negotiated Link Width that is supported by both the link partner
and device.

• Before initiating a link speed change from 2.5 Gb/s to 5.0 Gb/s, the User Application
must ensure that the link is 5.0 Gb/s (Gen2) capable (that is, pl_link_gen2_cap is 1b)
and the Link Partner is also Gen2 capable (pl_link_partner_gen2_capable is 1b).

• A link width change that benefits the application must be initiated only when
cfg_lcommand[9] (the Hardware Autonomous Width Disable bit) is 0b. In addition,
for both link speed and/or width change driven by application need,
pl_directed_link_auton must be driven (1b). If the user wants the option to restore the
link width and speed to the original (higher) width and speed, the User Application
should ensure that pl_link_upcfg_cap is 1b.

• If the User Application directs the link to a width not supported by the link partner,
the resulting link width is the next narrower mutually supported link width. For
example, an 8-lane link is directed to a 4-lane operation, but the link partner supports
only 1-lane train down operations. So, this would result in a 1-lane operation.

• The Endpoint should initiate directed link change only when the device is in D0
power state (cfg_pmcsr_powerstate[1:0] = 00b).

• A retrain should not be initiated using directed link change pins (Root or Endpoint) or by
setting the retrain bit (Root only), if the cfg_pcie_link_state = 101b (transitioning to/from
PPM L1) or 110b (transitioning to PPM L2/L3 Ready).

• To ease timing closure, it is permitted to check for the conditions specified above to be
all simultaneously true up to 16 user clock cycles before initiating a Directed Link
Change. These conditions are:

• user_lnk_up == 1'b1

• pl_ltssm_state[5:0] == 6'h16

• cfg_lcommand[9] == 1'b0

• cfg_pmcsr_powerstate[1:0] == 2'b00

• cfg_pcie_link_state[2:0] != either 3'b101 or 3'b110

http://www.xilinx.com

154 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Directed Link Width Change
Figure 5-58 shows the directed link width change process that must be implemented by the
User Application. Here target_link_width[1:0] is the application-driven new link width
request.
X-Ref Target - Figure 5-58

Figure 5-58: Directed Link Width Change

UG477_c5_54_012511

 target_link_width[1:0] != pl_sel_lnk_width[1:0]

Yes

Yes

pl_link_upcfg_cap == 1b

target_link_width[1:0] <=
(pl_initial_link_width[2:0] -1)

target_link_width[1:0] <
pl_sel_lnk_width[1:0]

Unsupported
Operation

No No

pl_directed_lnk_width[1:0] = target_link_width[1:0]
pl_directed_link_change[1:0] = 01b

Yes Yes

((pl_directed_change_done == 1b) ||
(user_lnk_up == 0b))

No

pl_directed_link_change[1:0] = 00b

Change Complete

No

Assign target_link_width[1:0]

Yes

No

usr_lnk_up = 1b
and

pl_ltssm_state[5:0] = L0

Yes

No

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 155
UG477 March 1, 2011

Designing with the Physical Layer Control and Status Interface

Directed Link Speed Change
Figure 5-59 shows the directed link speed change process that must be implemented by the
User Application. Here target_link_speed is the application-driven new link speed
request.

Note: A link speed change should not be initiated on a Root Port by driving the
pl_directed_link_change pin to 10 or 11 unless the attribute RP_AUTO_SPD = 11.
X-Ref Target - Figure 5-59

Figure 5-59: Directed Link Speed Change

UG477_c5_55_012511

 target_link_speed != pl_sel_link_rate

No

Yes

pl_directed_lnk_speed = target_link_speed
pl_directed_link_change[1:0] = 10b

((pl_directed_change_done == 1b) ||
(user_lnk_up == 0b))

No

pl_directed_link_change[1:0] = 00b

Change Complete

Assign target _link_speed

Yes

Yes

No user_lnk_up = 1b
and

pl_ltssm_state[5:0] = L0

http://www.xilinx.com

156 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Directed Link Width and Speed Change
Figure 5-60 shows the directed link width and speed change process that must be
implemented by the User Application. Here target_link_width[1:0] is the
application-driven new link width request, and target_link_speed is the
application-driven new link speed request.

Note: A link speed change should not be initiated on a Root Port by driving the
pl_directed_link_change pin to 10 or 11 unless the attribute RP_AUTO_SPD = 11.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 157
UG477 March 1, 2011

Designing with the Physical Layer Control and Status Interface

X-Ref Target - Figure 5-60

Figure 5-60: Directed Link Width and Speed Change

UG477_c5_56_012511

 (target_link_width[1:0] != pl_sel_lnk_width[1:0])
&&

 (target_link_speed != pl_sel_lnk_rate)

No

Yes

Yes

pl_link_upcfg_capable == 1b

target_link_width[1:0] <=
(pl_initial_link_width[2:0] -1)

target_link_width[1:0] <
pl_sel_lnk_width[1:0]

Unsupported
Operation

No No

pl_directed_lnk_width[1:0] = target_link_width[1:0]
pl_directed_lnk_speed = target_link_speed

pl_directed_link_change[1:0] = 11b

Yes Yes

((pl_directed_change_done == 1b) ||
(user_lnk_up == 0b))

No

pl_directed_link_change[1:0] = 00b

Change Complete

No

Assign target_link_width[1:0]
Assign target _link_speed

Yes

Yes

user_lnk_up = 1b
and

pl_ltssm_state[5:0] = L0

No

http://www.xilinx.com

158 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Design with Configuration Space Registers and Configuration
Interface

This section describes the use of the Configuration interface for accessing the PCI Express
Configuration Space Type 0 or Type 1 registers that are part of the Integrated Block core.
The Configuration interface includes a read/write Configuration Port for accessing the
registers. In addition, some commonly used registers are mapped directly on the
Configuration interface for convenience.

Registers Mapped Directly onto the Configuration Interface
The Integrated Block core provides direct access to select command and status registers in
its Configuration Space. For Endpoints, the values in these registers are typically modified
by Configuration Writes received from the Root Complex; however, the User Application
can also modify these values using the Configuration Port. In the Root Port configuration,
the Configuration Port must always be used to modify these values. Table 5-15 defines the
command and status registers mapped to the configuration port.

Table 5-15: Command and Status Registers Mapped to the Configuration Port

Port Name Direction Description

cfg_bus_number[7:0] Output Bus Number: Default value after reset is 00h.
Refreshed whenever a Type 0 Configuration Write
packet is received.

cfg_device_number[4:0] Output Device Number: Default value after reset is
00000b. Refreshed whenever a Type 0
Configuration Write packet is received.

cfg_function_number[2:0] Output Function Number: Function number of the core,
hardwired to 000b.

cfg_status[15:0] Output Status Register: Status register from the
Configuration Space Header. Not supported.

cfg_command[15:0] Output Command Register: Command register from the
Configuration Space Header.

cfg_dstatus[15:0] Output Device Status Register: Device status register from
the PCI Express Capability Structure.

cfg_dcommand[15:0] Output Device Command Register: Device control register
from the PCI Express Capability Structure.

cfg_dcommand2[15:0] Output Device Command 2 Register: Device control 2
register from the PCI Express Capability Structure.

cfg_lstatus[15:0] Output Link Status Register: Link status register from the
PCI Express Capability Structure.

cfg_lcommand[15:0] Output Link Command Register: Link control register
from the PCI Express Capability Structure.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 159
UG477 March 1, 2011

Design with Configuration Space Registers and Configuration Interface

Device Control and Status Register Definitions

cfg_bus_number[7:0], cfg_device_number[4:0], cfg_function_number[2:0]

Together, these three values comprise the core ID, which the core captures from the
corresponding fields of inbound Type 0 Configuration Write accesses. The User
Application is responsible for using this core ID as the Requestor ID on any requests it
originates, and using it as the Completer ID on any Completion response it sends. This core
supports only one function; for this reason, the function number is hardwired to 000b.

cfg_status[15:0]

This output bus is not supported. If the user wishes to retrieve this information, this can be
derived by Read access of the Configuration Space in the 7 Series FPGAs Integrated Block
for PCI Express via the Configuration Port.

cfg_command[15:0]

This bus reflects the value stored in the Command register in the PCI Configuration Space
Header. Table 5-16 provides the definitions for each bit in this bus. See the PCI Express Base
Specification for detailed information.

The User Application must monitor the Bus Master Enable bit (cfg_command[2]) and
refrain from transmitting requests while this bit is not set. This requirement applies only to
requests; completions can be transmitted regardless of this bit.

The Memory Address Space Decoder Enable bit (cfg_command[1]) or the I/O Address
Space Decoder Enable bit (cfg_command[0]) must be set to receive Memory or I/O
requests. These bits are set by an incoming Configuration Write request from the system
host.

Table 5-16: Bit Mapping on Header Command Register

Bit Name

cfg_command[15:11] Reserved

cfg_command[10] Interrupt Disable

cfg_command[9] Fast Back-to-Back Transactions Enable (hardwired to 0)

cfg_command[8] SERR Enable

cfg_command[7] IDSEL Stepping/Wait Cycle Control (hardwired to 0)

cfg_command[6] Parity Error Enable - Not Supported

cfg_command[5] VGA Palette Snoop (hardwired to 0)

cfg_command[4] Memory Write and Invalidate (hardwired to 0)

cfg_command[3] Special Cycle Enable (hardwired to 0)

cfg_command[2] Bus Master Enable

cfg_command[1] Memory Address Space Decoder Enable

cfg_command[0] I/O Address Space Decoder Enable

http://www.xilinx.com

160 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

cfg_dstatus[15:0]

This bus reflects the value stored in the Device Status register of the PCI Express
Capabilities Structure. Table 5-17 defines each bit in the cfg_dstatus bus. See the
PCI Express Base Specification for detailed information.

cfg_dcommand[15:0]

This bus reflects the value stored in the Device Control register of the PCI Express
Capabilities Structure. Table 5-18 defines each bit in the cfg_dcommand bus. See the
PCI Express Base Specification for detailed information.

Table 5-17: Bit Mapping on PCI Express Device Status Register

Bit Name

cfg_dstatus[15:6] Reserved

cfg_dstatus[5] Transaction Pending

cfg_dstatus[4] AUX Power Detected (hardwired to 0)

cfg_dstatus[3] Unsupported Request Detected

cfg_dstatus[2] Fatal Error Detected

cfg_dstatus[1] Non-Fatal Error Detected

cfg_dstatus[0] Correctable Error Detected

Table 5-18: Bit Mapping of PCI Express Device Control Register

Bit Name

cfg_dcommand[15] Reserved

cfg_dcommand[14:12] Max_Read_Request_Size

cfg_dcommand[11] Enable No Snoop

cfg_dcommand[10] Auxiliary Power PM Enable

cfg_dcommand[9] Phantom Functions Enable

cfg_dcommand[8] Extended Tag Field Enable

cfg_dcommand[7:5](1) Max_Payload_Size

cfg_dcommand[4] Enable Relaxed Ordering

cfg_dcommand[3] Unsupported Request Reporting Enable

cfg_dcommand[2] Fatal Error Reporting Enable

cfg_dcommand[1] Non-Fatal Error Reporting Enable

cfg_dcommand[0] Correctable Error Reporting Enable

Notes:
1. During L1 negotiation, the user should not trigger a link retrain by writing a 1 to cfg_lcommand[5]. L1

negotiation can be observed by monitoring the cfg_pcie_link_state port.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 161
UG477 March 1, 2011

Design with Configuration Space Registers and Configuration Interface

cfg_lstatus[15:0]

This bus reflects the value stored in the Link Status register in the PCI Express Capabilities
Structure. Table 5-19 defines each bit in the cfg_lstatus bus. See the PCI Express Base
Specification for details.

cfg_lcommand[15:0]

This bus reflects the value stored in the Link Control register of the PCI Express
Capabilities Structure. Table 5-20 provides the definition of each bit in cfg_lcommand bus.
See the PCI Express Base Specification, rev. 2.1 for more details.

Table 5-19: Bit Mapping of PCI Express Link Status Register

Bit Name

cfg_lstatus[15] Link Autonomous Bandwidth Status

cfg_lstatus[14] Link Bandwidth Management Status

cfg_lstatus[13] Data Link Layer Link Active

cfg_lstatus[12] Slot Clock Configuration

cfg_lstatus[11] Link Training

cfg_lstatus[10] Reserved

cfg_lstatus[9:4] Negotiated Link Width

cfg_lstatus[3:0] Current Link Speed

Table 5-20: Bit Mapping of PCI Express Link Control Register

Bit Name

cfg_lcommand[15:12] Reserved

cfg_lcommand[11] Link Autonomous Bandwidth Interrupt Enable

cfg_lcommand[10] Link Bandwidth Management Interrupt Enable

cfg_lcommand[9] Hardware Autonomous Width Disable

cfg_lcommand[8] Enable Clock Power Management

cfg_lcommand[7] Extended Synch

cfg_lcommand[6] Common Clock Configuration

cfg_lcommand[5] Retrain Link (Reserved for an Endpoint device)

cfg_lcommand[4] Link Disable

cfg_lcommand[3] Read Completion Boundary

cfg_lcommand[2] Reserved

cfg_lcommand[1:0] Active State Link PM Control

http://www.xilinx.com

162 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

cfg_dcommand2[15:0]

This bus reflects the value stored in the Device Control 2 register of the PCI Express
Capabilities Structure. Table 5-21 defines each bit in the cfg_dcommand bus. See the
PCI Express Base Specification for detailed information.

Core Response to Command Register Settings
Table 5-22 and Table 5-23 illustrate the behavior of the 7 Series FPGAs Integrated Block for
PCI Express based on the Command Register settings when configured as either an
Endpoint or a Root Port.

Table 5-21: Bit Mapping of PCI Express Device Control 2 Register

Bit Name

cfg_dcommand2[15:5] Reserved

cfg_dcommand2[4] Completion Timeout Disable

cfg_dcommand2[3:0] Completion Timeout Value

Table 5-22: Command Register (0x004): Endpoint

Bit(s) Name Attr Endpoint Core Behavior

0 I/O Space Enable RW The Endpoint does not permit a BAR hit on I/O space
unless this is enabled.

1 Memory Space Enable RW The Endpoint does not permit a BAR hit on Memory
space unless this is enabled.

2 Bus Master Enable RW The Endpoint does not enforce this; user could send a
TLP via AXI4-Stream interface.

5:3 Reserved RO Wired to 0. Not applicable to PCI Express.

6 Parity Error Response RW Enables Master Data Parity Error (Status[8]) to be set.

7 Reserved RO Wired to 0. Not applicable to PCI Express.

8 SERR# Enable RW Can enable Error NonFatal / Error Fatal Message
generation, and enables Status[14] (“Signaled System
Error”).

9 Reserved RO Wired to 0. Not applicable to PCI Express.

10 Interrupt Disable RW If set to “1”, the cfg_interrupt* interface is unable to
cause INTx messages to be sent.

15:11 Reserved RO Wired to 0. Not applicable to PCI Express.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 163
UG477 March 1, 2011

Design with Configuration Space Registers and Configuration Interface

Status Register Response to Error Conditions
Table 5-24 throughTable 5-26 illustrate the conditions that cause the Status Register bits to
be set in the 7 Series FPGAs Integrated Block for PCI Express when configured as either an
Endpoint or a Root Port.

Table 5-23: Command Register (0x004): Root Port

Bit(s) Name Attr Root Port Core behavior

0 I/O Space Enable RW The Root Port ignores this setting. If disabled, it still
accepts I/O TLP from the user side and passes
downstream. User Application logic must enforce not
sending I/O TLPs downstream if this is unset.

1 Memory Space Enable RW The Root Port ignores this setting. If disabled, it still
accepts Mem TLPs from the user side and passes
downstream. User Application logic must enforce not
sending Mem TLPs downstream if this is unset.

2 Bus Master Enable RW When set to 0, the Root Port responds to target
transactions such as an Upstream Mem or I/O TLPs as
a UR (that is, the UR bit is set if enabled or a Cpl w/ UR
packet is sent if the TLP was Non-Posted).

When set to 1, all target transactions are passed to the
user.

5:3 Reserved RO Wired to 0. Not applicable to PCI Express.

6 Parity Error Response RW Enables Master Data Parity Error (Status[8]) to be set.

7 Reserved RO Wired to 0. Not applicable to PCI Express.

8 SERR# Enable RW If enabled, Error Fatal/Error Non-Fatal Messages can
be forwarded from the AXI4-Stream interface or
cfg_err*, or internally generated. The Root Port does
not enforce the requirement that Error Fatal/Error
Non-Fatal Messages received on the link not be
forwarded if this bit unset; user logic must do that.

Note: Error conditions detected internal to the Root
Port are indicated on cfg_msg* interface.

9 Reserved RO Wired to 0. Not applicable to PCI Express.

10 Interrupt Disable RW Not applicable to Root Port.

15:11 Reserved RO Wired to 0. Not applicable to PCI Express.

Table 5-24: Status Register (0x006): Endpoint

Bit(s) Name Attr Cause in an Endpoint

2:0 Reserved RO Wired to 0. Not applicable to PCI Express.

3 Interrupt Status RO • Set when interrupt signaled by user.
• Clears when interrupt is cleared by the

Interrupt handler.

4 Capabilities List RO Wired to 1.

7:5 Reserved RO Wired to 0. Not applicable to PCI Express.

http://www.xilinx.com

164 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

8 Master Data Parity Error RW1C Set if Parity Error Response is set and a Poisoned
Cpl TLP is received on the link, or a Poisoned
Write TLP is sent.

10:9 Reserved RO Wired to 0. Not applicable to PCI Express.

11 Signaled Target Abort RW1C Set if a Completion with status Completer Abort
is sent upstream by the user via the cfg_err*
interface.

12 Received Target Abort RW1C Set if a Completion with status Completer Abort
is received.

13 Received Master Abort RW1C Set if a Completion with status Unsupported
Request is received.

14 Signaled System Error RW1C Set if an Error Non-Fatal / Error Fatal Message is
sent, and SERR# Enable (Command[8]) is set.

15 Detected Parity Error RW1C Set if a Poisoned TLP is received on the link.

Table 5-25: Status Register (0x006): Root Port

Bit(s) Name Attr Cause in a Root Port

2:0 Reserved RO Wired to 0. Not applicable to PCI Express.

3 Interrupt Status RO Has no function in the Root Port.

4 Capabilities List RO Wired to 1.

7:5 Reserved RO Wired to 0. Not applicable to PCI Express.

8 Master Data Parity Error RW1C Set if Parity Error Response is set and a Poisoned
Completion TLP is received on the link.

10:9 Reserved RO Wired to 0. Not applicable to PCI Express.

11 Signaled Target Abort RW1C Never set by the Root Port

12 Received Target Abort RW1C Never set by the Root Port

13 Received Master Abort RW1C Never set by the Root Port

14 Signaled System Error RW1C Set if the Root Port:

• Receives an Error Non-Fatal / Error Fatal
Message and both SERR# Enable and
Secondary SERR# enable are set.

• Indicates on the cfg_msg* interface that a Error
Fatal / Error Non-Fatal Message should be
generated upstream and SERR# enable is set.

15 Detected Parity Error RW1C Set if a Poisoned TLP is transmitted downstream.

Table 5-24: Status Register (0x006): Endpoint (Cont’d)

Bit(s) Name Attr Cause in an Endpoint

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 165
UG477 March 1, 2011

Design with Configuration Space Registers and Configuration Interface

Accessing Registers through the Configuration Port
Configuration registers that are not directly mapped to the user interface can be accessed
by configuration-space address using the ports shown in Table 2-14, page 45. Root Ports
must use the Configuration Port to setup the Configuration Space. Endpoints can also use
the Configuration Port to read and write; however, care must be taken to avoid adverse
system side effects.

The User Application must supply the address as a DWORD address, not a byte address.
To calculate the DWORD address for a register, divide the byte address by four. For
example:

• The DWORD address of the Command/Status Register in the PCI Configuration
Space Header is 01h. (The byte address is 04h.)

• The DWORD address for BAR0 is 04h. (The byte address is 10h.)

Table 5-26: Secondary Status Register (0x01E): Root Port

Bit(s) Name Attr Cause in a Root Port

7:0 Reserved RO Wired to 0. Not applicable to PCI
Express.

8 Secondary Master Data Parity Error RW1C Set when the Root Port:

Receives a Poisoned Completion TLP,
and Secondary Parity Error
Response==1

Transmits a Poisoned Write TLP, and
Secondary Parity Error Response==1

10:9 Reserved RO Wired to 0. Not applicable to PCI
Express.

11 Secondary Signaled Target Abort RW1C Set when User indicates a
Completer-Abort via
cfg_err_cpl_abort

12 Secondary Received Target Abort RW1C Set when the Root Port receives a
Completion TLP with status
Completer-Abort.

13 Secondary Received Master Abort RW1C Set when the Root Port receives a
Completion TLP with status
Unsupported Request

14 Secondary Received System Error RW1C Set when the Root Port receives an
Error Fatal/Error Non-Fatal Message.

15 Secondary Detected Parity Error RW1C Set when the Root Port receives a
Poisoned TLP.

http://www.xilinx.com

166 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

To read any register in configuration space, shown in Table 2-2, page 23, the User
Application drives the register DWORD address onto cfg_dwaddr[9:0]. The core drives the
content of the addressed register onto cfg_do[31:0]. The value on cfg_do[31:0] is qualified
by signal assertion on cfg_rd_wr_done. Figure 5-61 illustrates an example with two
consecutive reads from the Configuration Space.

Configuration Space registers which are defined as “RW” by the PCI Local Bus
Specification and PCI Express Base Specification are writable via the Configuration
Management interface. To write a register in this address space, the User Application
drives the register DWORD address onto cfg_dwaddr[9:0] and the data onto cfg_di[31:0].
This data is further qualified by cfg_byte_en[3:0], which validates the bytes of data
presented on cfg_di[31:0]. These signals should be held asserted until cfg_rd_wr_done is
asserted. Figure 5-62 illustrates an example with two consecutive writes to the
Configuration Space, the first write with the User Application writing to all 32 bits of data,
and the second write with the User Application selectively writing to only bits [23:26].

Note: Writing to the Configuration Space could have adverse system side effects. Users should
ensure these writes do not negatively impact the overall system functionality.

X-Ref Target - Figure 5-61

Figure 5-61: Example Configuration Space Read Access

X-Ref Target - Figure 5-62

Figure 5-62: Example Configuration Space Write Access

user_clk_out

cfg_mgmt_dwaddr[9:0]

cfg_mgmt_do[31:0]

cfg_mgmt_wr_en

cfg_mgmt_rd_en

cfg_mgmt_rd_wr_done

A0 A1

D0 D1

UG477_c5_57_020311

user_clk_out

cfg_mgmt_dwaddr[9:0]

cfg_mgmt_di[31:0]

cfg_mgmt_byte_en[3:0]

cfg_mgmt_wr_en

cfg_mgmt_rd_en

cfg_mgmt_rd_wr_done

A A

D

0

D

1

1111b 0100b

UG477_c5_58_020311

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 167
UG477 March 1, 2011

Design with Configuration Space Registers and Configuration Interface

Optional PCI Express Extended Capabilities
The 7 Series FPGAs Integrated Block for PCI Express optionally implements up to five PCI
Express Extended Capabilities: Device Serial Number Capability, Virtual Channel
Capability, Vendor Specific Capability, Advanced Error Reporting Capability, and
Resizable BAR Capability. Using the CORE Generator software, the user can choose which
of these to enable. The relative order of the capabilities implemented is always the same.
The order is:

1. Device Serial Number (DSN) Capability

2. Virtual Channel (VC) Capability

3. Vendor Specific (VSEC) Capability

4. Advanced Error Reporting (AER) Capability

5. Resizable BAR (RBAR) Capability

The Start addresses (Base Pointer address) of the five capability structures vary depending
on the combination of capabilities enabled in the CORE Generator tool GUI.

Table 5-27 through Table 5-31 define the start addresses of the five Extended Capability
Structures, depending on the combination of PCI Express Extended Capabilities selected.

Table 5-27: DSN Base Pointer

DSN Base Pointer

No Capabilities Selected -

DSN Enabled 100h

Table 5-28: VC Capability Base Pointer

VC Capability
Base Pointer

No Capabilities Selected -

Only VC Capability Enabled 100h

DSN and VC Capability Enabled 10Ch

Table 5-29: VSEC Capability Base Pointer

VSEC Capability
Base Pointer

No Capabilities Selected -

Only VSEC Capability Enabled 100h

DSN and VSEC Capability Enabled 10Ch

DSN, VC Capability, and VSEC Capability Enabled 128h

http://www.xilinx.com

168 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

The rest of the PCI Express Extended Configuration Space is optionally available for users
to implement.

Table 5-30: AER Capability Base Pointer

AER Capability
Base Pointer

No Capabilities Selected -

Only AER Capability Enabled 100h

DSN and AER Capability Enabled 10Ch

VC Capability and AER Capability Enabled 11Ch

VSEC Capability and AER Capability Enabled 118h

DSN, VC Capability, and AER Capability Enabled 128h

DSN, VSEC Capability, and AER Capability Enabled 124h

VC Capability, VSEC Capability, and AER Capability Enabled 134h

DSN, VC Capability, VSEC Capability, and AER Capability Enabled 140h

Table 5-31: RBAR Capability Base Pointer

RBAR Capability
Base Pointer

No Capabilities Selected -

Only RBAR Capability Enabled 100h

DSN and RBAR Capability Enabled 10Ch

VC Capability and RBAR Capability Enabled 11Ch

VSEC Capability and RBAR Capability Enabled 118h

AER Capability and RBAR Capability Enabled 138h

DSN, VC Capability, and RBAR Capability Enabled 128h

DSN, VSEC Capability, and RBAR Capability Enabled 124h

DSN, AER Capability, and RBAR Capability Enabled 144h

VC Capability, VSEC Capability, and RBAR Capability Enabled 134h

VC Capability, AER Capability, and RBAR Capability Enabled 154h

VSEC Capability, AER Capability, and RBAR Capability Enabled 150h

DSN, VC Capability, VSEC Capability, and RBAR Capability Enabled 140h

DSN, VC Capability, AER Capability, and RBAR Capability Enabled 160h

DSN, VSEC Capability, AER Capability and RBAR Capability Enabled 15Ch

VC Capability, VSEC Capability, AER Capability, and RBAR Capability
Enabled

16Ch

DSN, VC Capability, VSEC Capability, AER Capability, and RBAR
Capability Enabled 178h

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 169
UG477 March 1, 2011

Design with Configuration Space Registers and Configuration Interface

Xilinx Defined Vendor Specific Capability
The 7 Series FPGAs Integrated Block for PCI Express supports Xilinx defined Vendor
Specific Capability that provides Control and Status for Loopback Master function for both
the Root Port and Endpoint configurations. It is recommended that Loopback Master
functionality be used only to perform in-system test of the physical link, when the
application is not active. User logic is required to control the Loopback Master
functionality by assessing the VSEC structure via the Configuration interface.

Figure 5-63 shows the VSEC structure in the PCIe Extended Configuration Space
implemented in the integrated block.
X-Ref Target - Figure 5-63

Figure 5-63: Xilinx Defined Vendor Specific Capability Structure

Loopback Control Register (Offset 08h)

The Loopback Control Register controls Xilinx Defined Loopback specific parameters.
Table 5-32 shows the bit locations and definitions.

31 0 Byte Offset

Next Capability Offset Capability Version = 1h PCI Express extended capability = 000Bh 00h

VSEC Length = 24 bytes VSEC Rev = 0h VSEC ID = 0h 04h

 Loopback Control Register 08h

Loopback Status Register 0Ch

Loopback Error Count Register 1 10h

Loopback Error Count Register 2 14h

Table 5-32: Loopback Control Register

Bit Location Register Description Attributes

0 Start Loopback: When set to 1b and pl_ltssm_state[5:0] is indicating
L0 (16H), the block transitions to Loopback Master state and starts
the loopback test. When set to 0b, the block exits the loopback
master mode.

Note: The Start Loopback bit should not be set to 1b during a link
speed change.

RW

1 Force Loopback: The loopback master can force the slave which
fails to achieve symbol lock at specified “link speed” and
“de-emphasis level” to enter the loopback.active state by setting
this bit to 1b. The start bit must be set to 1b when force is set to 1b.

RW

3:2 Loopback Link Speed: Advertised link speed in the TS1s sent by
master with loopback bit set to 1b. The master can control the
loopback link speed by properly controlling these bits.

RW

4 Loopback De-emphasis: Advertised de-emphasis level in the TS1s
sent by master. This also sets the De-emphasis level for the loopback
slave.

RW

http://www.xilinx.com

170 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Loopback Status Register (Offset 0Ch)

The Loopback Status Register provides information about Xilinx Defined Loopback
specific parameters. Table 5-33 shows the bit locations and definitions.

5 Loopback Modified Compliance: The loopback master generates
modified compliance pattern when in loopback mode else
compliance pattern is generated. Only one SKP OS is generated
instead of two while in modified compliance.

RW

6 Loopback Suppress SKP OS: When this bit is set to 1b then SKP OS
are not transmitted by Loopback Master. This bit is ignored when
send_modified_compliance pattern is set to 0b.

RW

15:7 Reserved RO

23:16 Reserved RO

31:24 Reserved RO

Table 5-32: Loopback Control Register (Cont’d)

Bit Location Register Description Attributes

Table 5-33: Loopback Status Register

Bit Location Register Description Attributes

0 Loopback Slave: This bit is set by hardware, if the device is
currently in loopback slave mode. When this bit is set to 1b, the
Start Loopback bit must not be set to 1b.

RO

1 Loopback Slave Failed: This bit is set by Loopback Master
hardware, when the master receives no TS1’s while Loopback bit
set to 1b, within 100 ms of “Loopback.Active”. This bit is never set
to 1b, when the Force Loopback bit is set to 1b. Setting the Start
Loopback bit to 1b clears this bit to 0b.

RO

7:2 Reserved RO

15:8 Loopback Tested: These bits are set to 0b, when the Start Loopback
bit is set to 1b. These bits are set to 1b when loopback test has been
performed on a given lane and the Loopback_Err_count_n for the
corresponding lane is valid.

Bit Positions Lane

8 Lane 0 Tested

9 Lane 1 Tested

10 Lane 2 Tested

11 Lane 3 Tested

12 Lane 4 Tested

13 Lane 5 Tested

14 Lane 6 Tested

15 Lane 7 Tested

RO

31:16 Reserved RO

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 171
UG477 March 1, 2011

Design with Configuration Space Registers and Configuration Interface

Loopback Error Count Register 1 (Offset 10h)

The Loopback Error Count Register 1 provides information about the Error Count on the
Physical Lanes 0 - 3, as tested by Xilinx Defined Loopback Control Test. A lane has an error
count reported as zero if that lane was not tested in loopback. This could be if the lane is
either not part of a configured port or has not detected a receiver at the other end.
Table 5-34 shows the bit locations and definitions.

Loopback Error Count Register 2 (Offset 14h)

The Loopback Error Count Register 2 provides information about the Error Count on the
Physical Lanes 7 - 4, as tested by Xilinx Defined Loopback Control Test. A lane has an error
count reported as zero if that lane was not tested in loopback. This could be the case the
lane is either not part of configured port or has not detected a receiver at the other end.
Table 5-35 shows the bit locations and definitions.

Table 5-34: Loopback Error Count Register 1

Bit Location Register Description Attributes

7:0 Loopback Error Count 0: This specifies the Error Count on Lane 0.
An error is said to have occurred if there is an 8B/10B error or
disparity error signaled on the Lane. Setting Loopback Start bit to
1b clears the error count to 0h. This is only valid when Loopback
Tested: Lane 0 Tested is set to 1b.

RO

15:8 Loopback Error Count 1: This specifies the Error Count on Lane 1.
An error is said to have occurred if there is an 8B/10B error or
disparity error signaled on the Lane. Setting Loopback Start bit to
1b clears the error count to 0h. This is only valid when Loopback
Tested: Lane 1 Tested is set to 1b.

RO

23:16 Loopback Error Count 2: This specifies the Error Count on Lane 2.
An error is said to have occurred if there is an 8B/10B error or
disparity error signaled on the Lane. Setting Loopback Start bit to
1b clears the error count to 0h. This is only valid when Loopback
Tested: Lane 2 Tested is set to 1b.

RO

31:24 Loopback Error Count 3: This specifies the Error Count on Lane 3.
An error is said to have occurred if there is an 8B/10B error or
disparity error signaled on the Lane. Setting Loopback Start bit to
1b clears the error count to 0h. This is only valid when Loopback
Tested: Lane 3 Tested is set to 1b.

RO

Table 5-35: Loopback Error Count Register 2

Bit Location Register Description Attributes

7:0 Loopback Error Count 4: This specifies the Error Count on Lane 4.
An error is said to have occurred if there is an 8B/10B error or
disparity error signaled on the Lane. Setting Loopback Start bit to
1b clears the error count to 0h. This is only valid when Loopback
Tested: Lane 4 Tested is set to 1b.

RO

15:8 Loopback Error Count 5: This specifies the Error Count on Lane 5.
An error is said to have occurred if there is an 8B/10B error or
disparity error signaled on the Lane. Setting Loopback Start bit to
1b clears the error count to 0h. This is only valid when Loopback
Tested: Lane 5 Tested is set to 1b.

RO

http://www.xilinx.com

172 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Advanced Error Reporting Capability
The 7 Series FPGAs Integrated Block for PCI Express implements the Advanced Error
Reporting (AER) Capability structure as defined in PCI Express Base Specification, rev. 2.1.
All optional bits defined in the specification are supported. Multiple Header Logging is not
supported.

When AER is enabled, the core responds to error conditions by setting the appropriate
Configuration Space bit(s) and sending the appropriate error messages in the manner
described in PCI Express Base Specification, rev. 2.1.

For additional signaling requirements when AER is enabled, refer to AER Requirements,
page 182.

Resizable BAR Capability
The 7 Series FPGAs Integrated Block for PCI Express implements the Resizable BAR
Capability structure as defined in PCI Express Base Specification, rev. 2.1. For more
information on the Resizable BAR feature of the integrated block, refer to Resizable BAR
Implementation-Specific Information (Endpoint Only), page 182.

User-Implemented Configuration Space
The 7 Series FPGAs Integrated Block for PCI Express enables users to optionally
implement registers in the PCI Configuration Space, the PCI Express Extended
Configuration Space, or both, in the User Application. The User Application is required to
return Config Completions for all address within this space. For more information about
enabling and customizing this feature, see Chapter 4, Generating and Customizing the
Core.

PCI Configuration Space

If the user chooses to implement registers within 0xA8 to 0xFF in the PCI Configuration
Space, the start address of the address region they wish to implement can be defined
during the core generation process.

The User Application is responsible for generating all Completions to Configuration Reads
and Writes from the user-defined start address to the end of PCI Configuration Space
(0xFF). Configuration Reads to unimplemented registers within this range should be
responded to with a Completion with 0x00000000 as the data, and configuration writes
should be responded to with a successful Completion.

23:16 Loopback Error Count 6: This specifies the Error Count on Lane 6.
An error is said to have occurred if there is an 8B/10B error or
disparity error signaled on the Lane. Setting Loopback Start bit to
1b clears the error count to 0h. This is only valid when Loopback
Tested: Lane 6 Tested is set to 1b.

RO

31:24 Loopback Error Count 7: This specifies the Error Count on Lane 7.
An error is said to have occurred if there is an 8B/10B error or
disparity error signaled on the lane. Setting Loopback Start bit to 1b
clears the error count to 0h. This is only valid when Loopback
Tested: Lane 7 Tested is set to 1b.

RO

Table 5-35: Loopback Error Count Register 2 (Cont’d)

Bit Location Register Description Attributes

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 173
UG477 March 1, 2011

Design with Configuration Space Registers and Configuration Interface

For example, to implement address range 0xC0 to 0xCF, there are several address ranges
defined that should be treated differently depending on the access. See Table 5-36 for more
details on this example.

PCI Express Extended Configuration Space

The starting address of the region in the PCI Express Extended Configuration Space that is
optionally available for users to implement depends on the PCI Express Extended
Capabilities that the user has enabled in the 7 Series FPGAs Integrated Block for
PCI Express.

The 7 Series FPGAs Integrated Block for PCI Express allows the user to select the start
address of the user-implemented PCI Express Extended Configuration Space, while
generating and customizing the core. This space must be implemented in the User
Application. The User Application is required to generate a CplD with 0x00000000 for
Configuration Read and successful Cpl for Configuration Write to addresses in this
selected range not implemented in the User Application.

The user can choose to implement a User Configuration Space with a start address not
adjacent to the last capability structure implemented by the 7 Series FPGAs Integrated
Block for PCI Express. In such a case, the core returns a completion with 0x00000000 for
configuration accesses to the region that the user has chosen to not implement. Table 5-37
further illustrates this scenario.

Table 5-37 illustrates an example Configuration of the PCI Express Extended
Configuration Space, with these settings:

• DSN Capability Enabled

• VSEC Capability Enabled

• User Implemented PCI Express Extended Configuration Space Enabled

• User Implemented PCI Express Extended Configuration Space Start Address 168h

Table 5-36: Example: User-Implemented Space 0xC0 to 0xCF

Configuration Writes Configuration Reads

0x00 to 0xBF Core responds automatically Core responds automatically

0xC0 to 0xCF User Application responds with
Successful Completion

User Application responds with
register contents

0xD0 to 0xFF User Application responds with
Successful Completion

User Application responds with
0x00000000

Table 5-37: Example: User-Defined Start Address for Configuration Space

Configuration Space Byte Address

DSN Capability 100h - 108h

VSEC Capability 10Ch - 120h

Reserved Extended Configuration Space

(Core Returns Successful Completion with 0x00000000)
124h - 164h

User-Implemented PCI Express Extended Configuration Space 168h - 47Ch

User-Implemented Reserved PCI Express Extended Configuration Space

(User Application Returns Successful Completion with 0x00000000)
480h - FFFh

http://www.xilinx.com

174 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

In this configuration, the DSN Capability occupies the registers at 100h-108h, and the
VSEC Capability occupies registers at addresses 10Ch to 120h.

The remaining PCI Express Extended Configuration Space, starting at address 124h is
available to the user to implement. For this example, the user has chosen to implement
registers in the address region starting 168h.

In this scenario, the core returns successful Completions with 0x00000000 for
Configuration accesses to registers 124h-164h. Table 5-37 also illustrates a case where the
user only implements the registers from 168h to 47Ch. In this case, the user is responsible
for returning successful Completions with 0x00000000 for configuration accesses to
480h-FFFh.

Additional Packet Handling Requirements
The User Application must manage the mechanisms described in this section to ensure
protocol compliance, because the core does not manage them automatically.

Generation of Completions

The Integrated Block core does not generate Completions for Memory Reads or I/O
requests made by a remote device. The user is expected to service these completions
according to the rules specified in the PCI Express Base Specification.

Tracking Non-Posted Requests and Inbound Completions

The integrated block does not track transmitted I/O requests or Memory Reads that have
yet to be serviced with inbound Completions. The User Application is required to keep
track of such requests using the Tag ID or other information.

One Memory Read request can be answered by several Completion packets. The User
Application must accept all inbound Completions associated with the original Memory
Read until all requested data has been received.

The PCI Express Base Specification requires that an Endpoint advertise infinite Completion
Flow Control credits as a receiver; the Endpoint can only transmit Memory Reads and I/O
requests if it has enough space to receive subsequent Completions.

The integrated block does not keep track of receive-buffer space for Completion. Rather, it
sets aside a fixed amount of buffer space for inbound Completions. The User Application
must keep track of this buffer space to know if it can transmit requests requiring a
Completion response. See Appendix E, Managing Receive-Buffer Space for Inbound
Completions for Inbound Completions for more information.

Handling Message TLPs
By default, the 7 Series FPGAs Integrated Block for PCI Express does not route any
received messages to the AXI4-Stream interface. It signals the receipt of messages on the
cfg_msg_* interface. The user can, however, choose to receive these messages, in addition
to signaling on this interface, by enabling this feature during customization of the core
through the CORE Generator software.

Root Port Configuration

The Root Port of a PCI Express Root Complex does not send any internally generated
messages on the PCI Express link, although messages can still be sent via the AXI4-Stream

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 175
UG477 March 1, 2011

Design with Configuration Space Registers and Configuration Interface

interface, such as a Set Slot Power Limit message. Any errors detected by the Integrated
Block in Root Port configuration that could cause an error message to be sent are therefore
signaled to the User Application on the cfg_msg_* interface.

The Integrated Block for PCI Express in Root Port configuration also decodes received
messages and signals these to the User Application on this interface. When configured as a
Root Port, the Integrated Block distinguishes between these received messages and error
conditions detected internally by the asserting the cfg_msg_received signal.

Reporting User Error Conditions
The User Application must report errors that occur during Completion handling using
dedicated error signals on the core interface, and must observe the Device Power State
before signaling an error to the core. If the User Application detects an error (for example,
a Completion Timeout) while the device has been programmed to a non-D0 state, the User
Application is responsible to signal the error after the device is programmed back to the D0
state.

After the User Application signals an error, the core reports the error on the PCI Express
Link and also sets the appropriate status bit(s) in the Configuration Space. Because status
bits must be set in the appropriate Configuration Space register, the User Application
cannot generate error reporting packets on the transmit interface. The type of
error-reporting packets transmitted depends on whether or not the error resulted from a
Posted or Non-Posted Request, and if AER is enabled or disabled. User-reported Posted
errors cause Message packets to be sent to the Root Complex if enabled to do so through
the Device Control Error Reporting bits and/or the Status SERR Enable bit, and the AER
Mask bits (if AER enabled). User-reported non-Posted errors cause Completion packets
with non-successful status to be sent to the Root Complex, unless the error is regarded as
an Advisory Non-Fatal Error. If AER is enabled, user-reported non-Posted errors can also
cause Message packets to be sent, if enabled by the AER Mask bits. For more information
about Advisory Non-Fatal Errors, see Chapter 6 of the PCI Express Base Specification. Errors
on Non-Posted Requests can result in either Messages to the Root Complex or Completion
packets with non-Successful status sent to the original Requester.

Error Types

The User Application triggers six types of errors using the signals defined in Table 2-18,
page 52.

• End-to-end CRC ECRC Error

• Unsupported Request Error

• Completion Timeout Error

• Unexpected Completion Error

• Completer Abort Error

• Correctable Error

• Atomic Egress Blocked Error

• Multicast Blocked Error

• Correctable Internal Error

• Malformed Error

• Poisoned Error

http://www.xilinx.com

176 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Multiple errors can be detected in the same received packet; for example, the same packet
can be an Unsupported Request and have an ECRC error. If this happens, only one error
should be reported. Because all user-reported errors have the same severity, the User
Application design can determine which error to report. The cfg_err_posted signal,
combined with the appropriate error reporting signal, indicates what type of
error-reporting packets are transmitted. The user can signal only one error per clock cycle.
See Figure 5-64, Figure 5-65, and Figure 5-66, and Table 5-38 and Table 5-39.

The User Application must ensure that the device is in a D0 Power state prior to reporting
any errors via the cfg_err_ interface. The User Application can ensure this by checking that
the PMCSR PowerState (cfg_pmcsr_pme_powerstate[1:0]) is set to 2'b00. If the
PowerState is not set to 2'b00 (the core is in a non-D0 power state) and PME_EN
cfg_pmcsr_pme_en is asserted (1'b1), then the user can assert (pulse) cfg_pm_wake and
wait for the Root to set the PMCSR PowerState bits to 2'b00. If the PowerState
(cfg_pmcsr_pme_powerstate) is not equal to 2'b00 and PME_EN cfg_pmcsr_pme_en is
deasserted (1'b0), the user must wait for the Root to set the PowerState to 2'b00.

Table 5-38: User-Indicated Error Signaling

User Reported Error Internal Cause AER Enabled Action

None None Don’t care No action is taken.

cfg_err_ur
&&

cfg_err_posted = 0

RX:

• Bar Miss (NP
TLP)

• Locked TLP
• Type1 Cfg
• Non-Cpl TLP

during PM mode
• Poisoned TLP

No
A completion with an
Unsupported Request
status is sent.

Yes

A completion with an
Unsupported Request
status is sent. If enabled, a
Correctable Error Message
is sent.

cfg_err_ur
&&

cfg_err_posted = 1

RX:

• Bar Miss
(Posted) TLP

• Locked (Posted)
TLP

• Posted TLP
during PM mode

No
If enabled, a Non-Fatal
Error Message is sent.

Yes

Depending on the AER
Severity register, either a
Non-Fatal or Fatal Error
Message is sent.

cfg_err_cpl_abort
&&

cfg_err_posted = 0
Poisoned TLP

No

A completion with a
Completer Abort status is
sent. If enabled, a Non-Fatal
Error Message is sent.

Yes

A completion with a
Completer Abort status is
sent. If enabled, a
Correctable Error Message
is sent.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 177
UG477 March 1, 2011

Design with Configuration Space Registers and Configuration Interface

cfg_err_cpl_abort
&&

cfg_err_posted = 1
ECRC Error

No

A completion with a
Completer Abort status is
sent. If enabled, a Non-Fatal
Error Message is sent.

Yes

Depending on the AER
Severity register, either a
Non-Fatal or Fatal Error
Message is sent.

cfg_err_cpl_timeout
&&

cfg_err_no_recovery = 0
Poisoned TLP

No
None (considered an
Advisory Non-Fatal Error).

Yes
If enabled, a Correctable
Error Message is sent.

cfg_err_cpl_timeout
&&

cfg_err_no_recovery = 1
ECRC Error

No
If enabled, a Non-Fatal
Error Message is sent.

Yes

Depending on the AER
Severity register, a
Non-Fatal or Fatal Error
Message is sent.

cfg_err_ecrc ECRC Error

No
If enabled, a Non-Fatal
Error Message is sent.

Yes

Depending on the AER
Severity register, either a
Non-Fatal or Fatal Error
Message is sent.

cfg_err_cor RX:

• PLM MGT Err
• Replay TO
• Replay Rollover
• Bad DLLP
• Bad TLP

(crc/seq#)
• Header Log

Overflow(1)

Don't care

If enabled, a Correctable
Error Message is sent.cfg_err_internal_cor Yes

cfg_err_cpl_unexpect Poisoned TLP

No None (considered an
Advisory Non-Fatal Error).

Yes
If enabled, a Correctable
Error Message is sent.

cfg_err_atomic_egress_
blocked Poisoned TLP

No
None (considered an
Advisory Non-Fatal Error).

Yes
If enabled, a Correctable
Error Message is sent.

Table 5-38: User-Indicated Error Signaling (Cont’d)

User Reported Error Internal Cause AER Enabled Action

http://www.xilinx.com

178 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Whenever an error is detected in a Non-Posted Request, the User Application deasserts
cfg_err_posted and provides header information on cfg_err_tlp_cpl_header[47:0] during
the same clock cycle the error is reported, as illustrated in Figure 5-64. The additional

cfg_err_malformed

RX:

• Out-of-range
ACK/NAK

• Malformed TLP
• Buffer Overflow
• FC error

No
If enabled, a Fatal Error
Message is sent.

Yes

Depending on the AER
Severity register, either a
Non-Fatal or Fatal Error
Message is sent.

cfg_err_mc_blocked ECRC Error

No
If enabled, a Non-Fatal
Error Message is sent.

Yes

Depending on the AER
Severity register, either a
Non-Fatal or Fatal Error
Message is sent.

cfg_err_poisoned
&&

cfg_err_no_recovery = 0
Poisoned TLP

No
None (considered an
Advisory Non-Fatal Error).

Yes
If enabled, a Correctable
Error Message is sent.

cfg_err_poisoned
&&

cfg_err_no_recovery = 1
ECRC Error

No
If enabled, a Non-Fatal
Error Message is sent.

Yes

Depending on the AER
Severity register, either a
Non-Fatal or Fatal Error
Message is sent.

Notes:
1. Only when AER is enabled.

Table 5-38: User-Indicated Error Signaling (Cont’d)

User Reported Error Internal Cause AER Enabled Action

Table 5-39: Possible Error Conditions for TLPs Received by the User Application

R
ec

ei
ve

d
 T

L
P

 T
yp

e

Possible Error Condition Error Qualifying Signal Status

Unsupported
Request

(cfg_err_ur

Completion
Abort

(cfg_err_cpl_
abort)

Correctable
Error

(cfg_err_
cor

ECRC Error
(cfg_err_

ecrc

Unexpected
Completion

(cfg_err_cpl_
unexpect)

Value to Drive
on (cfg_err_

posted)

Drive Data
on (cfg_err_tlp_
cpl header[47:0])

Memory
Write

✓ X N/A ✓ X 1 No

Memory
Read

✓ ✓ N/A ✓ X 0 Yes

I/O ✓ ✓ N/A ✓ X 0 Yes

Completion X X N/A ✓ ✓ 1 No

Notes:
1. A checkmark indicates a possible error condition for a given TLP type. For example, users can signal Unsupported Request or ECRC Error

for a Memory Write TLP, if these errors are detected. An X indicates not a valid error condition for a given TLP type. For example, users
should never signal Completion Abort in response to a Memory Write TLP.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 179
UG477 March 1, 2011

Design with Configuration Space Registers and Configuration Interface

header information is necessary to construct the required Completion with non-Successful
status. Additional information about when to assert or deassert cfg_err_posted is provided
in the remainder of this section.

If an error is detected on a Posted Request, the User Application instead asserts
cfg_err_posted, but otherwise follows the same signaling protocol. This results in a
Non-Fatal Message to be sent, if enabled (see Figure 5-65).

If several non-Posted errors are signaled on cfg_err_ur or cfg_err_cpl_abort in a short
amount of time, it is possible for the core to be unable to buffer them all. If that occurs, then
cfg_err_cpl_rdy is deasserted and the user must cease signaling those types of errors on the
same cycle. The user must not resume signaling those types of errors until cfg_err_cpl_rdy
is reasserted (see Figure 5-66).

The core’s ability to generate error messages can be disabled by the Root Complex issuing
a configuration write to the Endpoint core’s Device Control register and the PCI Command
register setting the appropriate bits to 0. For more information about these registers, see
Chapter 7 of the PCI Express Base Specification. However, error-reporting status bits are
always set in the Configuration Space whether or not their Messages are disabled.

If AER is enabled, the root complex has fine-grained control over the ability and types of
error messages generated by the Endpoint core by setting the Severity and Mask Registers
in the AER Capability Structure. For more information about these registers, see Chapter 7
of the PCI Express Base Specification, rev. 2.1.

X-Ref Target - Figure 5-64

Figure 5-64: Signaling Unsupported Request for Non-Posted TLP

UG477_c5_60_101510

user_clk_out

cfg_err_cpl_rdy

cfg_err_ur

cfg_err_posted

cfg_err_locked

cfg_dcommand[3]

tx_data[63:0]* Message

Unsupported Request Message sent on link

* Internal signal not appearing on User Interface

http://www.xilinx.com

180 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Completion Timeouts

The Integrated Block core does not implement Completion timers; for this reason, the User
Application must track how long its pending Non-Posted Requests have each been
waiting for a Completion and trigger timeouts on them accordingly. The core has no
method of knowing when such a timeout has occurred, and for this reason does not filter
out inbound Completions for expired requests.

If a request times out, the User Application must assert cfg_err_cpl_timeout, which causes
an error message to be sent to the Root Complex. If a Completion is later received after a
request times out, the User Application must treat it as an Unexpected Completion.

Unexpected Completions

The Integrated Block core automatically reports Unexpected Completions in response to
inbound Completions whose Requestor ID is different than the Endpoint ID programmed
in the Configuration Space. These completions are not passed to the User Application. The
current version of the core regards an Unexpected Completion to be an Advisory
Non-Fatal Error (ANFE), and no message is sent.

X-Ref Target - Figure 5-65

Figure 5-65: Signaling Unsupported Request for Posted TLP

UG477_c5_61_101510

user_clk_out

cfg_err_ur

cfg_err_posted

cfg_err_tlp_cpl_header[47:0]

cfg_dcommand[1]

tx_data[63:0]*

Header

Message

Non-Fatal Error Message Sent on Link

* Internal signal not appearing on User Interface

X-Ref Target - Figure 5-66

Figure 5-66: Signaling Locked Unsupported Request for Locked Non-Posted TLP

user_clk_out

cfg_err_cpl_rdy

cfg_err_ur

cfg_err_posted

cfg_err_locked

cfg_dcommand[3]

tx_data[63:0]* Message

Unsupported Request Message sent on link

* Internal signal not appearing on User Interface

UG477_c5_62_012611

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 181
UG477 March 1, 2011

Design with Configuration Space Registers and Configuration Interface

Completer Abort

If the User Application is unable to transmit a normal Completion in response to a
Non-Posted Request it receives, it must signal cfg_err_cpl_abort. The cfg_err_posted
signal can also be set to 1 simultaneously to indicate Non-Posted and the appropriate
request information placed on cfg_err_tlp_cpl_header[47:0]. This sends a Completion with
non-Successful status to the original Requester, but does not send an Error Message. When
in Legacy mode if the cfg_err_locked signal is set to 0 (to indicate the transaction causing
the error was a locked transaction), a Completion Locked with Non-Successful status is
sent. If the cfg_err_posted signal is set to 0 (to indicate a Posted transaction), no
Completion is sent, but a Non-Fatal Error Message is sent (if enabled).

Unsupported Request

If the User Application receives an inbound Request it does not support or recognize, it
must assert cfg_err_ur to signal an Unsupported Request. The cfg_err_posted signal must
also be asserted or deasserted depending on whether the packet in question is a Posted or
Non-Posted Request. If the packet is Posted, a Non-Fatal Error Message is sent out (if
enabled); if the packet is Non-Posted, a Completion with a non-Successful status is sent to
the original Requester. When in Legacy mode if the cfg_err_locked signal is set to 0 (to
indicate the transaction causing the error was a locked transaction), a Completion Locked
with Unsupported Request status is sent.

The Unsupported Request condition can occur for several reasons, including:

• An inbound Memory Write packet violates the User Application's programming
model, for example, if the User Application has been allotted a 4 KB address space but
only uses 3 KB, and the inbound packet addresses the unused portion.

Note: If this occurs on a Non-Posted Request, the User Application should use
cfg_err_cpl_abort to flag the error.

• An inbound packet uses a packet Type not supported by the User Application, for
example, an I/O request to a memory-only device.

ECRC Error

When enabled, the Integrated Block core automatically checks the ECRC field for validity.
If an ECRC error is detected, the core responds by setting the appropriate status bits and an
appropriate error message is sent, if enabled to do so in the configuration space.

If automatic ECRC checking is disabled, the User Application can still signal an ECRC
error by asserting cfg_err_ecrc. The User Application should only assert cfg_err_ecrc if
AER is disabled.

http://www.xilinx.com

182 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

AER Requirements

Whenever the User Application signals an error using one of the cfg_err_* inputs (for
example, cfg_err_ecrc_n), it must also log the header of the TLP that caused the error. The
User Application provides header information on cfg_err_aer_headerlog[127:0] during the
same clock cycle the error is reported. The User Application must hold the header
information until cfg_err_aer_headerlog_set is asserted. cfg_err_aer_headerlog_set
remains asserted until the Uncorrectable Error Status Register bit corresponding to the first
error pointer is cleared (typically, via system software – see the PCI Express Base
Specification, v2.1). If cfg_err_aer_headerlog_set is already asserted, there is already a
header logged. Figure 5-67 illustrates the operation for AER header logging.

Resizable BAR Implementation-Specific Information (Endpoint Only)

The integrated block can support up to six resizable BARs; however, the BAR Index field of
the Resizable BAR Capability Registers (0 through 5) must be in ascending order. For
example, if Bar Index (0) is set to 4 (indicating it points to the BAR[4]), Bar Index (1) can be
set to 5 and Bar Index (2 - 5) cannot be used and is disabled. In this example, if BAR[4]
represents a 64-bit BAR (using BAR5 for the upper 32 bits), Bar Index(1) cannot be used.

When the Bar Size field of a Resizable BAR Capability is programmed, any value
previously programmed in the corresponding BAR is cleared and the number of writable
bits in that BAR is immediately changed to reflect the new size.

Power Management
The Integrated Block core supports these power management modes:

• Active State Power Management (ASPM)

• Programmed Power Management (PPM)

Implementing these power management functions as part of the PCI Express design
enables the PCI Express hierarchy to seamlessly exchange power-management messages
to save system power. All power management message identification functions are
implemented. The subsections in this section describe the user logic definition to support
the above modes of power management.

For additional information on ASPM and PPM implementation, see the PCI Express Base
Specification.

X-Ref Target - Figure 5-67

Figure 5-67: AER Header Logging

user_clk

cfg_err_<condition>

cfg_err_aer_headerlog[127:0]

cfg_err_aer_headerlog_set

H0H1H2[H3]

Cleared by Software

Header of TLP with Error

UG477_c5_63_101510

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 183
UG477 March 1, 2011

Power Management

Active State Power Management
The Active State Power Management (ASPM) functionality is autonomous and
transparent from a user-logic function perspective. The core supports the conditions
required for ASPM. The integrated block supports ASPM L0s.

Programmed Power Management
To achieve considerable power savings on the PCI Express hierarchy tree, the core
supports these link states of Programmed Power Management (PPM):

• L0: Active State (data exchange state)

• L1: Higher Latency, lower power standby state

• L3: Link Off State

The Programmed Power Management Protocol is initiated by the Downstream
Component/Upstream Port.

PPM L0 State

The L0 state represents normal operation and is transparent to the user logic. The core
reaches the L0 (active state) after a successful initialization and training of the PCI Express
Link(s) as per the protocol.

PPM L1 State

These steps outline the transition of the core to the PPM L1 state:

1. The transition to a lower power PPM L1 state is always initiated by an upstream
device, by programming the PCI Express device power state to D3-hot (or to D1 or D2
if they are supported).

2. The device power state is communicated to the user logic through the
cfg_pmcsr_powerstate[1:0] output.

3. The core then throttles/stalls the user logic from initiating any new transactions on the
user interface by deasserting s_axis_tx_tready. Any pending transactions on the user
interface are, however, accepted fully and can be completed later.

There are two exceptions to this rule:

• The core is configured as an Endpoint and the User Configuration Space is
enabled. In this situation, the user must refrain from sending new Request TLPs if
cfg_pmcsr_powerstate[1:0] indicates non-D0, but the user can return Completions
to Configuration transactions targeting User Configuration space.

• The core is configured as a Root Port. To be compliant in this situation, the user
should refrain from sending new Requests if cfg_pmcsr_powerstate[1:0] indicates
non-D0.

4. The core exchanges appropriate power management DLLPs with its link partner to
successfully transition the link to a lower power PPM L1 state. This action is
transparent to the user logic.

5. All user transactions are stalled for the duration of time when the device power state is
non-D0, with the exceptions indicated in step 3.

Note: The user logic, after identifying the device power state as non-D0, can initiate a request
through the cfg_pm_wake to the upstream link partner to configure the device back to the D0 power
state. If the upstream link partner has not configured the device to allow the generation of PM_PME
messages (cfg_pmcsr_pme_en = 0), the assertion of cfg_pm_wake is ignored by the core.

http://www.xilinx.com

184 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

PPM L3 State

These steps outline the transition of the Endpoint for PCI Express to the PPM L3 state:

1. The core negotiates a transition to the L23 Ready Link State upon receiving a
PME_Turn_Off message from the upstream link partner.

2. Upon receiving a PME_Turn_Off message, the core initiates a handshake with the user
logic through cfg_to_turnoff (see Table 5-40) and expects a cfg_turnoff_ok back from
the user logic.

3. A successful handshake results in a transmission of the Power Management Turn-off
Acknowledge (PME-turnoff_ack) Message by the core to its upstream link partner.

4. The core closes all its interfaces, disables the Physical/Data-Link/Transaction layers
and is ready for removal of power to the core.

There are two exceptions to this rule:

• The core is configured as an Endpoint and the User Configuration Space is
enabled. In this situation, the user must refrain from sending new Request TLPs if
cfg_pmcsr_powerstate[1:0] indicates non-D0, but the user can return Completions
to Configuration transactions targeting User Configuration space.

• The core is configured as a Root Port. To be compliant in this situation, the user
should refrain from sending new Requests if cfg_pmcsr_powerstate[1:0] indicates
non-D0.

Power-down negotiation follows these steps:

1. Before power and clock are turned off, the Root Complex or the Hot-Plug controller in
a downstream switch issues a PME_Turn_Off broadcast message.

2. When the core receives this TLP, it asserts cfg_to_turnoff to the User Application and
starts polling the cfg_turnoff_ok input.

3. When the User Application detects the assertion of cfg_to_turnoff, it must complete
any packet in progress and stop generating any new packets. After the User
Application is ready to be turned off, it asserts cfg_turnoff_ok to the core. After
assertion of cfg_turnoff_ok, the User Application has committed to being turned off.

Table 5-40: Power Management Handshaking Signals

Port Name Direction Description

cfg_to_turnoff Output Asserted if a power-down request TLP is received from
the upstream device. After assertion, cfg_to_turnoff
remains asserted until the user asserts cfg_turnoff_ok.

cfg_turnoff_ok Input Asserted by the User Application when it is safe to
power down.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 185
UG477 March 1, 2011

Generating Interrupt Requests

4. The core sends a PME_TO_Ack when it detects assertion of cfg_turnoff_ok, as
displayed in Figure 5-68 (64-bit).

Generating Interrupt Requests
Note: This section is only applicable to the Endpoint Configuration of the 7 Series FPGAs
Integrated Block for PCI Express.

The Integrated Block core supports sending interrupt requests as either legacy, Message
MSI, or MSI-X interrupts. The mode is programmed using the MSI Enable bit in the
Message Control Register of the MSI Capability Structure and the MSI-X Enable bit in the
MSI-X Message Control Register of the MSI-X Capability Structure. For more information
on the MSI and MSI-X capability structures, see section 6.8 of the PCI Local Base Specification
v3.0.

The state of the MSI Enable and MSI-X Enabled bits are reflected by the
cfg_interrupt_msienable and cfg_interrupt_msixeable outputs, respectively. Table 5-41
describes the Interrupt Mode the device has been programmed to, based on the
cfg_interrupt_msienable and cfg_interrupt_msixenable outputs of the core.

The MSI Enable bit in the MSI control register, the MSI-X Enable bit in the MSI-X Control
Register, and the Interrupt Disable bit in the PCI Command register are programmed by
the Root Complex. The User Application has no direct control over these bits.

X-Ref Target - Figure 5-68

Figure 5-68: Power Management Handshaking: 64-Bit

UG477_c5_64_101510

user_clk_out

rx_data[63:0]*

cfg_to_turnoff

cfg_turnoff_ok

tx_data[63:0]*

PME_Turn_Off

PME_TO_ACK

* Internal signal not appearing on User Interface

Table 5-41: Interrupt Modes

cfg_interrupt_msixenable=0 cfg_interrupt_msixenable=1

cfg_interrupt_
msienable=0

Legacy Interrupt (INTx) mode.

The cfg_interrupt interface only
sends INTx messages.

MSI-X mode. MSI-X interrupts must be
generated by the user by composing
MWr TLPs on the transmit
AXI4-Stream interface; Do not use the
cfg_interrupt interface.

The cfg_interrupt interface is active
and sends INTx messages, but the user
should refrain from doing so.

cfg_interrupt_
msienable=1

MSI mode. The cfg_interrupt
interface only sends MSI
interrupts (MWr TLPs).

Undefined. System software is not
supposed to permit this.

However, the cfg_interrupt interface is
active and sends MSI interrupts (MWr
TLPs) if the user chooses to do so.

http://www.xilinx.com

186 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

The Internal Interrupt Controller in the 7 Series FPGAs Integrated Block for PCI Express
core only generates Legacy Interrupts and MSI Interrupts. MSI-X Interrupts need to be
generated by the User Application and presented on the transmit AXI4-Stream interface.
The status of cfg_interrupt_msienable determines the type of interrupt generated by the
internal Interrupt Controller:

If the MSI Enable bit is set to a 1, then the core generates MSI requests by sending Memory
Write TLPs. If the MSI Enable bit is set to 0, the core generates legacy interrupt messages as
long as the Interrupt Disable bit in the PCI Command Register is set to 0:

• cfg_command[10] = 0: INTx interrupts enabled

• cfg_command[10] = 1: INTx interrupts disabled (request are blocked by the core)

• cfg_interrupt_msienable = 0: Legacy Interrupt

• cfg_interrupt_msienable = 1: MSI

Regardless of the interrupt type used (Legacy or MSI), the user initiates interrupt requests
through the use of cfg_interrupt and cfg_interrupt_rdy as shown in Table 5-42.

The User Application requests interrupt service in one of two ways, each of which are
described next.

Table 5-42: Interrupt Signalling

Port Name Direction Description

cfg_interrupt Input Assert to request an interrupt. Leave asserted until the
interrupt is serviced.

cfg_interrupt_rdy Output Asserted when the core accepts the signaled interrupt request.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 187
UG477 March 1, 2011

Generating Interrupt Requests

Legacy Interrupt Mode
• As shown in Figure 5-69, the User Application first asserts cfg_interrupt and

cfg_interrupt_assert to assert the interrupt. The User Application should select a
specific interrupt (INTA) using cfg_interrupt_di[7:0] as shown in Table 5-43.

• The core then asserts cfg_interrupt_rdy to indicate the interrupt has been accepted.
On the following clock cycle, the User Application deasserts cfg_interrupt and, if the
Interrupt Disable bit in the PCI Command register is set to 0, the core sends an assert
interrupt message (Assert_INTA).

• After the User Application has determined that the interrupt has been serviced, it
asserts cfg_interrupt while deasserting cfg_interrupt_assert to deassert the interrupt.
The appropriate interrupt must be indicated via cfg_interrupt_di[7:0].

• The core then asserts cfg_interrupt_rdy to indicate the interrupt deassertion has been
accepted. On the following clock cycle, the User Application deasserts cfg_interrupt
and the core sends a deassert interrupt message (Deassert_INTA).

MSI Mode
• As shown in Figure 5-69, the User Application first asserts cfg_interrupt. Additionally

the User Application supplies a value on cfg_interrupt_di[7:0] if Multi-Vector MSI is
enabled.

• The core asserts cfg_interrupt_rdy to signal that the interrupt has been accepted and
the core sends a MSI Memory Write TLP. On the following clock cycle, the User
Application deasserts cfg_interrupt if no further interrupts are to be sent.

X-Ref Target - Figure 5-69

Figure 5-69: Requesting Interrupt Service: MSI and Legacy Mode
UG477_c5_65_101510

user_clk_out

cfg_interrupt_msienable

cfg_interrupt

cfg_interrupt_di

cfg_interrupt_assert

cfg_interrupt_rdy

cfg_interrupt_msienable

cfg_interrupt

cfg_interrupt_di

cfg_interrupt_rdy

INTA

01h

Table 5-43: Legacy Interrupt Mapping

cfg_interrupt_di[7:0] value Legacy Interrupt

00h INTA

01h - FFh Not Supported

http://www.xilinx.com

188 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

The MSI request is either a 32-bit addressable Memory Write TLP or a 64-bit addressable
Memory Write TLP. The address is taken from the Message Address and Message Upper
Address fields of the MSI Capability Structure, while the payload is taken from the
Message Data field. These values are programmed by system software through
configuration writes to the MSI Capability structure. When the core is configured for
Multi-Vector MSI, system software can permit Multi-Vector MSI messages by
programming a non-zero value to the Multiple Message Enable field.

The type of MSI TLP sent (32-bit addressable or 64-bit addressable) depends on the value
of the Upper Address field in the MSI capability structure. By default, MSI messages are
sent as 32-bit addressable Memory Write TLPs. MSI messages use 64-bit addressable
Memory Write TLPs only if the system software programs a non-zero value into the Upper
Address register.

When Multi-Vector MSI messages are enabled, the User Application can override one or
more of the lower-order bits in the Message Data field of each transmitted MSI TLP to
differentiate between the various MSI messages sent upstream. The number of lower-order
bits in the Message Data field available to the User Application is determined by the lesser
of the value of the Multiple Message Capable field, as set in the CORE Generator software,
and the Multiple Message Enable field, as set by system software and available as the
cfg_interrupt_mmenable[2:0] core output. The core masks any bits in cfg_interrupt_di[7:0]
which are not configured by system software via Multiple Message Enable.

This pseudo-code shows the processing required:

// Value MSI_Vector_Num must be in range: 0 ≤ MSI_Vector_Num ≤
(2^cfg_interrupt_mmenable)-1

if (cfg_interrupt_msienable) { // MSI Enabled
if (cfg_interrupt_mmenable > 0) { // Multi-Vector MSI Enabled
cfg_interrupt_di[7:0] = {Padding_0s, MSI_Vector_Num};

} else { // Single-Vector MSI Enabled
cfg_interrupt_di[7:0] = Padding_0s;

}
} else {

// Legacy Interrupts Enabled
}

For example:

1. If cfg_interrupt_mmenable[2:0] == 000b, that is, 1 MSI Vector Enabled,
then cfg_interrupt_di[7:0] = 00h;

2. if cfg_interrupt_mmenable[2:0] == 101b, that is, 32 MSI Vectors Enabled,
then cfg_interrupt_di[7:0] = {{000b}, {MSI_Vector#}};

where MSI_Vector# is a 5-bit value and is allowed to be 00000b ≤ MSI_Vector# ≤ 11111b.

If Per-Vector Masking is enabled, the user must first verify that the vector being signaled is
not masked in the Mask register. This is done by reading this register on the Configuration
interface (the core does not look at the Mask register).

MSI-X Mode
The 7 Series FPGAs Integrated Block for PCI Express optionally supports the MSI-X
Capability Structure. The MSI-X vector table and the MSI-X Pending Bit Array need to be
implemented as part of the user’s logic, by claiming a BAR aperture.

If the cfg_interrupt_msixenable output of the core is asserted, the User Application should
compose and present the MSI-X interrupts on the transmit AXI4-Stream interface.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 189
UG477 March 1, 2011

Link Training: 2-Lane, 4-Lane, and 8-Lane Components

Link Training: 2-Lane, 4-Lane, and 8-Lane Components
The 2-lane, 4-lane, and 8-lane Integrated Block for PCI Express can operate at less than the
maximum lane width as required by the PCI Express Base Specification. Two cases cause core
to operate at less than its specified maximum lane width, as defined in these subsections.

Link Partner Supports Fewer Lanes
When the 2-lane core is connected to a device that implements only 1 lane, the 2-lane core
trains and operates as a 1-lane device using lane 0.

When the 4-lane core is connected to a device that implements 1 lane, the 4-lane core trains
and operates as a 1-lane device using lane 0, as shown in Figure 5-70. Similarly, if the 4-lane
core is connected to a 2-lane device, the core trains and operates as a 2-lane device using
lanes 0 and 1.

When the 8-lane core is connected to a device that only implements 4 lanes, it trains and
operates as a 4-lane device using lanes 0-3. Additionally, if the connected device only
implements 1 or 2 lanes, the 8-lane core trains and operates as a 1- or 2-lane device.

Lane Becomes Faulty
If a link becomes faulty after training to the maximum lane width supported by the core
and the link partner device, the core attempts to recover and train to a lower lane width, if
available. If lane 0 becomes faulty, the link is irrecoverably lost. If any or all of lanes 1–7
become faulty, the link goes into recovery and attempts to recover the largest viable link
with whichever lanes are still operational.

For example, when using the 8-lane core, loss of lane 1 yields a recovery to 1-lane operation
on lane 0, whereas the loss of lane 6 yields a recovery to 4-lane operation on lanes 0-3. After
recovery occurs, if the failed lane(s) becomes alive again, the core does not attempt to
recover to a wider link width. The only way a wider link width can occur is if the link
actually goes down and it attempts to retrain from scratch.

The user_clk_out clock output is a fixed frequency configured in the CORE Generator
software GUI. user_clk_out does not shift frequencies in case of link recovery or training
down.

X-Ref Target - Figure 5-70

Figure 5-70: Scaling of 4-Lane Endpoint Block from 4-Lane to 1-Lane Operation

UG477_c5_66_092410

Lane 0 Lane 3Lane 2Lane 1

4-lane Downstream Port

Note: Shaded blocks indicate
disabled lanes.

Lane 0 Lane 3Lane 2Lane 1

Lane 0 Lane 3Lane 2Lane 1

1-lane Downstream Port

Lane 0 Lane 3Lane 2Lane 1

4-lane Integrated Block 4-lane Integrated Block

Upstream DeviceUpstream Device

http://www.xilinx.com

190 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Lane Reversal
The integrated Endpoint block supports limited lane reversal capabilities and therefore
provides flexibility in the design of the board for the link partner. The link partner can
choose to lay out the board with reversed lane numbers and the integrated Endpoint block
continues to link train successfully and operate normally. The configurations that have
lane reversal support are x8 and x4 (excluding downshift modes). Downshift refers to the
link width negotiation process that occurs when link partners have different lane width
capabilities advertised. As a result of lane width negotiation, the link partners negotiate
down to the smaller of the two advertised lane widths. Table 5-44 describes the several
possible combinations including downshift modes and availability of lane reversal
support.

Clocking and Reset of the Integrated Block Core

Reset
The 7 Series FPGAs Integrated Block for PCI Express core uses sys_reset to reset the
system, an asynchronous, active-Low reset signal asserted during the PCI Express
Fundamental Reset. Asserting this signal causes a hard reset of the entire core, including
the GTX transceivers. After the reset is released, the core attempts to link train and resume
normal operation. In a typical Endpoint application, for example, an add-in card, a
sideband reset signal is normally present and should be connected to sys_reset. For
Endpoint applications that do not have a sideband system reset signal, the initial hardware
reset should be generated locally. Three reset events can occur in PCI Express:

• Cold Reset. A Fundamental Reset that occurs at the application of power. The signal
sys_reset is asserted to cause the cold reset of the core.

• Warm Reset. A Fundamental Reset triggered by hardware without the removal and
re-application of power. The sys_reset signal is asserted to cause the warm reset to the
core.

• Hot Reset: In-band propagation of a reset across the PCI Express Link through the
protocol. In this case, sys_reset is not used. In the case of Hot Reset, the
received_hot_reset signal is asserted to indicate the source of the reset.

Table 5-44: Lane Reversal Support

Endpoint Block
Advertised
Lane Width

Negotiated
Lane
Width

Lane Number Mapping
(Endpoint Link Partner)

Lane
Reversal

SupportedEndpoint Link Partner

x8 x8 Lane 0 ... Lane 7 Lane 7 ... Lane 0 Yes

x8 x4 Lane 0 ... Lane 3 Lane 7 ... Lane 4 No(1)

x8 x2 Lane 0 ... Lane 3 Lane 7 ... Lane 6 No(1)

x4 x4 Lane 0 ... Lane 3 Lane 3 ... Lane 0 Yes

x4 x2 Lane 0 ... Lane 1 Lane 3 ... Lane 2 No(1)

x2 x2 Lane 0 ... Lane 1 Lane 1... Lane 0 Yes

x2 x1 Lane 0 ... Lane 1 Lane 1 No(1)

Notes:
1. When the lanes are reversed in the board layout and a downshift adapter card is inserted between the

Endpoint and link partner, Lane 0 of the link partner remains unconnected (as shown by the lane
mapping in Table 5-44) and therefore does not link train.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 191
UG477 March 1, 2011

Clocking and Reset of the Integrated Block Core

The User Application interface of the core has an output signal called user_reset_out. This
signal is deasserted synchronously with respect to user_clk_out. Signal user_reset_out is
asserted as a result of any of these conditions:

• Fundamental Reset: Occurs (cold or warm) due to assertion of sys_reset.

• PLL within the Core Wrapper: Loses lock, indicating an issue with the stability of the
clock input.

• Loss of Transceiver PLL Lock: Any transceiver loses lock, indicating an issue with the
PCI Express Link.

The user_reset_out signal deasserts synchronously with user_clk_out after all of the above
conditions are resolved, allowing the core to attempt to train and resume normal
operation.

Important Note: Systems designed to the PCI Express electro-mechanical specification
provide a sideband reset signal, which uses 3.3V signaling levels—see the FPGA device
data sheet to understand the requirements for interfacing to such signals.

Clocking
The Integrated Block input system clock signal is called sys_clk. The core requires a
100 MHz, 125 MHz, or 250 MHz clock input. The clock frequency used must match the
clock frequency selection in the CORE Generator software GUI. For more information, see
Answer Record 18329.

In a typical PCI Express solution, the PCI Express reference clock is a Spread Spectrum
Clock (SSC), provided at 100 MHz. In most commercial PCI Express systems, SSC cannot
be disabled. For more information regarding SSC and PCI Express, see section 4.3.1.1.1 of
the PCI Express Base Specification.

Synchronous and Non-Synchronous Clocking

There are two ways to clock the PCI Express system:

• Using synchronous clocking, where a shared clock source is used for all devices.

• Using non-synchronous clocking, where each device has its own clock source. ASPM
must not be used in systems with non-synchronous clocking.

Important Note: Xilinx recommends that designers use synchronous clocking when
using the core. All add-in card designs must use synchronous clocking due to the
characteristics of the provided reference clock. For devices using the Slot clock, the
“Slot Clock Configuration” setting in the Link Status Register must be enabled in the
CORE Generator software GUI. See the 7 Series FPGAs GTX Transceivers User Guide
(UG476) and device data sheet for additional information regarding reference clock
requirements.

For synchronous clocked systems, each link partner device shares the same clock
source. Figure 5-71 and Figure 5-73 show a system using a 100 MHz reference clock.
When using the 125 MHz or the 250 MHz reference clock option, an external PLL must
be used to do a multiply of 5/4 and 5/2 to convert the 100 MHz clock to 125 MHz and
250 MHz respectively, as illustrated in Figure 5-72 and Figure 5-74. See Answer Record
18329 for more information about clocking requirements.

Further, even if the device is part of an embedded system, if the system uses
commercial PCI Express root complexes or switches along with typical motherboard
clocking schemes, synchronous clocking should still be used as shown in Figure 5-71
and Figure 5-72.

http://www.xilinx.com
http://www.xilinx.com/support/answers/18329.htm
http://www.xilinx.com/support/answers/18329.htm
http://www.xilinx.com/support/answers/18329.htm

192 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Figure 5-71 through Figure 5-74 illustrate high-level representations of the board
layouts. Designers must ensure that proper coupling, termination, and so forth are
used when laying out the board.

X-Ref Target - Figure 5-71

Figure 5-71: Embedded System Using 100 MHz Reference Clock

X-Ref Target - Figure 5-72

Figure 5-72: Embedded System Using 125/250 MHz Reference Clock

UG477_c5_67_092110

Embedded System Board

7 Series FPGA
Endpoint

G
T
S

PCIe Link

PCIe LinkPCI Express

Switch or Root
 Complex

Device

PCI Express
Clock Oscillator

100 MHz

100 MHz

UG477_c5_68_092110

Embedded System Board

PCIe Link

PCIe LinkPCI Express

Switch or Root
 Complex

Device

PCI Express
Clock Oscillator External PLL

125/250 MHz

100 MHz

100 MHz

G
T
S

7 Series FPGA
Endpoint

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 193
UG477 March 1, 2011

Clocking and Reset of the Integrated Block Core

X-Ref Target - Figure 5-73

Figure 5-73: Open System Add-In Card Using 100 MHz Reference Clock

X-Ref Target - Figure 5-74

Figure 5-74: Open System Add-In Card Using 125/250 MHz Reference Clock

UG477_c5_69_092110

P
C

Ie
 L

in
k P

C
Ie

 L
in

k
P

C
Ie

 L
in

k

P
C

Ie
 L

in
k

PCI Express Connector

7 Series FPGA
Endpoint

GTX
Transceivers

100 MHz with SSC
PCI Express Clock

PCI Express Add-In Card

+ _

UG477_c5_70_092110

P
C

Ie
 L

in
k P

C
Ie Link

PCI Express Connector

7 Series FPGA
Endpoint

GTX
Transceivers

100 MHz with SSC
PCI Express Clock

External PLL 125/250 MHz

PCI Express Add-In Card

+

-

+ -

P
C

Ie
 L

in
kP

C
Ie

 L
in

k

http://www.xilinx.com

194 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

Using the Dynamic Reconfiguration Port Interface
The Dynamic Reconfiguration Port (DRP) interface allows read and write access to the
FPGA configuration memory bits of the integrated block instantiated as part of the core.
These configuration memory bits are represented as attributes of the PCIE_2_1 library
element.

The DRP interface is a standard interface found on many integrated IP blocks in Xilinx
devices. For detailed information about how the DRP interface works with the FPGA
configuration memory, see the 7 Series FPGAs Configuration User Guide (UG470).

Writing and Reading the DRP Interface
The interface is a processor-friendly synchronous interface with an address bus (drp_addr)
and separated data buses for reading (drp_do) and writing (drp_di) configuration data to
the PCIE_2_1 block. An enable signal (drp_en), a read/write signal (drp_we), and a
ready/valid signal (drp_rdy) are the control signals that implement read and write
operations, indicate operation completion, or indicate the availability of data. Figure 5-75
shows a write cycle, and Figure 5-76 shows a read cycle.
X-Ref Target - Figure 5-75

Figure 5-75: DRP Interface Write Cycle

X-Ref Target - Figure 5-76

Figure 5-76: DRP Interface Read Cycle

pcie_drp_clk

pcie_drp_en

pcie_drp_we

pcie_drp_addr[8:0]

pcie_drp_di[15:0]

pcie_drp_rdy

pcie_drp_do[15:0]

addr

data

data

UG477_c5_71_012511

pcie_drp_clk

pcie_drp_en

pcie_drp_we

pcie_drp_addr[8:0]

pcie_drp_di[15:0]

pcie_drp_rdy

pcie_drp_do[15:0]

addr

data

UG477_c5_72_012511

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 195
UG477 March 1, 2011

Using the Dynamic Reconfiguration Port Interface

Other Considerations for the DRP Interface
Updating attribute values through the DRP port is only supported while the core is in reset
with sys_reset asserted. Behavior of the core is undefined if attributes are updated
on-the-fly with sys_rst deasserted. Reading attributes through the DRP port is
independent of sys_rst.

Attributes larger than 16 bits span two drp_daddr addresses, for example BAR0[31:0]
requires two accesses to read or write the attribute. Additionally, some attributes share a
single drp_daddr address. The user should employ a read-modify-write approach so that
shared-address attributes are not modified unintentionally.

There are a number of attributes that should not be modified via DRP, because these
attributes need to be set in an aligned manner with the rest of the design. For example,
changing the memory latency attributes on the PCIE_2_1 block without changing the
actual number of pipeline registers attached to the block RAM causes a functional failure.
These attributes are included in this category:

• DEV_CAP_MAX_PAYLOAD_SUPPORTED

• VC0_TX_LASTPACKET

• TL_TX_RAM_RADDR_LATENCY

• TL_TX_RAM_RDATA_LATENCY

• TL_TX_RAM_WRITE_LATENCY

• VC0_RX_LIMIT

• TL_RX_RAM_RADDR_LATENCY

• TL_RX_RAM_RDATA_LATENCY

• TL_RX_RAM_WRITE_LATENCY

DRP Address Map

Table 5-45 defines the DRP address map for the PCIE_2_1 library element attributes. Some
attributes span two addresses, for example, BAR0. In addition, some addresses contain
multiple attributes; for example, address 0x004 contains both AER_CAP_NEXTPTR[11:0]
and AER_CAP_ON.

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes

Attribute Name
Address

drp_daddr[8:0]

Data Bits
drp_di[15:0] or
drp_do[15:0]

AER_CAP_ECRC_CHECK_CAPABLE 0x000 [0]

AER_CAP_ECRC_GEN_CAPABLE 0x000 [1]

AER_CAP_ID[15:0] 0x001 [15:0]

AER_CAP_PERMIT_ROOTERR_UPDATE 0x002 [0]

AER_CAP_VERSION[3:0] 0x002 [4:1]

AER_BASE_PTR[11:0] 0x003 [11:0]

AER_CAP_NEXTPTR[11:0] 0x004 [11:0]

AER_CAP_ON 0x004 [12]

AER_CAP_OPTIONAL_ERR_SUPPORT[15:0] 0x005 [15:0]

http://www.xilinx.com

196 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

AER_CAP_OPTIONAL_ERR_SUPPORT[23:16] 0x006 [7:0]

AER_CAP_MULTIHEADER 0x006 [8]

BAR0[15:0] 0x007 [15:0]

BAR0[31:16] 0x008 [15:0]

BAR1[15:0] 0x009 [15:0]

BAR1[31:16] 0x00a [15:0]

BAR2[15:0] 0x00b [15:0]

BAR2[31:16] 0x00c [15:0]

BAR3[15:0] 0x00d [15:0]

BAR3[31:16] 0x00e [15:0]

BAR4[15:0] 0x00f [15:0]

BAR4[31:16] 0x010 [15:0]

BAR5[15:0] 0x011 [15:0]

BAR5[31:16] 0x012 [15:0]

EXPANSION_ROM[15:0] 0x013 [15:0]

EXPANSION_ROM[31:16] 0x014 [15:0]

CAPABILITIES_PTR[7:0] 0x015 [7:0]

CARDBUS_CIS_POINTER[15:0] 0x016 [15:0]

CARDBUS_CIS_POINTER[31:16] 0x017 [15:0]

CLASS_CODE[15:0] 0x018 [15:0]

CLASS_CODE[23:16] 0x019 [7:0]

CMD_INTX_IMPLEMENTED 0x019 [8]

CPL_TIMEOUT_DISABLE_SUPPORTED 0x019 [9]

CPL_TIMEOUT_RANGES_SUPPORTED[3:0] 0x019 [13:10]

DEV_CAP2_ARI_FORWARDING_SUPPORTED 0x019 [14]

DEV_CAP2_ATOMICOP_ROUTING_SUPPORTED 0x019 [15]

DEV_CAP2_ATOMICOP32_COMPLETER_SUPPORTED 0x01a [0]

DEV_CAP2_ATOMICOP64_COMPLETER_SUPPORTED 0x01a [1]

DEV_CAP2_CAS128_COMPLETER_SUPPORTED 0x01a [2]

DEV_CAP2_NO_RO_ENABLED_PRPR_PASSING 0x01a [3]

DEV_CAP2_LTR_MECHANISM_SUPPORTED 0x01a [4]

DEV_CAP2_TPH_COMPLETER_SUPPORTED[1:0] 0x01a [6:5]

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name
Address

drp_daddr[8:0]

Data Bits
drp_di[15:0] or
drp_do[15:0]

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 197
UG477 March 1, 2011

Using the Dynamic Reconfiguration Port Interface

DEV_CAP2_EXTENDED_FMT_FIELD_SUPPORTED 0x01a [7]

DEV_CAP2_ENDEND_TLP_PREFIX_SUPPORTED 0x01a [8]

DEV_CAP2_MAX_ENDEND_TLP_PREFIXES[1:0] 0x01a [10:9]

ENDEND_TLP_PREFIX_FORWARDING_SUPPORTED 0x01a [11]

DEV_CAP_ENABLE_SLOT_PWR_LIMIT_SCALE 0x01a [12]

DEV_CAP_ENABLE_SLOT_PWR_LIMIT_VALUE 0x01a [13]

DEV_CAP_ENDPOINT_L0S_LATENCY[2:0] 0x01b [2:0]

DEV_CAP_ENDPOINT_L1_LATENCY[2:0] 0x01b [5:3]

DEV_CAP_EXT_TAG_SUPPORTED 0x01b [6]

DEV_CAP_FUNCTION_LEVEL_RESET_CAPABLE 0x01b [7]

DEV_CAP_MAX_PAYLOAD_SUPPORTED[2:0] 0x01b [10:8]

DEV_CAP_PHANTOM_FUNCTIONS_SUPPORT[1:0] 0x01b [12:11]

DEV_CAP_ROLE_BASED_ERROR 0x01b [13]

DEV_CAP_RSVD_14_12[2:0] 0x01c [2:0]

DEV_CAP_RSVD_17_16[1:0] 0x01c [4:3]

DEV_CAP_RSVD_31_29[2:0] 0x01c [7:5]

DEV_CONTROL_AUX_POWER_SUPPORTED 0x01c [8]

DEV_CONTROL_EXT_TAG_DEFAULT 0x01c [9]

DSN_BASE_PTR[11:0] 0x01d [11:0]

DSN_CAP_ID[15:0] 0x01e [15:0]

DSN_CAP_NEXTPTR[11:0] 0x01f [11:0]

DSN_CAP_ON 0x01f [12]

DSN_CAP_VERSION[3:0] 0x020 [3:0]

EXT_CFG_CAP_PTR[5:0] 0x020 [9:4]

EXT_CFG_XP_CAP_PTR[9:0] 0x021 [9:0]

HEADER_TYPE[7:0] 0x022 [7:0]

INTERRUPT_PIN[7:0] 0x022 [15:8]

INTERRUPT_STAT_AUTO 0x023 [0]

IS_SWITCH 0x023 [1]

LAST_CONFIG_DWORD[9:0] 0x023 [11:2]

LINK_CAP_ASPM_SUPPORT[1:0] 0x023 [13:12]

LINK_CAP_CLOCK_POWER_MANAGEMENT 0x023 [14]

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name
Address

drp_daddr[8:0]

Data Bits
drp_di[15:0] or
drp_do[15:0]

http://www.xilinx.com

198 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

LINK_CAP_DLL_LINK_ACTIVE_REPORTING_CAP 0x023 [15]

LINK_CAP_L0S_EXIT_LATENCY_COMCLK_GEN1[2:0] 0x024 [2:0]

LINK_CAP_L0S_EXIT_LATENCY_COMCLK_GEN2[2:0] 0x024 [5:3]

LINK_CAP_L0S_EXIT_LATENCY_GEN1[2:0] 0x024 [8:6]

LINK_CAP_L0S_EXIT_LATENCY_GEN2[2:0] 0x024 [11:9]

LINK_CAP_L1_EXIT_LATENCY_COMCLK_GEN1[2:0] 0x024 [14:12]

LINK_CAP_L1_EXIT_LATENCY_COMCLK_GEN2[2:0] 0x025 [2:0]

LINK_CAP_L1_EXIT_LATENCY_GEN1[2:0] 0x025 [5:3]

LINK_CAP_L1_EXIT_LATENCY_GEN2[2:0] 0x025 [8:6]

LINK_CAP_LINK_BANDWIDTH_NOTIFICATION_CAP 0x025 [9]

LINK_CAP_MAX_LINK_SPEED[3:0] 0x025 [13:10]

LINK_CAP_ASPM_OPTIONALITY 0x025 [14]

LINK_CAP_RSVD_23 0x025 [15]

LINK_CAP_SURPRISE_DOWN_ERROR_CAPABLE 0x026 [0]

LINK_CONTROL_RCB 0x026 [1]

LINK_CTRL2_DEEMPHASIS 0x026 [2]

LINK_CTRL2_HW_AUTONOMOUS_SPEED_DISABLE 0x026 [3]

LINK_CTRL2_TARGET_LINK_SPEED[3:0] 0x026 [7:4]

LINK_STATUS_SLOT_CLOCK_CONFIG 0x026 [8]

MPS_FORCE 0x026 [9]

MSI_BASE_PTR[7:0] 0x027 [7:0]

MSI_CAP_64_BIT_ADDR_CAPABLE 0x027 [8]

MSI_CAP_ID[7:0] 0x028 [7:0]

MSI_CAP_MULTIMSG_EXTENSION 0x028 [8]

MSI_CAP_MULTIMSGCAP[2:0] 0x028 [11:9]

MSI_CAP_NEXTPTR[7:0] 0x029 [7:0]

MSI_CAP_ON 0x029 [8]

MSI_CAP_PER_VECTOR_MASKING_CAPABLE 0x029 [9]

MSIX_BASE_PTR[7:0] 0x02a [7:0]

MSIX_CAP_ID[7:0] 0x02a [15:8]

MSIX_CAP_NEXTPTR[7:0] 0x02b [7:0]

MSIX_CAP_ON 0x02b [8]

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name
Address

drp_daddr[8:0]

Data Bits
drp_di[15:0] or
drp_do[15:0]

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 199
UG477 March 1, 2011

Using the Dynamic Reconfiguration Port Interface

MSIX_CAP_PBA_BIR[2:0] 0x02b [11:9]

MSIX_CAP_PBA_OFFSET[15:0] 0x02c [15:0]

MSIX_CAP_PBA_OFFSET[28:16] 0x02d [12:0]

MSIX_CAP_TABLE_BIR[2:0] 0x02d [15:13]

MSIX_CAP_TABLE_OFFSET[15:0] 0x02e [15:0]

MSIX_CAP_TABLE_OFFSET[28:16] 0x02f [12:0]

MSIX_CAP_TABLE_SIZE[10:0] 0x030 [10:0]

PCIE_BASE_PTR[7:0] 0x031 [7:0]

PCIE_CAP_CAPABILITY_ID[7:0] 0x031 [15:8]

PCIE_CAP_CAPABILITY_VERSION[3:0] 0x032 [3:0]

PCIE_CAP_DEVICE_PORT_TYPE[3:0] 0x032 [7:4]

PCIE_CAP_NEXTPTR[7:0] 0x032 [15:8]

PCIE_CAP_ON 0x033 [0]

PCIE_CAP_RSVD_15_14[1:0] 0x033 [2:1]

PCIE_CAP_SLOT_IMPLEMENTED 0x033 [3]

PCIE_REVISION[3:0] 0x033 [7:4]

PM_BASE_PTR[7:0] 0x033 [15:8]

PM_CAP_AUXCURRENT[2:0] 0x034 [2:0]

PM_CAP_D1SUPPORT 0x034 [3]

PM_CAP_D2SUPPORT 0x034 [4]

PM_CAP_DSI 0x034 [5]

PM_CAP_ID[7:0] 0x034 [13:6]

PM_CAP_NEXTPTR[7:0] 0x035 [7:0]

PM_CAP_ON 0x035 [8]

PM_CAP_PME_CLOCK 0x035 [9]

PM_CAP_PMESUPPORT[4:0] 0x035 [14:10]

PM_CAP_RSVD_04 0x035 [15]

PM_CAP_VERSION[2:0] 0x036 [2:0]

PM_CSR_B2B3 0x036 [3]

PM_CSR_BPCCEN 0x036 [4]

PM_CSR_NOSOFTRST 0x036 [5]

PM_DATA_SCALE0[1:0] 0x036 [7:6]

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name
Address

drp_daddr[8:0]

Data Bits
drp_di[15:0] or
drp_do[15:0]

http://www.xilinx.com

200 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

PM_DATA_SCALE1[1:0] 0x036 [9:8]

PM_DATA_SCALE2[1:0] 0x036 [11:10]

PM_DATA_SCALE3[1:0] 0x036 [13:12]

PM_DATA_SCALE4[1:0] 0x036 [15:14]

PM_DATA_SCALE5[1:0] 0x037 [1:0]

PM_DATA_SCALE6[1:0] 0x037 [3:2]

PM_DATA_SCALE7[1:0] 0x037 [5:4]

PM_DATA0[7:0] 0x037 [13:6]

PM_DATA1[7:0] 0x038 [7:0]

PM_DATA2[7:0] 0x038 [15:8]

PM_DATA3[7:0] 0x039 [7:0]

PM_DATA4[7:0] 0x039 [15:8]

PM_DATA5[7:0] 0x03a [7:0]

PM_DATA6[7:0] 0x03a [15:8]

PM_DATA7[7:0] 0x03b [7:0]

RBAR_BASE_PTR[11:0] 0x03c [11:0]

RBAR_CAP_NEXTPTR[11:0] 0x03d [11:0]

RBAR_CAP_ON 0x03d [12]

RBAR_CAP_ID[15:0] 0x03e [15:0]

RBAR_CAP_VERSION[3:0] 0x03f [3:0]

RBAR_NUM[2:0] 0x03f [6:4]

RBAR_CAP_SUP0[15:0] 0x040 [15:0]

RBAR_CAP_SUP0[31:16] 0x041 [15:0]

RBAR_CAP_SUP1[15:0] 0x042 [15:0]

RBAR_CAP_SUP1[31:16] 0x043 [15:0]

RBAR_CAP_SUP2[15:0] 0x044 [15:0]

RBAR_CAP_SUP2[31:16] 0x045 [15:0]

RBAR_CAP_SUP3[15:0] 0x046 [15:0]

RBAR_CAP_SUP3[31:16] 0x047 [15:0]

RBAR_CAP_SUP4[15:0] 0x048 [15:0]

RBAR_CAP_SUP4[31:16] 0x049 [15:0]

RBAR_CAP_SUP5[15:0] 0x04a [15:0]

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name
Address

drp_daddr[8:0]

Data Bits
drp_di[15:0] or
drp_do[15:0]

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 201
UG477 March 1, 2011

Using the Dynamic Reconfiguration Port Interface

RBAR_CAP_SUP5[31:16] 0x04b [15:0]

RBAR_CAP_INDEX0[2:0] 0x04c [2:0]

RBAR_CAP_INDEX1[2:0] 0x04c [5:3]

RBAR_CAP_INDEX2[2:0] 0x04c [8:6]

RBAR_CAP_INDEX3[2:0] 0x04c [11:9]

RBAR_CAP_INDEX4[2:0] 0x04c [14:12]

RBAR_CAP_INDEX5[2:0] 0x04d [2:0]

RBAR_CAP_CONTROL_ENCODEDBAR0[4:0] 0x04d [7:3]

RBAR_CAP_CONTROL_ENCODEDBAR1[4:0] 0x04d [12:8]

RBAR_CAP_CONTROL_ENCODEDBAR2[4:0] 0x04e [4:0]

RBAR_CAP_CONTROL_ENCODEDBAR3[4:0] 0x04e [9:5]

RBAR_CAP_CONTROL_ENCODEDBAR4[4:0] 0x04e [14:10]

RBAR_CAP_CONTROL_ENCODEDBAR5[4:0] 0x04f [4:0]

ROOT_CAP_CRS_SW_VISIBILITY 0x04f [5]

SELECT_DLL_IF 0x04f [6]

SLOT_CAP_ATT_BUTTON_PRESENT 0x04f [7]

SLOT_CAP_ATT_INDICATOR_PRESENT 0x04f [8]

SLOT_CAP_ELEC_INTERLOCK_PRESENT 0x04f [9]

SLOT_CAP_HOTPLUG_CAPABLE 0x04f [10]

SLOT_CAP_HOTPLUG_SURPRISE 0x04f [11]

SLOT_CAP_MRL_SENSOR_PRESENT 0x04f [12]

SLOT_CAP_NO_CMD_COMPLETED_SUPPORT 0x04f [13]

SLOT_CAP_PHYSICAL_SLOT_NUM[12:0] 0x050 [12:0]

SLOT_CAP_POWER_CONTROLLER_PRESENT 0x050 [13]

SLOT_CAP_POWER_INDICATOR_PRESENT 0x050 [14]

SLOT_CAP_SLOT_POWER_LIMIT_SCALE[1:0] 0x051 [1:0]

SLOT_CAP_SLOT_POWER_LIMIT_VALUE[7:0] 0x051 [9:2]

SSL_MESSAGE_AUTO 0x051 [10]

VC_BASE_PTR[11:0] 0x052 [11:0]

VC_CAP_NEXTPTR[11:0] 0x053 [11:0]

VC_CAP_ON 0x053 [12]

VC_CAP_ID[15:0] 0x054 [15:0]

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name
Address

drp_daddr[8:0]

Data Bits
drp_di[15:0] or
drp_do[15:0]

http://www.xilinx.com

202 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

VC_CAP_REJECT_SNOOP_TRANSACTIONS 0x055 [0]

VSEC_BASE_PTR[11:0] 0x055 [12:1]

VSEC_CAP_HDR_ID[15:0] 0x056 [15:0]

VSEC_CAP_HDR_LENGTH[11:0] 0x057 [11:0]

VSEC_CAP_HDR_REVISION[3:0] 0x057 [15:12]

VSEC_CAP_ID[15:0] 0x058 [15:0]

VSEC_CAP_IS_LINK_VISIBLE 0x059 [0]

VSEC_CAP_NEXTPTR[11:0] 0x059 [12:1]

VSEC_CAP_ON 0x059 [13]

VSEC_CAP_VERSION[3:0] 0x05a [3:0]

USER_CLK_FREQ[2:0] 0x05a [6:4]

CRM_MODULE_RSTS[6:0] 0x05a [13:7]

LL_ACK_TIMEOUT[14:0] 0x05b [14:0]

LL_ACK_TIMEOUT_EN 0x05b [15]

LL_ACK_TIMEOUT_FUNC[1:0] 0x05c [1:0]

LL_REPLAY_TIMEOUT[14:0] 0x05d [14:0]

LL_REPLAY_TIMEOUT_EN 0x05d [15]

LL_REPLAY_TIMEOUT_FUNC[1:0] 0x05e [1:0]

PM_ASPML0S_TIMEOUT[14:0] 0x05f [14:0]

PM_ASPML0S_TIMEOUT_EN 0x05f [15]

PM_ASPML0S_TIMEOUT_FUNC[1:0] 0x060 [1:0]

PM_ASPM_FASTEXIT 0x060 [2]

DISABLE_LANE_REVERSAL 0x060 [3]

DISABLE_SCRAMBLING 0x060 [4]

ENTER_RVRY_EI_L0 0x060 [5]

INFER_EI[4:0] 0x060 [10:6]

LINK_CAP_MAX_LINK_WIDTH[5:0] 0x061 [5:0]

LTSSM_MAX_LINK_WIDTH[5:0] 0x061 [11:6]

N_FTS_COMCLK_GEN1[7:0] 0x062 [7:0]

N_FTS_COMCLK_GEN2[7:0] 0x062 [15:8]

N_FTS_GEN1[7:0] 0x063 [7:0]

N_FTS_GEN2[7:0] 0x063 [15:8]

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name
Address

drp_daddr[8:0]

Data Bits
drp_di[15:0] or
drp_do[15:0]

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 203
UG477 March 1, 2011

Using the Dynamic Reconfiguration Port Interface

ALLOW_X8_GEN2 0x064 [0]

PL_AUTO_CONFIG[2:0] 0x064 [3:1]

PL_FAST_TRAIN 0x064 [4]

UPCONFIG_CAPABLE 0x064 [5]

UPSTREAM_FACING 0x064 [6]

EXIT_LOOPBACK_ON_EI 0x064 [7]

DNSTREAM_LINK_NUM[7:0] 0x064 [15:8]

DISABLE_ASPM_L1_TIMER 0x065 [0]

DISABLE_BAR_FILTERING 0x065 [1]

DISABLE_ID_CHECK 0x065 [2]

DISABLE_RX_TC_FILTER 0x065 [3]

DISABLE_RX_POISONED_RESP 0x065 [4]

ENABLE_MSG_ROUTE[10:0] 0x065 [15:5]

ENABLE_RX_TD_ECRC_TRIM 0x066 [0]

TL_RX_RAM_RADDR_LATENCY 0x066 [1]

TL_RX_RAM_RDATA_LATENCY[1:0] 0x066 [3:2]

TL_RX_RAM_WRITE_LATENCY 0x066 [4]

TL_TFC_DISABLE 0x066 [5]

TL_TX_CHECKS_DISABLE 0x066 [6]

TL_RBYPASS 0x066 [7]

DISABLE_PPM_FILTER 0x066 [8]

DISABLE_LOCKED_FILTER 0x066 [9]

USE_RID_PINS 0x066 [10]

DISABLE_ERR_MSG 0x066 [11]

PM_MF 0x066 [12]

TL_TX_RAM_RADDR_LATENCY 0x066 [13]

TL_TX_RAM_RDATA_LATENCY[1:0] 0x066 [15:14]

TL_TX_RAM_WRITE_LATENCY 0x067 [0]

VC_CAP_VERSION[3:0] 0x067 [4:1]

VC0_CPL_INFINITE 0x067 [5]

VC0_RX_RAM_LIMIT[12:0] 0x068 [12:0]

VC0_TOTAL_CREDITS_CD[10:0] 0x069 [10:0]

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name
Address

drp_daddr[8:0]

Data Bits
drp_di[15:0] or
drp_do[15:0]

http://www.xilinx.com

204 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

VC0_TOTAL_CREDITS_CH[6:0] 0x06a [6:0]

VC0_TOTAL_CREDITS_NPH[6:0] 0x06a [13:7]

VC0_TOTAL_CREDITS_NPD[10:0] 0x06b [10:0]

VC0_TOTAL_CREDITS_PD[10:0] 0x06c [10:0]

VC0_TOTAL_CREDITS_PH[6:0] 0x06d [6:0]

VC0_TX_LASTPACKET[4:0] 0x06d [11:7]

RECRC_CHK[1:0] 0x06d [13:12]

RECRC_CHK_TRIM 0x06d [14]

TECRC_EP_INV 0x06d [15]

CFG_ECRC_ERR_CPLSTAT[1:0] 0x06e [1:0]

UR_INV_REQ 0x06e [2]

UR_PRS_RESPONSE 0x06e [3]

UR_ATOMIC 0x06e [4]

UR_CFG1 0x06e [5]

TRN_DW 0x06e [6]

TRN_NP_FC 0x06e [7]

USER_CLK2_DIV2 0x06e [8]

RP_AUTO_SPD[1:0] 0x06e [10:9]

RP_AUTO_SPD_LOOPCNT[4:0] 0x06e [15:11]

TEST_MODE_PIN_CHAR 0x06f [0]

SPARE_BIT0 0x06f [1]

SPARE_BIT1 0x06f [2]

SPARE_BIT2 0x06f [3]

SPARE_BIT3 0x06f [4]

SPARE_BIT4 0x06f [5]

SPARE_BIT5 0x06f [6]

SPARE_BIT6 0x06f [7]

SPARE_BIT7 0x06f [8]

SPARE_BIT8 0x06f [9]

SPARE_BYTE0[7:0] 0x070 [7:0]

SPARE_BYTE1[7:0] 0x070 [15:8]

SPARE_BYTE2[7:0] 0x071 [7:0]

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name
Address

drp_daddr[8:0]

Data Bits
drp_di[15:0] or
drp_do[15:0]

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 205
UG477 March 1, 2011

Using the Dynamic Reconfiguration Port Interface

SPARE_BYTE3[7:0] 0x071 [15:8]

SPARE_WORD0[15:0] 0x072 [15:0]

SPARE_WORD0[31:16] 0x073 [15:0]

SPARE_WORD1[15:0] 0x074 [15:0]

SPARE_WORD1[31:16] 0x075 [15:0]

SPARE_WORD2[15:0] 0x076 [15:0]

SPARE_WORD2[31:16] 0x077 [15:0]

SPARE_WORD3[15:0] 0x078 [15:0]

SPARE_WORD3[31:16] 0x079 [15:0]

Table 5-45: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name
Address

drp_daddr[8:0]

Data Bits
drp_di[15:0] or
drp_do[15:0]

http://www.xilinx.com

206 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 5: Designing with the Core

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 207
UG477 March 1, 2011

Chapter 6

Core Constraints

The 7 Series FPGAs Integrated Block for PCI Express® solution requires the specification
of timing and other physical implementation constraints to meet specified performance
requirements for PCI Express. These constraints are provided with the Endpoint and Root
Port solutions in a User Constraints File (UCF). Pinouts and hierarchy names in the
generated UCF correspond to the provided example design.

To achieve consistent implementation results, a UCF containing these original, unmodified
constraints must be used when a design is run through the Xilinx tools. For additional
details on the definition and use of a UCF or specific constraints, see the Xilinx® Libraries
Guide and/or Development System Reference Guide.

Constraints provided with the Integrated Block solution have been tested in hardware and
provide consistent results. Constraints can be modified, but modifications should only be
made with a thorough understanding of the effect of each constraint. Additionally, support
is not provided for designs that deviate from the provided constraints.

Contents of the User Constraints File
Although the UCF delivered with each core shares the same overall structure and sequence
of information, the content of each core’s UCF varies. The sections that follow define the
structure and sequence of information in a generic UCF.

Part Selection Constraints: Device, Package, and Speed Grade
The first section of the UCF specifies the exact device for the implementation tools to
target, including the specific part, package, and speed grade. In some cases, device-specific
options can be included. The device in the UCF reflects the device chosen in the
CORE Generator™ software project.

User Timing Constraints
The User Timing constraints section is not populated; it is a placeholder for the designer to
provide timing constraints on user-implemented logic.

User Physical Constraints
The User Physical constraints section is not populated; it is a placeholder for the designer
to provide physical constraints on user-implemented logic.

http://www.xilinx.com

208 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 6: Core Constraints

Core Pinout and I/O Constraints
The Core Pinout and I/O constraints section contains constraints for I/Os belonging to the
core's System (SYS) and PCI Express (PCI_EXP) interfaces. It includes location constraints
for pins and I/O logic as well as I/O standard constraints.

Core Physical Constraints
Physical constraints are used to limit the core to a specific area of the device and to specify
locations for clock buffering and other logic instantiated by the core.

Core Timing Constraints
This Core Timing constraints section defines clock frequency requirements for the core and
specifies which nets the timing analysis tool should ignore.

Required Modifications
Several constraints provided in the UCF utilize hierarchical paths to elements within the
integrated block. These constraints assume an instance name of core for the core. If a
different instance name is used, replace core with the actual instance name in all
hierarchical constraints.

For example:

Using xilinx_pcie_ep as the instance name, the physical constraint

INST
"core/pcie_2_1_i/pcie_gt_i/pipe_wrapper_i/pipe_lane[0].pipe_common.qpll_wrapper_i/
gtxe2_common_i"
LOC = GTXE1_X0Y15;

becomes

INST
"xilinx_pci_ep/pcie_2_1_i/pcie_gt_i/pipe_wrapper_i/pipe_lane[0].pipe_common.qpll_
wrapper_i/gtxe2_common_i"
LOC = GTXE1_X0Y15;

The provided UCF includes blank sections for constraining user-implemented logic. While
the constraints provided adequately constrain the Integrated Block core itself, they cannot
adequately constrain user-implemented logic interfaced to the core. Additional constraints
must be implemented by the designer.

Device Selection
The device selection portion of the UCF informs the implementation tools which part,
package, and speed grade to target for the design. Because Integrated Block cores are
designed for specific part and package combinations, this section should not be modified
by the designer.

The device selection section always contains a part selection line, but can also contain part
or package-specific options. An example part selection line:

CONFIG PART = XC7V285T-FFG1761-1

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 209
UG477 March 1, 2011

Core I/O Assignments

Core I/O Assignments
This section controls the placement and options for I/Os belonging to the core’s System
(SYS) interface and PCI Express (PCI_EXP) interface. NET constraints in this section
control the pin location and I/O options for signals in the SYS group. Locations and
options vary depending on which derivative of the core is used and should not be changed
without fully understanding the system requirements.

For example:

NET "sys_rt_n" IOSTANDARD = LVCMOS18| PULLUP | NODELAY;
INST "refclk_ibuf" LOC = IBUFDS_GT2_X0Y7;

See Clocking and Reset of the Integrated Block Core, page 190 for detailed information
about reset and clock requirements.

For GTX transceiver pinout information, see the “Placement Information by Package”
appendix in the 7 Series FPGAs GTX Transceivers User Guide (UG476).

INST constraints are used to control placement of signals that belong to the PCI_EXP
group. These constraints control the location of the transceiver(s) used, which implicitly
controls pin locations for the transmit and receive differential pair.

For example:

INST "core/pcie_2_1_i/pcie_gt_i/gtx_v6_i/GTXD[0].GTX"
LOC = GTXE1_X0Y15;

Core Physical Constraints
Physical constraints are included in the constraints file to control the location of clocking
and other elements and to limit the core to a specific area of the FPGA logic. Specific
physical constraints are chosen to match each supported device and package
combination—it is very important to leave these constraints unmodified.

Physical constraints example:

INST "core/*" AREA_GROUP = "AG_core" ;
AREA_GROUP "AG_core" RANGE = SLICE_X136Y147:SLICE_X155Y120 ;

http://www.xilinx.com

210 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 6: Core Constraints

Core Timing Constraints
Timing constraints are provided for all integrated block solutions, although they differ
based on core configuration. In all cases they are crucial and must not be modified, except
to specify the top-level hierarchical name. Timing constraints are divided into two
categories:

• TIG constraints. Used on paths where specific delays are unimportant, to instruct the
timing analysis tools to refrain from issuing Unconstrained Path warnings.

• Frequency constraints. Group clock nets into time groups and assign properties and
requirements to those groups.

TIG constraints example:

NET "sys_reset" TIG;

Clock constraints example:

First, the input reference clock period is specified, which can be 100 MHz, 125 MHz, or
250 MHz (selected in the CORE Generator™ software GUI).

NET "sys_clk_c" TNM_NET = "SYSCLK" ;
TIMESPEC "TS_SYSCLK" = PERIOD "SYSCLK" 100.00 MHz HIGH 50 % PRIORITY
100; # OR

Next, the internally generated clock net and period are specified, which can be 100 MHz,
125 MHz, or 250 MHz. (Both clock constraints must be specified as 100 MHz, 125 MHz, or
250 MHz.)

NET "core/pcie_clocking_i/clk_125" TNM_NET = "CLK_125" ;
TIMESPEC "TS_CLK_125" = PERIOD "CLK_125" TS_SYSCLK*1.25 HIGH 50 %
PRIORITY 1;

Relocating the Integrated Block Core
While Xilinx does not provide technical support for designs whose system clock input,
GTXE transceivers, or block RAM locations are different from the provided examples, it is
possible to relocate the core within the FPGA. The locations selected in the provided
examples are the recommended pinouts. These locations have been chosen based on the
proximity to the PCIe® block, which enables meeting 250 MHz timing, and because they
are conducive to layout requirements for add-in card design. If the core is moved, the
relative location of all transceivers and clocking resources should be maintained to ensure
timing closure.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 211
UG477 March 1, 2011

Supported Core Pinouts

Supported Core Pinouts
Table 6-1 defines the supported core pinouts for the available 7 series part and package
combinations. The CORE Generator software provides a UCF for the selected part and
package that matches the table contents.

Table 6-1: Supported Core Pinouts

Package Device
PCIe Block
Location

X1 X2 X4 X8

FBG484

XC7K30T

XC7K70T

XC7K160T

X0Y0

Lane 0 X0Y3 X0Y3 X0Y3

Not
Supported

Lane 1 X0Y2 X0Y2

Lane 2 X0Y1

Lane 3 X0Y0

FBG676

XC7K70T

XC7K160T

XC7K325T

XC7K410T

X0Y0

Lane 0 X0Y7 X0Y7 X0Y7 X0Y7

Lane 1 X0Y6 X0Y6 X0Y6

FFG676

XC7K160T

XC7K325T

XC7K410T

Lane 2 X0Y5 X0Y5

FBG900
XC7K325T

Lane 3 X0Y4 X0Y4
XC7K410T

FFG900
XC7K325T

XC7K410T

Lane 4 X0Y3

Lane 5 X0Y2

FFG1761

XC7V585T

XC7V855T

XC7V1500T

Lane 6 X0Y1

Lane 7 X0Y0

FFG484 XC7V285T

X0Y0

Lane 0 X0Y11 X0Y11 X0Y11 X0Y11

FFG784
XC7V285T

XC7V450
Lane 1 X0Y10 X0Y10 X0Y10

FFG1157
XC7V285T

XC7V450T
Lane 2 X0Y9 X0Y9

FFG1158 XC7V485T Lane 3 X0Y8 X0Y8

FFG1761
XC7V285T

XC7V450T

Lane 4 X0Y7

Lane 5 X0Y6

FFG1929 XC7V485T
Lane 6 X0Y5

Lane 7 X0Y4

http://www.xilinx.com

212 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 6: Core Constraints

FFG1157

XC7V585T

XC7V855T

XC7V1500T

X0Y1

Lane 0 X0Y19 X0Y19 X0Y19 X0Y19

FFG1761

XC7V585T

XC7V855T

XC7V1500T

Lane 1 X0Y18 X0Y18 X0Y18

FFG1925 XC7V2000T

Lane 2 X0Y17 X0Y17

Lane 3 X0Y16 X0Y16

Lane 4 X0Y15

Lane 5 X0Y14

Lane 6 X0Y13

Lane 7 X0Y12

FFG1157
XC7V285T

XC7V450T

X0Y1

Lane 0 X0Y23 X0Y23 X0Y23 X0Y23

Lane 1 X0Y22 X0Y22 X0Y22

FFG1158 XC7V485T
Lane 2 X0Y21 X0Y21

Lane 3 X0Y20 X0Y20

FFG1761
XC7V285T

XC7V450T

Lane 4 X0Y19

Lane 5 X0Y18

FFG1929 XC7V485T
Lane 6 X0Y17

Lane 7 X0Y16

FFG1157

XC7V585T

XC7V855T

XC7V1500T

X0Y2

Lane 0 X0Y31 X0Y31 X0Y31 X0Y31

Lane 1 X0Y30 X0Y30 X0Y30

Lane 2 X0Y29 X0Y29

Lane 3 X0Y28 X0Y28

FFG1761

XC7V585T

XC7V855T

XC7V1500T

Lane 4 X0Y27

Lane 5 X0Y26

Lane 6 X0Y25

Lane 7 X0Y24FFG1925 XC7V2000T

Table 6-1: Supported Core Pinouts (Cont’d)

Package Device
PCIe Block
Location

X1 X2 X4 X8

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 213
UG477 March 1, 2011

Supported Core Pinouts

FFG1157

XC7V485T X1Y0

Lane 0 X1Y11 X1Y11 X1Y11 X1Y11

Lane 1 X1Y10 X1Y10 X1Y10

FFG1158
Lane 2 X1Y9 X1Y9

Lane 3 X1Y8 X1Y8

FFG1761
Lane 4 X1Y7

Lane 5 X1Y6

FFG1929
Lane 6 X1Y5

Lane 7 X1Y4

FFG1158

XC7V485T X1Y1

Lane 0 X1Y23 X1Y23 X1Y23 X1Y23

Lane 1 X1Y22 X1Y22 X1Y22

Lane 2 X1Y21 X1Y21

FFG1761
Lane 3 X1Y20 X1Y20

Lane 4 X1Y19

FFG1929

Lane 5 X1Y18

Lane 6 X1Y17

Lane 7 X1Y16

Table 6-1: Supported Core Pinouts (Cont’d)

Package Device
PCIe Block
Location

X1 X2 X4 X8

http://www.xilinx.com

214 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 6: Core Constraints

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 215
UG477 March 1, 2011

Chapter 7

FPGA Configuration

This chapter discusses how to configure the 7 series FPGA so that the device can link up
and be recognized by the system. This information is provided for the user to choose the
correct FPGA configuration method for the system and verify that it works as expected.

This chapter discusses how specific requirements of the PCI Express Base Specification and
PCI Express Card Electromechanical Specification apply to FPGA configuration. Where
appropriate, Xilinx recommends that the user read the actual specifications for detailed
information. This chapter is divided into four sections:

• Configuration Terminology. Defines terms used in this chapter.

• Configuration Access Time. Several specification items govern when an Endpoint
device needs to be ready to receive configuration accesses from the host (Root
Complex).

• Board Power in Real-World Systems. Understanding real-world system constraints
related to board power and how they affect the specification requirements.

• Recommendations. Describes methods for FPGA configuration and includes sample
problem analysis for FPGA configuration timing issues.

Configuration Terminology
In this chapter, these terms are used to differentiate between FPGA configuration and
configuration of the PCI Express® device:

• Configuration of the FPGA. FPGA configuration is used.

• Configuration of the PCI Express device. After the link is active, configuration is used.

Configuration Access Time
In standard systems for PCI Express, when the system is powered up, configuration
software running on the processor starts scanning the PCI Express bus to discover the
machine topology.

The process of scanning the PCI Express hierarchy to determine its topology is referred to
as the enumeration process. The root complex accomplishes this by initiating configuration
transactions to devices as it traverses and determines the topology.

http://www.xilinx.com

216 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 7: FPGA Configuration

All PCI Express devices are expected to have established the link with their link partner
and be ready to accept configuration requests during the enumeration process. As a result,
there are requirements as to when a device needs to be ready to accept configuration
requests after power up; if the requirements are not met, this occurs:

• If a device is not ready and does not respond to configuration requests, the root
complex does not discover it and treats it as non-existent.

• The operating system does not report the device's existence and the user's application
is not able to communicate with the device.

Choosing the appropriate FPGA configuration method is key to ensuring the device is able
to communicate with the system in time to achieve link up and respond to the
configuration accesses.

Configuration Access Specification Requirements
Two PCI Express specification items are relevant to configuration access:

1. Section 6.6 of PCI Express Base Specification, rev 1.1 states “A system must guarantee
that all components intended to be software visible at boot time are ready to receive
Configuration Requests within 100 ms of the end of Fundamental Reset at the Root
Complex.” For detailed information about how this is accomplished, see the
specification; it is beyond the scope of this discussion.

Xilinx compliance to this specification is validated by the PCI Express-CV tests. The
PCI Special Interest Group (PCI-SIG) provides the PCI Express Configuration Test
Software to verify the device meets the requirement of being able to receive
configuration accesses within 100 ms of the end of the fundamental reset. The
software, available to any member of the PCI-SIG, generates several resets using the
in-band reset mechanism and PERST# toggling to validate robustness and compliance
to the specification.

2. Section 6.6 of PCI Express Base Specification v1.1 defines three parameters necessary
“where power and PERST# are supplied.” The parameter TPVPERL applies to FPGA
configuration timing and is defined as:

TPVPERL - PERST# must remain active at least this long after power becomes valid.

The PCI Express Base Specification does not give a specific value for TPVPERL – only its
meaning is defined. The most common form factor used by designers with the
Integrated Block core is an ATX-based form factor. The PCI Express Card
Electromechanical Specification focuses on requirements for ATX-based form factors.
This applies to most designs targeted to standard desktop or server type
motherboards. Figure 7-1 shows the relationship between Power Stable and PERST#.

http://www.pcisig.com
http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 217
UG477 March 1, 2011

Configuration Access Time

Section 2.6.2 of the PCI Express Card Electromechanical Specification, v1.1 defines TPVPREL as
a minimum of 100 ms, indicating that from the time power is stable the system reset is
asserted for at least 100 ms (as shown in Table 7-1).

From Figure 7-1 and Table 7-1, it is possible to obtain a simple equation to define the FPGA
configuration time as follows:

FPGA Configuration Time ≤ TPWRVLD + TPVPERL Equation 7-1

Given that TPVPERL is defined as 100 ms minimum, this becomes:

FPGA Configuration Time ≤ TPWRVLD + 100 ms Equation 7-2

Note: Although TPWRVLD is included in Equation 7-2, it has yet to be defined in this discussion
because it depends on the type of system in use. The Board Power in Real-World Systems section
defines TPWRVLD for both ATX-based and non ATX-based systems.

FPGA configuration time is only relevant at cold boot; subsequent warm or hot resets do
not cause reconfiguration of the FPGA. If the design appears to be having issues due to
FPGA configuration, the user should issue a warm reset as a simple test, which resets the
system, including the PCI Express link, but keeps the board powered. If the issue does not
appear, the issue could be FPGA configuration time related.

X-Ref Target - Figure 7-1

Figure 7-1: Power Up

Table 7-1: TPVPERL Specification

Symbol Parameter Min Max Units

TPVPERL Power stable to
PERST# inactive

100 ms

3.3 VAUX

3.3V/12V

PERST#

UG477_c7_01_021611

PCI Express Link Inactive Active

Power Stable

100 ms

TPVPERL

http://www.xilinx.com

218 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 7: FPGA Configuration

Board Power in Real-World Systems
Several boards are used in PCI Express systems. The ATX Power Supply Design
specification, endorsed by Intel, is used as a guideline and for this reason followed in the
majority of mother boards and 100% of the time if it is an Intel-based motherboard. The
relationship between power rails and power valid signaling is described in the ATX 12V
Power Supply Design Guide. Figure 7-2, redrawn here and simplified to show the
information relevant to FPGA configuration, is based on the information and diagram
found in section 3.3 of the ATX 12V Power Supply Design Guide. For the entire diagram and
definition of all parameters, see the ATX 12V Power Supply Design Guide.

Figure 7-2 shows that power stable indication from Figure 7-1 for the PCI Express system is
indicated by the assertion of PWR_OK. PWR_OK is asserted High after some delay when
the power supply has reached 95% of nominal.

Figure 7-2 shows that power is valid before PWR_OK is asserted High. This is represented
by T3 and is the PWR_OK delay. The ATX 12V Power Supply Design Guide defines PWR_OK
as 100 ms < T3 < 500 ms, indicating that from the point at which the power level reaches
95% of nominal, there is a minimum of at least 100 ms but no more than 500 ms of delay
before PWR_OK is asserted. Remember, according to the PCI Express Card Electromechanical
Specification, the PERST# is guaranteed to be asserted a minimum of 100 ms from when
power is stable indicated in an ATX system by the assertion of PWR_OK.

Again, the FPGA configuration time equation is:

FPGA Configuration Time ≤ TPWRVLD + 100 ms Equation 7-3

TPWRVLD is defined as PWR_OK delay period; that is, TPWRVLD represents the amount of
time that power is valid in the system before PWR_OK is asserted. This time can be added
to the amount of time the FPGA has to configure. The minimum values of T2 and T4 are
negligible and considered zero for purposes of these calculations. For ATX-based

X-Ref Target - Figure 7-2

Figure 7-2: ATX Power Supply

UG477_c7_02_101810

VAC

PS_ON#

O/Ps

PWR_OK

+12 VDC

+5 VDC
+3.3 VDC

T1

T2
T3

T4
T1 = Power On Time (T1 < 500 ms)
T2 = Rise Time (0.1 ms <= T2 <= 20 ms)
T3 = PWR_OK Delay (100 ms < T3 < 500 ms)
T4 = PWR_OK Rise Time (T4 <= 10 ms)

95%

10%

http://www.formfactors.org/developer/specs/ATX12V_PSDG_2_2_public_br2.pdf
http://www.formfactors.org/developer/specs/ATX12V_PSDG_2_2_public_br2.pdf
http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 219
UG477 March 1, 2011

Recommendations

motherboards, which represent the majority of real-world motherboards in use, TPWRVLD
can be defined as:

100 ms ≤ TPWRVLD ≤ 500 ms Equation 7-4

This provides these requirements for FPGA configuration time in both ATX and
non-ATX-based motherboards:

• FPGA Configuration Time ≤ 200 ms (for ATX based motherboard)

• FPGA Configuration Time ≤ 100 ms (for non-ATX based motherboard)

The second equation for the non-ATX based motherboards assumes a TPWRVLD value of
0 ms because it is not defined in this context. Designers with non-ATX based motherboards
should evaluate their own power supply design to obtain a value for TPWRVLD.

This chapter assumes that the FPGA power (VCCINT) is stable before or at the same time
that PWR_OK is asserted. If this is not the case, then additional time must be subtracted
from the available time for FPGA configuration. Xilinx recommends to avoid designing
add-in cards with staggered voltage regulators with long delays.

Hot Plug Systems
Hot Plug systems generally employ the use of a Hot-Plug Power Controller located on the
system motherboard. Many discrete Hot-Plug Power Controllers extend TPVPERL beyond
the minimum 100 ms. Add-in card designers should consult the Hot-Plug Power
Controller data sheet to determine the value of TPVPERL. If the Hot-Plug Power Controller
is unknown, then a TPVPERL value of 100 ms should be assumed.

Recommendations
For minimum FPGA configuration time, Xilinx recommends the BPI configuration mode
with a parallel NOR flash, which supports high-speed synchronous read operation. In
addition, an external clock source can be supplied to the external master configuration
clock (EMCCLK) pin to ensure a consistent configuration clock frequency for all
conditions. See the 7 Series FPGAs Configuration User Guide (UG470), for descriptions of the
BPI configuration mode and EMCCLK pin. This section discusses these recommendations
and includes sample analysis of potential issues that might arise during FPGA
configuration.

FPGA Configuration Times for 7 Series Devices
During power up, the FPGA configuration sequence is performed in four steps:

1. Wait for power on reset (POR) for all voltages (VCCINT, VCCAUX, and VCCO_0) in the
FPGA to trip, referred to as POR Trip Time.

2. Wait for completion (deassertion) of INIT_B to allow the FPGA to initialize before
accepting a bitstream transfer.

Note: As a general rule, steps 1 and 2 require ≤ 50 ms

3. Wait for assertion of DONE, the actual time required for a bitstream to transfer
depends on:

• Bitstream size

• Clock (CCLK) frequency

• Transfer mode (and data bus width) from the flash device

http://www.xilinx.com

220 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 7: FPGA Configuration

- SPI = Serial Peripheral Interface (x1, x2, or x4)

- BPI = Byte Peripheral Interface (x8 or x16)

Bitstream transfer time can be estimated using this equation.

Bitstream transfer time = (bitstream size in bits)/(CCLK frequency)/ (data bus width in bits) Equation 7-5

For detailed information about the configuration process, see the 7 Series FPGAs
Configuration User Guide (UG470).

Sample Problem Analysis
This section presents data from an ASUS PL5 system to demonstrate the relationships
between Power Valid, FPGA Configuration, and PERST#. Figure 7-3 shows a case where
the Endpoint failed to be recognized due to a FPGA configuration time issue. Figure 7-4
shows a successful FPGA configuration with the Endpoint being recognized by the system.

Failed FPGA Recognition

Figure 7-3 illustrates an example of a cold boot where the host failed to recognize the
Xilinx® FPGA. Although a second PERST# pulse assists in allowing more time for the
FPGA to configure, the slowness of the FPGA configuration clock (2 MHz) causes
configuration to complete well after this second deassertion. During this time, the system
enumerated the bus and did not recognize the FPGA.
X-Ref Target - Figure 7-3

Figure 7-3: Host Fails to Recognize FPGA Due to Slow Configuration Time

UG477_c7_03_101510

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 221
UG477 March 1, 2011

Recommendations

Successful FPGA Recognition

Figure 7-4 illustrates a successful cold boot test on the same system. In this test, the CCLK
was running at 50 MHz, allowing the FPGA to configure in time to be enumerated and
recognized. The figure shows that the FPGA began initialization approximately 250 ms
before PWR_OK. DONE going High shows that the FPGA was configured even before
PWR_OK was asserted.

Workarounds for Closed Systems
For failing FPGA configuration combinations, designers might be able to work around the
issue in closed systems or systems where they can guarantee behavior. These options are
not recommended for products where the targeted end system is unknown.

1. Check if the motherboard and BIOS generate multiple PERST# pulses at start-up. This
can be determined by capturing the signal on the board using an oscilloscope. This is
similar to what is shown in Figure 7-3. If multiple PERST# pulses are generated, this
typically adds extra time for FPGA configuration.

Define TPERSTPERIOD as the total sum of the pulse width of PERST# and deassertion
period before the next PERST# pulse arrives. Because the FPGA is not power cycled or
reconfigured with additional PERST# assertions, the TPERSTPERIOD number can be
added to the FPGA configuration equation.

FPGA Configuration Time ≤ TPWRVLD + TPERSTPERIOD + 100 ms Equation 7-6

2. In closed systems, it might be possible to create scripts to force the system to perform
a warm reset after the FPGA is configured, after the initial power up sequence. This
resets the system along with the PCI Express subsystem allowing the device to be
recognized by the system.

X-Ref Target - Figure 7-4

Figure 7-4: Host Successfully Recognizes FPGA

UG477_c7_04_101510

http://www.xilinx.com

222 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Chapter 7: FPGA Configuration

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 223
UG477 March 1, 2011

Appendix A

Example Design and Model Test Bench
for Endpoint Configuration

Programmed Input/Output: Endpoint Example Design
Programmed Input/Output (PIO) transactions are generally used by a PCI Express®
system host CPU to access Memory Mapped Input/Output (MMIO) and Configuration
Mapped Input/Output (CMIO) locations in the PCI Express logic. Endpoints for
PCI Express accept Memory and I/O Write transactions and respond to Memory and I/O
Read transactions with Completion with Data transactions.

The PIO example design (PIO design) is included with the 7 Series FPGAs Integrated Block
for PCI Express in Endpoint configuration generated by the CORE Generator™ software,
which allows users to bring up their system board with a known established working
design to verify the link and functionality of the board.

Note: The PIO design Port Model is shared by the 7 Series FPGAs Integrated Block for
PCI Express, Endpoint Block Plus for PCI Express, and Endpoint PIPE for PCI Express solutions.
This appendix represents all the solutions generically using the name Endpoint for PCI Express (or
Endpoint for PCIe®).

System Overview
The PIO design is a simple target-only application that interfaces with the Endpoint for
PCIe core’s Transaction (AXI4-Stream) interface and is provided as a starting point for
customers to build their own designs. These features are included:

• Four transaction-specific 2 KB target regions using the internal Xilinx® FPGA block
RAMs, providing a total target space of 8192 bytes

• Supports single DWORD payload Read and Write PCI Express transactions to
32-/64-bit address memory spaces and I/O space with support for completion TLPs

• Utilizes the core’s (rx_bar_hit[7:0]) m_axis_rx_tuser[9:2] signals to differentiate
between TLP destination Base Address Registers

• Provides separate implementations optimized for 32-bit, 64-bit, and 128-bit
AXI4-Stream interfaces

Figure A-1 illustrates the PCI Express system architecture components, consisting of a
Root Complex, a PCI Express switch device, and an Endpoint for PCIe. PIO operations
move data downstream from the Root Complex (CPU register) to the Endpoint, and/or
upstream from the Endpoint to the Root Complex (CPU register). In either case, the
PCI Express protocol request to move the data is initiated by the host CPU.

http://www.xilinx.com

224 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix A: Example Design and Model Test Bench for Endpoint Configuration

Data is moved downstream when the CPU issues a store register to a MMIO address
command. The Root Complex typically generates a Memory Write TLP with the
appropriate MMIO location address, byte enables, and the register contents. The
transaction terminates when the Endpoint receives the Memory Write TLP and updates the
corresponding local register.

Data is moved upstream when the CPU issues a load register from a MMIO address
command. The Root Complex typically generates a Memory Read TLP with the
appropriate MMIO location address and byte enables. The Endpoint generates a
Completion with Data TLP after it receives the Memory Read TLP. The Completion is
steered to the Root Complex and payload is loaded into the target register, completing the
transaction.

PIO Hardware
The PIO design implements a 8192 byte target space in FPGA block RAM, behind the
Endpoint for PCIe. This 32-bit target space is accessible through single DWORD I/O Read,
I/O Write, Memory Read 64, Memory Write 64, Memory Read 32, and Memory Write 32
TLPs.

The PIO design generates a completion with one DWORD of payload in response to a valid
Memory Read 32 TLP, Memory Read 64 TLP, or I/O Read TLP request presented to it by
the core. In addition, the PIO design returns a completion without data with successful
status for I/O Write TLP request.

The PIO design processes a Memory or I/O Write TLP with one DWORD payload by
updating the payload into the target address in the FPGA block RAM space.

X-Ref Target - Figure A-1

Figure A-1: System Overview

UG477_aA_11_021611

Main
Memory

PCI_BUS_X

PCI_BUS_1

PCI_BUS_0

CPU

Memory
Controller

Device

PCIe
Port

PCIe
Switch

PCIe
Endpoint

PCIe
Root Complex

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 225
UG477 March 1, 2011

Programmed Input/Output: Endpoint Example Design

Base Address Register Support

The PIO design supports four discrete target spaces, each consisting of a 2 KB block of
memory represented by a separate Base Address Register (BAR). Using the default
parameters, the CORE Generator software produces a core configured to work with the
PIO design defined in this section, consisting of:

• One 64-bit addressable Memory Space BAR

• One 32-bit Addressable Memory Space BAR

Users can change the default parameters used by the PIO design; however, in some cases
they might need to change the back-end User Application depending on their system. See
Changing CORE Generator Software Default BAR Settings for information about changing
the default CORE Generator software parameters and the effect on the PIO design.

Each of the four 2 KB address spaces represented by the BARs corresponds to one of four
2 KB address regions in the PIO design. Each 2 KB region is implemented using a 2 KB
dual-port block RAM. As transactions are received by the core, the core decodes the
address and determines which of the four regions is being targeted. The core presents the
TLP to the PIO design and asserts the appropriate bits of (rx_bar_hit[7:0])
m_axis_rx_tuser[9:2], as defined in Table A-1.

Changing CORE Generator Software Default BAR Settings

Users can change the CORE Generator software parameters and continue to use the PIO
design to create customized Verilog or VHDL source to match the selected BAR settings.
However, because the PIO design parameters are more limited than the core parameters,
consider these example design limitations when changing the default CORE Generator
software parameters:

• The example design supports one I/O space BAR, one 32-bit Memory space (that
cannot be the Expansion ROM space), and one 64-bit Memory space. If these limits are
exceeded, only the first space of a given type is active—accesses to the other spaces do
not result in completions.

• Each space is implemented with a 2 KB memory. If the corresponding BAR is
configured to a wider aperture, accesses beyond the 2 KB limit wrap around and
overlap the 2 KB memory space.

• The PIO design supports one I/O space BAR, which by default is disabled, but can be
changed if desired.

Although there are limitations to the PIO design, Verilog or VHDL source code is provided
so users can tailor the example design to their specific needs.

Table A-1: TLP Traffic Types

Block RAM TLP Transaction Type Default BAR rx_bar_hit[7:0]

ep_mem0 I/O TLP transactions Disabled Disabled

ep_mem1 32-bit address Memory
TLP transactions

2 0000_0100b

ep_mem2 64-bit address Memory
TLP transactions

0-1 0000_0010b

ep_mem3 32-bit address Memory
TLP transactions destined
for EROM

Expansion ROM 0100_0000b

http://www.xilinx.com

226 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix A: Example Design and Model Test Bench for Endpoint Configuration

TLP Data Flow

This section defines the data flow of a TLP successfully processed by the PIO design. For
detailed information about the interface signals within the sub-blocks of the PIO design,
see Receive Path, page 230 and Transmit Path, page 232.

The PIO design successfully processes single DWORD payload Memory Read and Write
TLPs and I/O Read and Write TLPs. Memory Read or Memory Write TLPs of lengths
larger than one DWORD are not processed correctly by the PIO design; however, the core
does accept these TLPs and passes them along to the PIO design. If the PIO design receives
a TLP with a length of greater than one DWORD, the TLP is received completely from the
core and discarded. No corresponding completion is generated.

Memory and I/O Write TLP Processing

When the Endpoint for PCIe receives a Memory or I/O Write TLP, the TLP destination
address and transaction type are compared with the values in the core BARs. If the TLP
passes this comparison check, the core passes the TLP to the Receive AXI4-Stream interface
of the PIO design. The PIO design handles Memory writes and I/O TLP writes in different
ways: the PIO design responds to I/O writes by generating a Completion Without Data
(cpl), a requirement of the PCI Express specification.

Along with the start of packet, end of packet, and ready handshaking signals, the Receive
AXI4-Stream interface also asserts the appropriate (rx_bar_hit[7:0]) m_axis_rx_tuser[9:2]
signal to indicate to the PIO design the specific destination BAR that matched the incoming
TLP. On reception, the PIO design’s RX State Machine processes the incoming Write TLP
and extracts the TLPs data and relevant address fields so that it can pass this along to the
PIO design’s internal block RAM write request controller.

Based on the specific rx_bar_hit[7:0] signal asserted, the RX State Machine indicates to the
internal write controller the appropriate 2 KB block RAM to use prior to asserting the write
enable request. For example, if an I/O Write Request is received by the core targeting
BAR0, the core passes the TLP to the PIO design and asserts rx_bar_hit[0]. The RX State
machine extracts the lower address bits and the data field from the I/O Write TLP and
instructs the internal Memory Write controller to begin a write to the block RAM.

In this example, the assertion of rx_bar_hit[0] instructed the PIO memory write controller
to access ep_mem0 (which by default represents 2 KB of I/O space). While the write is
being carried out to the FPGA block RAM, the PIO design RX state machine deasserts the
m_axis_rx_tready, causing the Receive AXI4-Stream interface to stall receiving any further
TLPs until the internal Memory Write controller completes the write to the block RAM.
Deasserting m_axis_rx_tready in this way is not required for all designs using the
core—the PIO design uses this method to simplify the control logic of the RX state
machine.

Memory and I/O Read TLP Processing

When the Endpoint for PCIe receives a Memory or I/O Read TLP, the TLP destination
address and transaction type are compared with the values programmed in the core BARs.
If the TLP passes this comparison check, the core passes the TLP to the Receive
AXI4-Stream interface of the PIO design.

Along with the start of packet, end of packet, and ready handshaking signals, the Receive
AXI4-Stream interface also asserts the appropriate rx_bar_hit[7:0] signal to indicate to the
PIO design the specific destination BAR that matched the incoming TLP. On reception, the
PIO design’s state machine processes the incoming Read TLP and extracts the relevant TLP
information and passes it along to the PIO design's internal block RAM read request
controller.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 227
UG477 March 1, 2011

Programmed Input/Output: Endpoint Example Design

Based on the specific rx_bar_hit[7:0] signal asserted, the RX state machine indicates to the
internal read request controller the appropriate 2 KB block RAM to use before asserting the
read enable request. For example, if a Memory Read 32 Request TLP is received by the core
targeting the default MEM32 BAR2, the core passes the TLP to the PIO design and asserts
rx_bar_hit[2]. The RX State machine extracts the lower address bits from the Memory 32
Read TLP and instructs the internal Memory Read Request controller to start a read
operation.

In this example, the assertion of rx_bar_hit[2] instructs the PIO memory read controller to
access the Mem32 space, which by default represents 2 KB of memory space. A notable
difference in handling of memory write and read TLPs is the requirement of the receiving
device to return a Completion with Data TLP in the case of memory or I/O read request.

While the read is being processed, the PIO design RX state machine deasserts
m_axis_rx_tready, causing the Receive AXI4-Stream interface to stall receiving any further
TLPs until the internal Memory Read controller completes the read access from the block
RAM and generates the completion. Deasserting m_axis_rx_tready in this way is not
required for all designs using the core. The PIO design uses this method to simplify the
control logic of the RX state machine.

PIO File Structure

Table A-2 defines the PIO design file structure. Based on the specific core targeted, not all
files delivered by the CORE Generator software are necessary, and some files might not be
delivered. The major difference is that some of the Endpoint for PCIe solutions use a 32-bit
user datapath, others use a 64-bit datapath, and the PIO design works with both. The
width of the datapath depends on the specific core being targeted.

Three configurations of the PIO design are provided: PIO_32, PIO_64, and PIO_128 with
32-, 64-, and 128-bit AXI4-Stream interfaces, respectively. The PIO configuration generated
depends on the selected Endpoint type (that is, 7 series FPGAs integrated block, PIPE,
PCI Express, and Block Plus) as well as the number of PCI Express lanes and the interface
width selected by the user. Table A-3 identifies the PIO configuration generated based on
the user’s selection.

Table A-2: PIO Design File Structure

File Description

PIO.v Top-level design wrapper

PIO_EP.v PIO application module

PIO_TO_CTRL.v PIO turn-off controller module

PIO_32_RX_ENGINE.v 32-bit Receive engine

PIO_32_TX_ENGINE.v 32-bit Transmit engine

PIO_64_RX_ENGINE.v 64-bit Receive engine

PIO_64_TX_ENGINE.v 64-bit Transmit engine

PIO_128_RX_ENGINE.v 128-bit Receive engine

PIO_128_TX_ENGINE.v 128-bit Transmit engine

PIO_EP_MEM_ACCESS.v Endpoint memory access module

PIO_EP_MEM.v Endpoint memory

http://www.xilinx.com

228 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix A: Example Design and Model Test Bench for Endpoint Configuration

Figure A-2 shows the various components of the PIO design, which is separated into four
main parts: the TX Engine, RX Engine, Memory Access Controller, and Power
Management Turn-Off Controller.

Table A-3: PIO Configuration

Core x1 x2 x4 x8

Endpoint for PIPE PIO_32 NA NA NA

Endpoint for PCI Express PIO_32 NA PIO_64 PIO_64

Endpoint for PCI Express Block Plus PIO_64 NA PIO_64 PIO_64

Virtex-6 FPGA Integrated Block PIO_64 PIO_64 PIO_64 PIO_64,
PIO_128(1)

Spartan®-6 FPGA Integrated
Endpoint Block

PIO_32 NA NA NA

7 Series FPGAs Integrated Block PIO_64 PIO_64 PIO_64,
PIO_128

PIO_64,
PIO_128

Notes:
1. The PIO_128 configuration is only provided for the 128-bit x8 5.0 Gb/s, x8 2.5 Gb/s, and x4 5.0 Gb/s

cores.

X-Ref Target - Figure A-2

Figure A-2: PIO Design Components

7 Series FPGAs Integrated Block for PCI Express Core (Configured as an Endpoint)

PIO

PIO_TO_CTRL

PIO_EP

EP_TX EP_RX

EP_MEM

ep_mem0

ep_mem1

ep_mem2

ep_mem3

UG477_aA_02_091710

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 229
UG477 March 1, 2011

Programmed Input/Output: Endpoint Example Design

PIO Application

Figure A-3, Figure A-4, and Figure A-5 depict 128-bit, 64-bit, and 32-bit PIO application
top-level connectivity, respectively. The datapath width (32, 64, or 128 bits) depends on
which Endpoint for PCIe core is used. The PIO_EP module contains the PIO FPGA block
RAM modules and the transmit and receive engines. The PIO_TO_CTRL module is the
Endpoint Turn-Off controller unit, which responds to power turn-off message from the
host CPU with an acknowledgment.

The PIO_EP module connects to the Endpoint AXI4-Stream and Configuration (cfg)
interfaces.

X-Ref Target - Figure A-3

Figure A-3: PIO 128-Bit Application

X-Ref Target - Figure A-4

Figure A-4: PIO 64-Bit Application

http://www.xilinx.com

230 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix A: Example Design and Model Test Bench for Endpoint Configuration

Receive Path

Figure A-6 illustrates the PIO_32_RX_ENGINE, PIO_64_RX_ENGINE, and
PIO_128_RX_ENGINE modules. The datapath of the module must match the datapath of
the core being used. These modules connect with Endpoint for PCIe Receive interface.

X-Ref Target - Figure A-5

Figure A-5: PIO 32-Bit Application

X-Ref Target - Figure A-6

Figure A-6: RX Engines

UG477_aA_05_020311

PIO_[32/64/128]_RX_ENGINE

EP_Rx

clk

rst_n

m_axis_rx_tdata

m_axis_rx_tstrb

m_axis_rx_tlast

m_axis_rx_tvalid

m_axis_rx_tuser

compl_done_i

wr_busy_i

m_axis_rx_tready

req_compl_o

req_td_o

requ_ep_o

wr_en_o

req_tc_o[2:0]

req_attr_o[1:0]

req_len_o[9:0]

req_rid_o[15:0]

req_tag_o[7:0]

req_be_o[7:0]

req_addr_o[31:0]

wr_addr_o[10:0]

wr_be_o[7:0]

wr_data_o[31:0]

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 231
UG477 March 1, 2011

Programmed Input/Output: Endpoint Example Design

The PIO_32_RX_ENGINE, PIO_64_RX_ENGINE and PIO_128_RX_ENGINE modules
receive and parse incoming read and write TLPs.

The RX engine parses one DWORD 32- and 64-bit addressable memory and I/O read
requests. The RX state machine extracts needed information from the TLP and passes it to
the memory controller, as defined in Table A-4.

The RX Engine parses one DWORD 32- and 64-bit addressable memory and I/O write
requests. The RX state machine extracts needed information from the TLP and passes it to
the memory controller, as defined in Table A-5.

The read datapath stops accepting new transactions from the core while the application is
processing the current TLP. This is accomplished by m_axis_rx_tready deassertion. For an
ongoing Memory or I/O Read transaction, the module waits for compl_done_i input to be
asserted before it accepts the next TLP, while an ongoing Memory or I/O Write transaction
is deemed complete after wr_busy_i is deasserted.

Table A-4: RX Engine: Read Outputs

Port Description

req_compl_o Completion request (active High)

req_td_o Request TLP Digest bit

req_ep_o Request Error Poisoning bit

req_tc_o[2:0] Request Traffic Class

req_attr_o[1:0] Request Attributes

req_len_o[9:0] Request Length

req_rid_o[15:0] Request Requester Identifier

req_tag_o[7:0] Request Tag

req_be_o[7:0] Request Byte Enable

req_addr_o[10:0] Request Address

Table A-5: Rx Engine: Write Outputs

Port Description

wr_en_o Write received

wr_addr_o[10:0] Write address

wr_be_o[7:0] Write byte enable

wr_data_o[31:0] Write data

http://www.xilinx.com

232 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix A: Example Design and Model Test Bench for Endpoint Configuration

Transmit Path

Figure A-7 shows the PIO_32_TX_ENGINE, PIO_64_TX_ENGINE, and
PIO_128_TX_ENGINE modules. The datapath of the module must match the datapath of
the core being used. These modules connect with the core Transmit interface.

The PIO_32_TX_ENGINE, PIO_64_TX_ENGINE, and PIO_128_TX_ENGINE modules
generate completions for received memory and I/O read TLPs. The PIO design does not
generate outbound read or write requests. However, users can add this functionality to
further customize the design.

The PIO_32_TX_ENGINE, PIO_64_TX_ENGINE, and PIO_128_TX_ENGINE modules
generate completions in response to one DWORD 32- and 64-bit addressable memory and
I/O read requests. Information necessary to generate the completion is passed to the TX
Engine, as defined in Table A-6.

X-Ref Target - Figure A-7

Figure A-7: TX Engines

Table A-6: TX Engine Inputs

Port Description

req_compl_i Completion request (active High)

req_td_i Request TLP Digest bit

req_ep_i Request Error Poisoning bit

UG477_aA_06_020311

clk

rst_n

s_axis_rx_tready

requ_compl_i

req_td_i

req_ep_i

cfg_bus_mstr_enable_i

req_tc_i[2:0]

req_attr_i[1:0]

req_len_i[9:0]

req_rid_i[15:0]

req_tag_i[7:0]

req_be_i[7:0]

req_addr_i[31:0]

rd_data_i[31:0]

completer_id_i[15:0]

s_axis_tx_tdata

s_axis_tx_tstrb

s_axis_tx_tlast

s_axis_tx_tvalid

tx_src_dsc

compl_done_o

rd_addr_o[10:0]

rd_be_o[3:0]

PIO_[32/64/128]_TX_ENGINE

EP_Tx

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 233
UG477 March 1, 2011

Programmed Input/Output: Endpoint Example Design

After the completion is sent, the TX engine asserts the compl_done_i output indicating to
the RX engine that it can assert m_axis_rx_tready and continue receiving TLPs.

Endpoint Memory

Figure A-8 displays the PIO_EP_MEM_ACCESS module. This module contains the
Endpoint memory space.

The PIO_EP_MEM_ACCESS module processes data written to the memory from incoming
Memory and I/O Write TLPs and provides data read from the memory in response to
Memory and I/O Read TLPs.

The EP_MEM module processes one DWORD 32- and 64-bit addressable Memory and I/O
Write requests based on the information received from the RX Engine, as defined in
Table A-7. While the memory controller is processing the write, it asserts the wr_busy_o
output indicating it is busy.

req_tc_i[2:0] Request Traffic Class

req_attr_i[1:0] Request Attributes

req_len_i[9:0] Request Length

req_rid_i[15:0] Request Requester Identifier

req_tag_i[7:0] Request Tag

req_be_i[7:0] Request Byte Enable

req_addr_i[10:0] Request Address

Table A-6: TX Engine Inputs (Cont’d)

Port Description

X-Ref Target - Figure A-8

Figure A-8: EP Memory Access

UG477_aA_07_091610

clk

rst_n

wr_en_i

rd_addr_i[10:0]

rd_be_i[3:0]

wr_addr_i[10:0]

wr_be_i[7:0]

wr_data_i[31:0]

wr_busy_o

rd_data_o[31:0]

PIO_EP_MEM_ACCESS

EP_MEM

http://www.xilinx.com

234 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix A: Example Design and Model Test Bench for Endpoint Configuration

Both 32- and 64-bit Memory and I/O Read requests of one DWORD are processed based
on the inputs defined in Table A-8. After the read request is processed, the data is returned
on rd_data_o[31:0].

Table A-7: EP Memory: Write Inputs

Port Description

wr_en_i Write received

wr_addr_i[10:0] Write address

wr_be_i[7:0] Write byte enable

wr_data_i[31:0] Write data

Table A-8: EP Memory: Read Inputs

Port Description

req_be_i[7:0] Request Byte Enable

req_addr_i[31:0] Request Address

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 235
UG477 March 1, 2011

Programmed Input/Output: Endpoint Example Design

PIO Operation

PIO Read Transaction

Figure A-9 depicts a Back-to-Back Memory Read request to the PIO design. The receive
engine deasserts m_axis_rx_tready as soon as the first TLP is completely received. The next
Read transaction is accepted only after compl_done_o is asserted by the transmit engine,
indicating that Completion for the first request was successfully transmitted.

X-Ref Target - Figure A-9

Figure A-9: Back-to-Back Read Transactions

user_clk_out

m_axis_rx_tdata[63:0]

m_axis_rx_tstrb[7:0]

m_axis_rx_tlast

m_axis_rx_tvalid

m_axis_rx_tready

(rx_bar_hit[7:0])m_axis_rx_tuser[9:2]

compl_done_o

s_axis_tx_tdata[63:0]

s_axis_tx_tstrb[7:0]

s_axis_tx_tlast

s_axis_tx_tvalid

(src_dsc)s_axis_tx_tuser[3]

s_axis_tx_tready

H1H0 --H2 H1H0 --H3

FFh 0Fh FFh 0Fh FFh

00h 01h 00h 01h 00h

H1H0 D0H2

FF

TLP1 TLP2

UG477_aA_08_111610

http://www.xilinx.com

236 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix A: Example Design and Model Test Bench for Endpoint Configuration

PIO Write Transaction

Figure A-10 depicts a back-to-back Memory Write to the PIO design. The next Write
transaction is accepted only after wr_busy_o is deasserted by the memory access unit,
indicating that data associated with the first request was successfully written to the
memory aperture.

Device Utilization

Table A-9 shows the PIO design FPGA resource utilization.

X-Ref Target - Figure A-10

Figure A-10: Back-to-Back Write Transactions

user_clk_out

m_axis_rx_tdata[63:0]

m_axis_rx_tstrb[7:0]

m_axis_rx_tlast

m_axis_rx_tvalid

m_axis_rx_tready

(rx_bar_hit[7:0])m_axis_rx_tuser[9:2]

wr_busy_o

compl_done_o

s_axis_tx_tdata[63:0]

s_axis_tx_tstrb[7:0]

s_axis_tx_tlast

s_axis_tx_tvalid

(src_dsc)s_axis_tx_tuser[3]

s_axis_tx_tready

H1H0 D0H2 H1H0 D0H3

FFh FFh FFh FFh FFh

00h 01h 00h 01h 00h

TLP1 TLP2

UG477_aA_09_111610

Table A-9: PIO Design FPGA Resources

Resources Utilization

LUTs 300

Flip-Flops 500

Block RAMs 4

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 237
UG477 March 1, 2011

Root Port Model Test Bench for Endpoint

Summary
The PIO design demonstrates the Endpoint for PCIe and its interface capabilities. In
addition, it enables rapid bring-up and basic validation of end user Endpoint add-in card
FPGA hardware on PCI Express platforms. Users can leverage standard operating system
utilities that enable generation of read and write transactions to the target space in the
reference design.

Root Port Model Test Bench for Endpoint
The PCI Express Root Port Model is a robust test bench environment that provides a test
program interface that can be used with the provided PIO design or with the user’s design.
The purpose of the Root Port Model is to provide a source mechanism for generating
downstream PCI Express TLP traffic to stimulate the customer design, and a destination
mechanism for receiving upstream PCI Express TLP traffic from the customer design in a
simulation environment.

Source code for the Root Port Model is included to provide the model for a starting point
for the user test bench. All the significant work for initializing the core’s configuration
space, creating TLP transactions, generating TLP logs, and providing an interface for
creating and verifying tests are complete, allowing the user to dedicate efforts to verifying
the correct functionality of the design rather than spending time developing an Endpoint
core test bench infrastructure.

The Root Port Model consists of:

• Test Programming Interface (TPI), which allows the user to stimulate the Endpoint
device for the PCI Express

• Example tests that illustrate how to use the test program TPI

• Verilog or VHDL source code for all Root Port Model components, which allow the
user to customize the test bench

Figure A-11 illustrates the illustrates the Root Port Model coupled with the PIO design.

http://www.xilinx.com

238 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix A: Example Design and Model Test Bench for Endpoint Configuration

Architecture
The Root Port Model consists of these blocks, illustrated in Figure A-11:

• dsport (Root Port)

• usrapp_tx

• usrapp_rx

• usrapp_com (Verilog only)

The usrapp_tx and usrapp_rx blocks interface with the dsport block for transmission and
reception of TLPs to/from the Endpoint Design Under Test (DUT). The Endpoint DUT
consists of the Endpoint for PCIe and the PIO design (displayed) or customer design.

The usrapp_tx block sends TLPs to the dsport block for transmission across the PCI
Express Link to the Endpoint DUT. In turn, the Endpoint DUT device transmits TLPs
across the PCI Express Link to the dsport block, which are subsequently passed to the

X-Ref Target - Figure A-11

Figure A-11: Root Port Model and Top-Level Endpoint

UG477_aA_10_101810

Test
Program

Endpoint DUT for PCI Express

PCI Express Fabric

Endpoint Core for
PCI Express

PIO
Design

dsport

usrapp_tx

usrapp_com

usrapp_rx

Output
Logs

Root Port
Model TPI for
PCI Express

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 239
UG477 March 1, 2011

Root Port Model Test Bench for Endpoint

usrapp_rx block. The dsport and core are responsible for the data link layer and physical
link layer processing when communicating across the PCI Express logic. Both usrapp_tx
and usrapp_rx utilize the usrapp_com block for shared functions, for example, TLP
processing and log file outputting. Transaction sequences or test programs are initiated by
the usrapp_tx block to stimulate the Endpoint device's fabric interface. TLP responses from
the Endpoint device are received by the usrapp_rx block. Communication between the
usrapp_tx and usrapp_rx blocks allow the usrapp_tx block to verify correct behavior and
act accordingly when the usrapp_rx block has received TLPs from the Endpoint device.

Simulating the Design
Four simulation script files are provided with the model to facilitate simulation with
Synopsys VCS and VCS MX, Cadence IES, and Mentor Graphics ModelSim tools:

• simulate_vcs.sh (Verilog Only)

• simulate_ncsim.sh

• simulate_mti.do

The example simulation script files are located in this directory:

<project_dir>/<component_name>/simulation/functional

Instructions for simulating the PIO design using the Root Port Model are provided in
Chapter 3, Getting Started Example Design.

Note: For Cadence IES users, the work construct must be manually inserted into the cds.lib file:
DEFINE WORK WORK.

Scaled Simulation Timeouts
The simulation model of the 7 Series FPGAs Integrated Block for PCI Express uses scaled
down times during link training to allow for the link to train in a reasonable amount of
time during simulation. According to the PCI Express Specification, rev. 2.1, there are various
timeouts associated with the link training and status state machine (LTSSM) states. The
7 series FPGAs integrated block scales these timeouts by a factor of 256 in simulation,
except in the Recovery Speed_1 LTSSM state, where the timeouts are not scaled.

http://www.xilinx.com

240 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix A: Example Design and Model Test Bench for Endpoint Configuration

Test Selection
Table A-10 describes the tests provided with the Root Port Model, followed by specific
sections for VHDL and Verilog test selection.

VHDL Test Selection

Test selection is implemented in the VHDL Downstream Port Model by overriding the
test_selector generic within the tests entity. The test_selector generic is a string with a
one-to-one correspondence to each test within the tests entity.

The user can modify the generic mapping of the instantiation of the tests entity within the
pci_exp_usrapp_tx entity. Currently, there is one test defined inside the tests entity,
sample_smoke_test0. Additional customer-defined tests should be added inside
tests.vhd. Currently, specific tests cannot be selected from the VHDL simulation scripts.

Verilog Test Selection

The Verilog test model used for the Root Port Model lets the user specify the name of the
test to be run as a command line parameter to the simulator. For example, the
simulate_ncsim.sh script file, used to start the Cadence IES simulator, can be modified
to explicitly specify the test sample_smoke_test0 to be run using this command line
syntax:

ncsim work.board +TESTNAME=sample_smoke_test0

To change the test to be run, change the value provided to TESTNAME defined in the test
files sample_tests1.v and pio_tests.v. The same mechanism is used for VCS and
ModelSim. ISim uses the -testplusarg options to specify TESTNAME, for example:
demo_tb.exe -gui -view wave.wcfg -wdb wave_isim -tclbatch
isim_cmd.tcl -testplusarg TESTNAME=sample_smoke_test0.

VHDL and Verilog Root Port Model Differences

These subsections identify differences between the VHDL and Verilog Root Port Model.

Verilog Expectation Tasks

The most significant difference between the Verilog and the VHDL test bench is that the
Verilog test bench has Expectation Tasks. Expectation tasks are API calls used in

Table A-10: Root Port Model Provided Tests

Test Name
Test in

VHDL/Verilog
Description

sample_smoke_test0 Verilog and
VHDL

Issues a PCI Type 0 Configuration Read TLP and waits for the
completion TLP; then compares the value returned with the
expected Device/Vendor ID value.

sample_smoke_test1 Verilog Performs the same operation as sample_smoke_test0 but makes
use of expectation tasks. This test uses two separate test program
threads: one thread issues the PCI Type 0 Configuration Read TLP
and the second thread issues the Completion with Data TLP
expectation task. This test illustrates the form for a parallel test that
uses expectation tasks. This test form allows for confirming
reception of any TLPs from the customer’s design. Additionally,
this method can be used to confirm reception of TLPs when
ordering is unimportant.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 241
UG477 March 1, 2011

Root Port Model Test Bench for Endpoint

conjunction with a bus mastering customer design. The test program issues a series of
expectation task calls, that is, the task calls expect a memory write TLP and a memory read
TLP. If the customer design does not respond with the expected TLPs, the test program
fails. This functionality was implemented using the fork-join construct in Verilog, which is
not available in VHDL and subsequently not implemented.

Verilog Command Line versus VHDL tests.vhd Module

The Verilog test bench allows test programs to be specified at the command line, while the
VHDL test bench specifies test programs within the tests.vhd module.

Generating Wave Files

• The Verilog test bench uses recordvars and dumpfile commands within the code to
generate wave files.

• The VHDL test bench leaves the generating wave file functionality up to the
simulator.

Speed Differences

The VHDL test bench is slower than the Verilog test bench, especially when testing the x8
core. For initial design simulation and speed enhancement, the user might want to use the
x1 core, identify basic functionality issues, and then move to x2, x4, or x8 simulation when
testing design performance.

Waveform Dumping
Table A-11 describes the available simulator waveform dump file formats, each of which is
provided in the simulator’s native file format. The same mechanism is used for VCS and
ModelSim.

VHDL Flow

Waveform dumping in the VHDL flow does not use the +dump_all mechanism described
in the Verilog Flow section. Because the VHDL language itself does not provide a common
interface for dumping waveforms, each VHDL simulator has its own interface for
supporting waveform dumping. For both the supported ModelSim and IES flows,
dumping is supported by invoking the VHDL simulator command line with a command
line option that specifies the respective waveform command file, wave.do (ModelSim),
wave.sv (IES), and wave.wcfg (ISim). This command line can be found in the respective
simulation script files simulate_mti.do, simulate_ncsim.sh, and
simulate_isim.bat[.sh].

Table A-11: Simulator Dump File Format

Simulator Dump File Format

Synopsys VCS .vpd

Mentor Graphics ModelSim .vcd

Cadence IES .trn

http://www.xilinx.com

242 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix A: Example Design and Model Test Bench for Endpoint Configuration

ModelSim

This command line initiates waveform dumping for the ModelSim flow using the VHDL
test bench:

>vsim +notimingchecks –do wave.do –L unisim –L work work.board

IES

This command line initiates waveform dumping for the IES flow using the VHDL test
bench:

>ncsim –gui work.board -input @”simvision –input wave.sv”

Verilog Flow

The Root Port Model provides a mechanism for outputting the simulation waveform to file
by specifying the +dump_all command line parameter to the simulator.

For example, the script file simulate_ncsim.sh (used to start the Cadence IES
simulator) can indicate to the Root Port Model that the waveform should be saved to a file
using this command line:

ncsim work.board +TESTNAME=sample_smoke_test0 +dump_all

Output Logging
When a test fails on the example or customer design, the test programmer debugs the
offending test case. Typically, the test programmer inspects the wave file for the simulation
and cross-reference this to the messages displayed on the standard output. Because this
approach can be very time consuming, the Root Port Model offers an output logging
mechanism to assist the tester with debugging failing test cases to speed the process.

The Root Port Model creates three output files (tx.dat, rx.dat, and error.dat) during
each simulation run. Log files rx.dat and tx.dat each contain a detailed record of every
TLP that was received and transmitted, respectively, by the Root Port Model. With an
understanding of the expected TLP transmission during a specific test case, the test
programmer can more easily isolate the failure.

The log file error.dat is used in conjunction with the expectation tasks. Test programs
that utilize the expectation tasks generate a general error message to standard output.
Detailed information about the specific comparison failures that have occurred due to the
expectation error is located within error.dat.

Parallel Test Programs
There are two classes of tests are supported by the Root Port Model:

• Sequential tests. Tests that exist within one process and behave similarly to sequential
programs. The test depicted in Test Program: pio_writeReadBack_test0, page 244 is an
example of a sequential test. Sequential tests are very useful when verifying behavior
that have events with a known order.

• Parallel tests. Tests involving more than one process thread. The test
sample_smoke_test1 is an example of a parallel test with two process threads.
Parallel tests are very useful when verifying that a specific set of events have
occurred, however the order of these events are not known.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 243
UG477 March 1, 2011

Root Port Model Test Bench for Endpoint

A typical parallel test uses the form of one command thread and one or more expectation
threads. These threads work together to verify a device's functionality. The role of the
command thread is to create the necessary TLP transactions that cause the device to receive
and generate TLPs. The role of the expectation threads is to verify the reception of an
expected TLP. The Root Port Model TPI has a complete set of expectation tasks to be used
in conjunction with parallel tests.

Because the example design is a target-only device, only Completion TLPs can be expected
by parallel test programs while using the PIO design. However, the full library of
expectation tasks can be used for expecting any TLP type when used in conjunction with
the customer's design (which can include bus-mastering functionality). Currently, the
VHDL version of the Root Port Model Test Bench does not support Parallel tests.

Test Description
The Root Port Model provides a Test Program Interface (TPI). The TPI provides the means
to create tests by invoking a series of Verilog tasks. All Root Port Model tests should follow
the same six steps:

1. Perform conditional comparison of a unique test name

2. Set up master timeout in case simulation hangs

3. Wait for Reset and link-up

4. Initialize the configuration space of the Endpoint

5. Transmit and receive TLPs between the Root Port Model and the Endpoint DUT

6. Verify that the test succeeded

http://www.xilinx.com

244 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix A: Example Design and Model Test Bench for Endpoint Configuration

Test Program: pio_writeReadBack_test0

Expanding the Root Port Model
The Root Port Model was created to work with the PIO design, and for this reason is
tailored to make specific checks and warnings based on the limitations of the PIO design.
These checks and warnings are enabled by default when the Root Port Model is generated
by the CORE Generator software. However, these limitations can be disabled so that they
do not affect the customer's design.

Because the PIO design was created to support at most one I/O BAR, one Mem64 BAR,
and two Mem32 BARs (one of which must be the EROM space), the Root Port Model by
default makes a check during device configuration that verifies that the core has been
configured to meet this requirement. A violation of this check causes a warning message to
be displayed as well as for the offending BAR to be gracefully disabled in the test bench.
This check can be disabled by setting the pio_check_design variable to zero in the
pci_exp_usrapp_tx.v file.

1. else if(testname == "pio_writeReadBack_test1"
2. begin
3. // This test performs a 32 bit write to a 32 bit Memory space and performs a read back
4. TSK_SIMULATION_TIMEOUT(10050);
5. TSK_SYSTEM_INITIALIZATION;
6. TSK_BAR_INIT;
7. for (ii = 0; ii <= 6; ii = ii + 1) begin
8. if (BAR_INIT_P_BAR_ENABLED[ii] > 2'b00) // bar is enabled
9. case(BAR_INIT_P_BAR_ENABLED[ii])
10. 2'b01 : // IO SPACE
11. begin
12. $display("[%t] : NOTHING: to IO 32 Space BAR %x", $realtime, ii);
13. end
14. 2'b10 : // MEM 32 SPACE
15. begin
16. $display("[%t] : Transmitting TLPs to Memory 32 Space BAR %x",
17. $realtime, ii);
18. //--
19. // Event : Memory Write 32 bit TLP
20. //--
21. DATA_STORE[0] = 8'h04;
22. DATA_STORE[1] = 8'h03;
23. DATA_STORE[2] = 8'h02;
24. DATA_STORE[3] = 8'h01;
25. P_READ_DATA = 32'hffff_ffff; // make sure P_READ_DATA has known initial value
26. TSK_TX_MEMORY_WRITE_32(DEFAULT_TAG, DEFAULT_TC, 10'd1, BAR_INIT_P_BAR[ii][31:0] , 4'hF,

4'hF, 1'b0);
27. TSK_TX_CLK_EAT(10);
28. DEFAULT_TAG = DEFAULT_TAG + 1;
29. //--
30. // Event : Memory Read 32 bit TLP
31. //--
32. TSK_TX_MEMORY_READ_32(DEFAULT_TAG, DEFAULT_TC, 10'd1, BAR_INIT_P_BAR[ii][31:0], 4'hF,

4'hF);
33. TSK_WAIT_FOR_READ_DATA;
34. if (P_READ_DATA != {DATA_STORE[3], DATA_STORE[2], DATA_STORE[1], DATA_STORE[0] })
35. begin
36. $display("[%t] : Test FAILED --- Data Error Mismatch, Write Data %x != Read Data %x",

$realtime,{DATA_STORE[3], DATA_STORE[2], DATA_STORE[1], DATA_STORE[0]}, P_READ_DATA);
37. end
38. else
39. begin
40. $display("[%t] : Test PASSED --- Write Data: %x successfully received", $realtime,

P_READ_DATA);
41. end

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 245
UG477 March 1, 2011

Root Port Model Test Bench for Endpoint

Root Port Model TPI Task List

The Root Port Model TPI tasks include these tasks, which are further defined in these
tables.

• Table A-12, Test Setup Tasks

• Table A-13, TLP Tasks

• Table A-14, BAR Initialization Tasks

• Table A-15, Example PIO Design Tasks

• Table A-16, Expectation Tasks

Table A-12: Test Setup Tasks

Name Input(s) Description

TSK_SYSTEM_INITIALIZATION None Waits for transaction interface reset and
link-up between the Root Port Model and
the Endpoint DUT.

This task must be invoked prior to the
Endpoint core initialization.

TSK_USR_DATA_SETUP_SEQ None Initializes global 4096 byte DATA_STORE
array entries to sequential values from
zero to 4095.

TSK_TX_CLK_EAT clock count 31:30 Waits clock_count transaction interface
clocks.

TSK_SIMULATION_TIMEOUT timeout 31:0 Sets master simulation timeout value in
units of transaction interface clocks. This
task should be used to ensure that all DUT
tests complete.

Table A-13: TLP Tasks

Name Input(s) Description

TSK_TX_TYPE0_CONFIGURATION_READ tag_

reg_addr_

first_dw_be_

7:0

11:0

3:0

Waits for transaction interface reset and
link-up between the Root Port Model and the
Endpoint DUT.

This task must be invoked prior to Endpoint
core initialization.

TSK_TX_TYPE1_CONFIGURATION_READ tag_

reg_addr_

first_dw_be_

7:0

11:0

3:0

Sends a Type 1 PCI Express Config Read TLP
from Root Port Model to reg_addr_ of
Endpoint DUT with tag_ and first_dw_be_
inputs.

CplD returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

http://www.xilinx.com

246 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix A: Example Design and Model Test Bench for Endpoint Configuration

TSK_TX_TYPE0_CONFIGURATION_WRITE tag_

reg_addr_

reg_data_

first_dw_be_

7:0

11:0

31:0

3:0

Sends a Type 0 PCI Express Config Write TLP
from Root Port Model to reg_addr_ of
Endpoint DUT with tag_ and first_dw_be_
inputs.

Cpl returned from the Endpoint DUT uses the
contents of global COMPLETE_ID_CFG as the
completion ID.

TSK_TX_TYPE1_CONFIGURATION_WRITE tag_

reg_addr_

reg_data_

first_dw_be_

7:0

11:0

31:0

3:0

Sends a Type 1 PCI Express Config Write TLP
from Root Port Model to reg_addr_ of
Endpoint DUT with tag_ and first_dw_be_
inputs.

Cpl returned from the Endpoint DUT uses the
contents of global COMPLETE_ID_CFG as the
completion ID.

TSK_TX_MEMORY_READ_32 tag_

tc_

len_

addr_

last_dw_be_

first_dw_be_

7:0

2:0

9:0

31:0

3:0

3:0

Sends a PCI Express Memory Read TLP from
Root Port to 32-bit memory address addr_ of
Endpoint DUT.

CplD returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

TSK_TX_MEMORY_READ_64 tag_

tc_

len_

addr_

last_dw_be_

first_dw_be_

7:0

2:0

9:0

63:0

3:0

3:0

Sends a PCI Express Memory Read TLP from
Root Port Model to 64-bit memory address
addr_ of Endpoint DUT.

CplD returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

TSK_TX_MEMORY_WRITE_32 tag_

tc_

len_

addr_

last_dw_be_

first_dw_be_

ep_

7:0

2:0

9:0

31:0

3:0

3:0

–

Sends a PCI Express Memory Write TLP from
Root Port Model to 32-bit memory address
addr_ of Endpoint DUT.

CplD returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

The global DATA_STORE byte array is used to
pass write data to task.

TSK_TX_MEMORY_WRITE_64 tag_

tc_

len_

addr_

last_dw_be_

first_dw_be_

ep_

7:0

2:0

9:0

63:0

3:0

3:0

–

Sends a PCI Express Memory Write TLP from
Root Port Model to 64-bit memory address
addr_ of Endpoint DUT.

CplD returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

The global DATA_STORE byte array is used to
pass write data to task.

Table A-13: TLP Tasks (Cont’d)

Name Input(s) Description

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 247
UG477 March 1, 2011

Root Port Model Test Bench for Endpoint

TSK_TX_TYPE0_CONFIGURATION_WRITE tag_

reg_addr_

reg_data_

first_dw_be_

7:0

11:0

31:0

3:0

Sends a Type 0 PCI Express Config Write TLP
from Root Port Model to reg_addr_ of
Endpoint DUT with tag_ and first_dw_be_
inputs.

Cpl returned from the Endpoint DUT uses the
contents of global COMPLETE_ID_CFG as the
completion ID.

TSK_TX_TYPE1_CONFIGURATION_WRITE tag_

reg_addr_

reg_data_

first_dw_be_

7:0

11:0

31:0

3:0

Sends a Type 1 PCI Express Config Write TLP
from Root Port Model to reg_addr_ of
Endpoint DUT with tag_ and first_dw_be_
inputs.

Cpl returned from the Endpoint DUT uses the
contents of global COMPLETE_ID_CFG as the
completion ID.

TSK_TX_MEMORY_READ_32 tag_

tc_

len_

addr_

last_dw_be_

first_dw_be_

7:0

2:0

9:0

31:0

3:0

3:0

Sends a PCI Express Memory Read TLP from
Root Port to 32-bit memory address addr_ of
Endpoint DUT.

CplD returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

TSK_TX_MEMORY_READ_64 tag_

tc_

len_

addr_

last_dw_be_

first_dw_be_

7:0

2:0

9:0

63:0

3:0

3:0

Sends a PCI Express Memory Read TLP from
Root Port Model to 64-bit memory address
addr_ of Endpoint DUT.

CplD returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

TSK_TX_MEMORY_WRITE_32 tag_

tc_

len_

addr_

last_dw_be_

first_dw_be_

ep_

7:0

2:0

9:0

31:0

3:0

3:0

–

Sends a PCI Express Memory Write TLP from
Root Port Model to 32-bit memory address
addr_ of Endpoint DUT.

CplD returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

The global DATA_STORE byte array is used to
pass write data to task.

TSK_TX_MEMORY_WRITE_64 tag_

tc_

len_

addr_

last_dw_be_

first_dw_be_

ep_

7:0

2:0

9:0

63:0

3:0

3:0

–

Sends a PCI Express Memory Write TLP from
Root Port Model to 64-bit memory address
addr_ of Endpoint DUT.

CplD returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

The global DATA_STORE byte array is used to
pass write data to task.

Table A-13: TLP Tasks (Cont’d)

Name Input(s) Description

http://www.xilinx.com

248 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix A: Example Design and Model Test Bench for Endpoint Configuration

TSK_TX_COMPLETION tag_

tc_

len_

comp_status_

7:0

2:0

9:0

2:0

Sends a PCI Express Completion TLP from
Root Port Model to the Endpoint DUT using
global COMPLETE_ID_CFG as the completion
ID.

TSK_TX_COMPLETION_DATA tag_

tc_

len_

byte_count

lower_addr

comp_status

ep_

7:0

2:0

9:0

11:0

6:0

2:0

–

Sends a PCI Express Completion with Data
TLP from Root Port Model to the Endpoint
DUT using global COMPLETE_ID_CFG as the
completion ID.

The global DATA_STORE byte array is used to
pass completion data to task.

TSK_TX_MESSAGE tag_

tc_

len_

data

message_rtg

message_code

7:0

2:0

9:0

63:0

2:0

7:0

Sends a PCI Express Message TLP from Root
Port Model to Endpoint DUT.

Completion returned from the Endpoint DUT
uses the contents of global
COMPLETE_ID_CFG as the completion ID.

TSK_TX_MESSAGE_DATA tag_

tc_

len_

data

message_rtg

message_code

7:0

2:0

9:0

63:0

2:0

7:0

Sends a PCI Express Message with Data TLP
from Root Port Model to Endpoint DUT.

The global DATA_STORE byte array is used to
pass message data to task.

Completion returned from the Endpoint DUT
uses the contents of global
COMPLETE_ID_CFG as the completion ID.

TSK_TX_IO_READ tag_

addr_

first_dw_be_

7:0

31:0

3:0

Sends a PCI Express I/O Read TLP from Root
Port Model to I/O address addr_[31:2] of the
Endpoint DUT.

CplD returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

TSK_TX_IO_WRITE tag_

addr_

first_dw_be_

data

7:0

31:0

3:0

31:0

Sends a PCI Express I/O Write TLP from Root
Port Model to I/O address addr_[31:2] of the
Endpoint DUT.

CplD returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

Table A-13: TLP Tasks (Cont’d)

Name Input(s) Description

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 249
UG477 March 1, 2011

Root Port Model Test Bench for Endpoint

TSK_TX_BAR_READ bar_index

byte_offset

tag_

tc_

2:0

31:0

7:0

2:0

Sends a PCI Express one DWORD Memory 32,
Memory 64, or I/O Read TLP from the Root
Port Model to the target address
corresponding to offset byte_offset from BAR
bar_index of the Endpoint DUT. This task
sends the appropriate Read TLP based on how
BAR bar_index has been configured during
initialization. This task can only be called after
TSK_BAR_INIT has successfully completed.

CplD returned from the Endpoint DUT use the
contents of global COMPLETE_ID_CFG as the
completion ID.

TSK_TX_BAR_WRITE bar_index

byte_offset

tag_

tc_

data_

2:0

31:0

7:0

2:0

31:0

Sends a PCI Express one DWORD Memory 32,
Memory 64, or I/O Write TLP from the Root
Port to the target address corresponding to
offset byte_offset from BAR bar_index of the
Endpoint DUT.

This task sends the appropriate Write TLP
based on how BAR bar_index has been
configured during initialization. This task can
only be called after TSK_BAR_INIT has
successfully completed.

TSK_WAIT_FOR_READ_DATA None Waits for the next completion with data TLP
that was sent by the Endpoint DUT. On
successful completion, the first DWORD of
data from the CplD is stored in the global
P_READ_DATA. This task should be called
immediately following any of the read tasks in
the TPI that request Completion with Data
TLPs to avoid any race conditions.

By default this task locally times out and
terminate the simulation after 1000 transaction
interface clocks. The global cpld_to_finish can
be set to zero so that local time out returns
execution to the calling test and does not result
in simulation timeout. For this case test
programs should check the global cpld_to,
which when set to one indicates that this task
has timed out and that the contents of
P_READ_DATA are invalid.

Table A-13: TLP Tasks (Cont’d)

Name Input(s) Description

http://www.xilinx.com

250 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix A: Example Design and Model Test Bench for Endpoint Configuration

Table A-14: BAR Initialization Tasks

Name Input(s) Description

TSK_BAR_INIT None Performs a standard sequence of Base Address Register
initialization tasks to the Endpoint device using the PCI
Express fabric. Performs a scan of the Endpoint's PCI BAR
range requirements, performs the necessary memory and I/O
space mapping calculations, and finally programs the
Endpoint so that it is ready to be accessed.

On completion, the user test program can begin memory and
I/O transactions to the device. This function displays to
standard output a memory and I/O table that details how the
Endpoint has been initialized. This task also initializes global
variables within the Root Port Model that are available for test
program usage. This task should only be called after
TSK_SYSTEM_INITIALIZATION.

TSK_BAR_SCAN None Performs a sequence of PCI Type 0 Configuration Writes and
Configuration Reads using the PCI Express logic to determine
the memory and I/O requirements for the Endpoint.

The task stores this information in the global array
BAR_INIT_P_BAR_RANGE[]. This task should only be called
after TSK_SYSTEM_INITIALIZATION.

TSK_BUILD_PCIE_MAP None Performs memory and I/O mapping algorithm and allocates
Memory 32, Memory 64, and I/O space based on the Endpoint
requirements.

This task has been customized to work in conjunction with the
limitations of the PIO design and should only be called after
completion of TSK_BAR_SCAN.

TSK_DISPLAY_PCIE_MAP None Displays the memory mapping information of the Endpoint
core’s PCI Base Address Registers. For each BAR, the BAR
value, the BAR range, and BAR type is given. This task should
only be called after completion of TSK_BUILD_PCIE_MAP.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 251
UG477 March 1, 2011

Root Port Model Test Bench for Endpoint

Table A-15: Example PIO Design Tasks

Name Input(s) Description

TSK_TX_READBACK_CONFIG None Performs a sequence of PCI Type 0 Configuration Reads to
the Endpoint device's Base Address Registers, PCI
Command Register, and PCIe Device Control Register
using the PCI Express logic.

This task should only be called after
TSK_SYSTEM_INITIALIZATION.

TSK_MEM_TEST_DATA_BUS bar_index 2:0 Tests whether the PIO design FPGA block RAM data bus
interface is correctly connected by performing a 32-bit
walking ones data test to the I/O or memory address
pointed to by the input bar_index.

For an exhaustive test, this task should be called four times,
once for each block RAM used in the PIO design.

TSK_MEM_TEST_ADDR_BUS bar_index

nBytes

2:0

31:0

Tests whether the PIO design FPGA block RAM address bus
interface is accurately connected by performing a walking
ones address test starting at the I/O or memory address
pointed to by the input bar_index.

For an exhaustive test, this task should be called four times,
once for each block RAM used in the PIO design.
Additionally, the nBytes input should specify the entire size
of the individual block RAM.

TSK_MEM_TEST_DEVICE bar_index

nBytes

2:0

31:0

Tests the integrity of each bit of the PIO design FPGA block
RAM by performing an increment/decrement test on all
bits starting at the block RAM pointed to by the input
bar_index with the range specified by input nBytes.

For an exhaustive test, this task should be called four times,
once for each block RAM used in the PIO design.
Additionally, the nBytes input should specify the entire size
of the individual block RAM.

http://www.xilinx.com

252 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix A: Example Design and Model Test Bench for Endpoint Configuration

Table A-16: Expectation Tasks

Name Input(s) Output Description

TSK_EXPECT_CPLD traffic_class

td

ep

attr

length

completer_id

completer_status

bcm

byte_count

requester_id

tag

address_low

2:0

-

-

1:0

9:0

15:0

2:0

-

11:0

15:0

7:0

6:0

Expect status Waits for a Completion with Data
TLP that matches traffic_class, td,
ep, attr, length, and payload.

Returns a 1 on successful
completion; 0 otherwise.

TSK_EXPECT_CPL traffic_class

td

ep

attr

completer_id

completer_status

bcm

byte_count

requester_id

tag

address_low

2:0

-

-

1:0

15:0

2:0

-

11:0

15:0

7:0

6:0

Expect

status

Waits for a Completion without
Data TLP that matches
traffic_class, td, ep, attr, and
length.

Returns a 1 on successful
completion; 0 otherwise.

TSK_EXPECT_MEMRD traffic_class

td

ep

attr

length

requester_id

tag

last_dw_be

first_dw_be

address

2:0

-

-

1:0

9:0

15:0

7:0

3:0

3:0

29:0

Expect status Waits for a 32-bit Address
Memory Read TLP with matching
header fields.

Returns a 1 on successful
completion; 0 otherwise. This task
can only be used in conjunction
with Bus Master designs.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 253
UG477 March 1, 2011

Root Port Model Test Bench for Endpoint

TSK_EXPECT_MEMRD64 traffic_class

td

ep

attr

length

requester_id

tag

last_dw_be

first_dw_be

address

2:0

-

-

1:0

9:0

15:0

7:0

3:0

3:0

61:0

Expect status Waits for a 64-bit Address
Memory Read TLP with matching
header fields. Returns a 1 on
successful completion; 0
otherwise.

This task can only be used in
conjunction with Bus Master
designs.

TSK_EXPECT_MEMWR traffic_class

td

ep

attr

length

requester_id

tag

last_dw_be

first_dw_be

address

2:0

-

-

1:0

9:0

15:0

7:0

3:0

3:0

29:0

Expect

status

Waits for a 32-bit Address
Memory Write TLP with matching
header fields. Returns a 1 on
successful completion; 0
otherwise.

This task can only be used in
conjunction with Bus Master
designs.

TSK_EXPECT_MEMWR64 traffic_class

td

ep

attr

length

requester_id

tag

last_dw_be

first_dw_be

address

2:0

-

-

1:0

9:0

15:0

7:0

3:0

3:0

61:0

Expect

status

Waits for a 64-bit Address
Memory Write TLP with matching
header fields. Returns a 1 on
successful completion; 0
otherwise.

This task can only be used in
conjunction with Bus Master
designs.

TSK_EXPECT_IOWR td

ep

requester_id

tag

first_dw_be

address

data

-

-

15:0

7:0

3:0

31:0

31:0

Expect

status

Waits for an I/O Write TLP with
matching header fields. Returns a
1 on successful completion; 0
otherwise.

This task can only be used in
conjunction with Bus Master
designs.

Table A-16: Expectation Tasks (Cont’d)

Name Input(s) Output Description

http://www.xilinx.com

254 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix A: Example Design and Model Test Bench for Endpoint Configuration

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 255
UG477 March 1, 2011

Appendix B

Example Design and Model Test Bench
for Root Port Configuration

Configurator Example Design
The Configurator example design, included with the 7 Series FPGAs Integrated Block for
PCI Express® in Root Port configuration generated by the CORE Generator™ software, is
a synthesizeable, lightweight design that demonstrates the minimum setup required for
the integrated block in Root Port configuration to begin application-level transactions with
an Endpoint.

System Overview
PCI Express devices require setup after power-on, before devices in the system can begin
application specific communication with each other. Minimally, two devices connected via
a PCI Express Link must have their Configuration spaces initialized and be enumerated to
communicate.

Root Ports facilitate PCI Express enumeration and configuration by sending Configuration
Read (CfgRd) and Write (CfgWr) TLPs to the downstream devices such as Endpoints and
Switches to set up the configuration spaces of those devices. When this process is complete,
higher-level interactions, such as Memory Reads (MemRd TLPs) and Writes (MemWr
TLPs), can occur within the PCI Express System.

The Configurator example design described herein performs the configuration
transactions required to enumerate and configure the Configuration space of a single
connected PCI Express Endpoint and allow application-specific interactions to occur.

Configurator Example Design Hardware
The Configurator example design consists of four high-level blocks:

• Root Port: The 7 series FPGAs integrated block in Root Port configuration.
• Configurator Block: Logical block which interacts with the configuration space of a

PCI Express Endpoint device connected to the Root Port.
• Configurator ROM: Read-only memory that sources configuration transactions to the

Configurator Block.
• PIO Master: Logical block which interacts with the user logic connected to the

Endpoint by exchanging data packets and checking the validity of the received data.
The data packets are limited to a single DWORD and represent the type of traffic that
would be generated by a CPU.

Note: The Configurator Block and Configurator ROM, and Root Port are logically grouped in the
RTL code within a wrapper file called the Configurator Wrapper.

http://www.xilinx.com

256 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix B: Example Design and Model Test Bench for Root Port Configuration

The Configurator example design, as delivered, is designed to be used with the PIO Slave
example included with Xilinx Endpoint cores and described in Appendix A, Example
Design and Model Test Bench for Endpoint Configuration. The PIO Master is useful for
simple bring-up and debugging, and is an example of how to interact with the
Configurator Wrapper. The Configurator example design can be modified to be used with
other Endpoints.

Figure B-1 shows the various components of the Configurator example design.
X-Ref Target - Figure B-1

Figure B-1: Configurator Example Design Components

ConfiguratorPIO Master

Data
Checker

Controller

Packet
Generator

Controller

Completion
Decoder

Packet
Generator

5.0 Gb/s
(Gen2)
Enabler

TX Mux

7 Series FPGAs
Integrated Block
for PCI Express
(Configured as

Root Port)

UG477_aB_01_091610

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 257
UG477 March 1, 2011

Configurator Example Design

Figure B-2 shows how the blocks are connected in an overall system view.

Configurator Block

The Configurator Block generates CfgRd and CfgWr TLPs and presents them to the
AXI4-Stream interface of the integrated block in Root Port configuration. The TLPs that the
Configurator Block generates are determined by the contents of the Configurator ROM.

The generated configuration traffic is predetermined by the designer to address their
particular system requirements. The configuration traffic is encoded in a
memory-initialization file (the Configurator ROM) which is synthesized as part of the
Configurator. The Configurator Block and the attached Configurator ROM is intended to
be usable a part of a real-world embedded design.

X-Ref Target - Figure B-2

Figure B-2: Configurator Example Design

UG477_aB_02_021711

PIO Master

Configurator
Wrapper

Configurator
Block

Configurator
ROM

Integrated Root Port

PCI Express Fabric

Integrated
Endpoint

Model

PIO Slave
Endpoint
Design

Configurator Example Design

AXI4-Stream Interface Pass-Through

Root Port
DUT for

PCI Express

AXI4-Stream Interface

http://www.xilinx.com

258 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix B: Example Design and Model Test Bench for Root Port Configuration

The Configurator Block steps through the Configuration ROM file and sends the TLPs
specified therein. Supported TLP types are Message, Message w/Data, Configuration
Write (Type 0), and Configuration Read (Type 0). For the Configuration packets, the
Configurator Block waits for a Completion to be returned before transmitting the next TLP.
If the Completion TLP fields do not match the expected values, PCI Express configuration
fails. However, the Data field of Completion TLPs is ignored and not checked

Note: There is no completion timeout mechanism in the Configurator Block, so if no Completion is
returned, the Configurator Block waits forever.

The Configurator Block has these parameters, which can be altered by the user:

• TCQ: Clock-to-out delay modeled by all registers in design.

• EXTRA_PIPELINE: Controls insertion of an extra pipeline stage on the Receive
AXI4-Stream interface for timing.

• ROM_FILE: File name containing configuration steps to perform.

• ROM_SIZE: Number of lines in ROM_FILE containing data (equals number of TLPs
to send/2).

• REQUESTER_ID: Value for the Requester ID field in outgoing TLPs.

When the Configurator Block design is used, all TLP traffic must pass through the
Configurator Block. The user design is responsible for asserting the start_config input (for
one clock cycle) to initiate the configuration process when user_lnk_up has been asserted
by the core. Following start_config, the Configurator Block performs whatever
configuration steps have been specified in the Configuration ROM. During configuration,
the Configurator Block controls the core's AXI4-Stream interface. Following configuration,
all AXI4-Stream traffic is routed to/from the User Application, which in the case of this
example design is the PIO Master. The end of configuration is signaled by the assertion of
finished_config. If configuration is unsuccessful for some reason, failed_config is also
asserted.

If used in a system that supports PCIe v2.1 5.0 Gb/s links, the Configurator Block begins its
process by attempting to up-train the link from 2.5 Gb/s to 5.0 Gb/s. This feature is
enabled depending on the LINK_CAP_MAX_LINK_SPEED parameter on the
Configurator Wrapper.

The Configurator does not support the user throttling received data on the Receive
AXI4-Stream interface. Because of this, the Root Port inputs which control throttling are
not included on the Configurator Wrapper. These signals are m_axis_rx_tready and
rx_np_ok. This is a limitation of the Configurator Example Design and not of the
Integrated Block for PCI Express in Root Port configuration. This means that the user
design interfacing with the Configurator Example Design must be able to accept received
data at line rate.

Configurator ROM

The Configurator ROM stores the necessary configuration transactions to configure a PCI
Express Endpoint. This ROM interfaces with the Configurator Block to send these
transactions over the PCI Express link.

The example ROM file included with this design shows the operations needed to configure
a 7 Series FPGAs Integrated Endpoint Block for PCI Express and PIO Example Design.

The Configurator ROM can be customized for other Endpoints and PCI Express system
topologies. The unique set of configuration transactions required depends on the Endpoint
that interacts with the Root Port. This information can be obtained from the documentation
provided with the Endpoint.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 259
UG477 March 1, 2011

Configurator Example Design

The ROM file follows the format specified in the Verilog specification (IEEE 1364-2001)
section 17.2.8, which describes using the $readmemb function to pre-load data into a RAM
or ROM. Verilog-style comments are allowed.

The file is read by the simulator or synthesis tool and each memory value encountered is
used as a single location in memory. Digits can be separated by an underscore character (_)
for clarity without constituting a new location.

Each configuration transaction specified uses two adjacent memory locations - the first
location specifies the header fields, while the second location specifies the 32-bit data
payload. (For CfgRd TLPs and Messages without data, the data location is unused but still
present.) In other words, header fields are on even addresses, while data payloads are on
odd addresses.

For headers, Messages and CfgRd/CfgWr TLPs use different fields. For all TLPs, two bits
specify the TLP type. For Messages, Message Routing and Message Code are specified. For
CfgRd/CfgWr TLPs, Function Number, Register Number, and 1st DWORD Byte-Enable
are specified. The specific bit layout is shown in the example ROM file.

PIO Master

The PIO Master demonstrates how a user-application design might interact with the
Configurator Block. It directs the Configurator Block to bring up the link partner at the
appropriate time, and then (after successful bring-up) generates and consumes bus traffic.
The PIO Master performs writes and reads across the PCI Express Link to the PIO Slave
Example Design (from the Endpoint core) to confirm basic operation of the link and the
Endpoint.

The PIO Master waits until user_lnk_up is asserted by the Root Port. It then asserts
start_config to the Configurator Block. When the Configurator Block asserts
finished_config, the PIO Master writes and reads to/from each BAR in the PIO Slave
design. If the readback data matches what was written, the PIO Master asserts its
pio_test_finished output. If there is a data mismatch or the Configurator Block fails to
configure the Endpoint, the PIO Master asserts its pio_test_failed output. The PIO Master's
operation can be restarted by asserting its pio_test_restart input for one clock cycle.

Configurator File Structure

Table B-1 defines the Configurator example design file structure.

Table B-1: Example Design File Structure

File Description

xilinx_pcie_2_1_rport_v6.v Top-level wrapper file for Configurator example
design

cgator_wrapper.v Wrapper for Configurator and Root Port

cgator.v Wrapper for Configurator sub-blocks

cgator_cpl_decoder.v Completion decoder

cgator_pkt_generator.v Configuration TLP generator

cgator_tx_mux.v Transmit AXI4-Stream muxing logic

cgator_gen2_enabler.v 5.0 Gb/s directed speed change module

cgator_controller.v Configurator transmit engine

http://www.xilinx.com

260 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix B: Example Design and Model Test Bench for Root Port Configuration

The hierarchy of the Configurator example design is:

• xilinx_pcie_2_1_rport_v6topdirectory

• cgator_wrapper

- pcie_2_1_rport_v6 (in the source directory)
This directory contains all the source files for the Integrated Block for PCI
Express in Root Port Configuration.

- cgator

- cgator_cpl_decoder

- cgator_pkt_generator

- cgator_tx_mux

- cgator_gen2_enabler

- cgator_controller
This directory contains <cgator_cfg_rom.data> (specified by ROM_FILE)*

• pio_master

- pio_master_controller

- pio_master_checker

- pio_master_pkt_generator

Note: cgator_cfg_rom.data is the default name of the ROM data file. The user can override this
by changing the value of the ROM_FILE parameter.

Configurator Example Design Summary
The Configurator example design is a synthesizable design that demonstrates the
capabilities of the 7 Series FPGAs Integrated Block for PCI Express when configured as a
Root Port. The example is provided via the CORE Generator software and uses the
Endpoint PIO example as a target for PCI Express enumeration and configuration. The
design can be modified to target other Endpoints by changing the contents of a ROM file.

cgator_cfg_rom.data Configurator ROM file

pio_master.v Wrapper for PIO Master

pio_master_controller.v TX and RX Engine for PIO Master

pio_master_checker.v Checks incoming User-Application Completion TLPs

pio_master_pkt_generator.v Generates User-Application TLPs

Table B-1: Example Design File Structure (Cont’d)

File Description

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 261
UG477 March 1, 2011

Endpoint Model Test Bench for Root Port

Endpoint Model Test Bench for Root Port
The Endpoint model test bench for the 7 Series FPGAs Integrated Block for PCI Express in
Root Port configuration is a simple example test bench that connects the Configurator
example design and the PCI Express Endpoint model allowing the two to operate like two
devices in a physical system. As the Configurator example design consists of logic that
initializes itself and generates and consumes bus traffic, the example test bench only
implements logic to monitor the operation of the system and terminate the simulation.

The Endpoint model test bench consists of:

• Verilog or VHDL source code for all Endpoint model components

• PIO slave design

Figure B-2, page 257 illustrates the Endpoint model coupled with the Configurator
example design.

Architecture
The Endpoint model consists of these blocks:

• PCI Express Endpoint (7 Series FPGAs Integrated Block for PCI Express in Endpoint
configuration) model.

• PIO slave design, consisting of:

• PIO_RX_ENGINE

• PIO_TX_ENGINE

• PIO_EP_MEM

• PIO_TO_CTRL

The PIO_RX_ENGINE and PIO_TX_ENGINE blocks interface with the ep block for
reception and transmission of TLPs from/to the Root Port Design Under Test (DUT). The
Root Port DUT consists of the Integrated Block for PCI Express configured as a Root Port
and the Configurator Example Design, which consists of a Configurator block and a PIO
Master design, or customer design.

The PIO slave design is described in detail in Appendix A, Programmed Input/Output:
Endpoint Example Design.

Simulating the Design
Three simulation script files are provided with the model to facilitate simulation with
Synopsys VCS and VCS MX, Cadence IES, and Mentor Graphics ModelSim simulators:

• simulate_vcs.sh (Verilog only)
• simulate_ncsim.sh (Verilog only)
• simulate_mti.do

The example simulation script files are located in this directory:

<project_dir>/<component_name>/simulation/functional

Instructions for simulating the Configurator example design with the Endpoint model are
provided in Chapter 3, Getting Started Example Design.

Note: For Cadence IES users, the work construct must be manually inserted into the cds.lib file:
DEFINE WORK WORK.

http://www.xilinx.com

262 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix B: Example Design and Model Test Bench for Root Port Configuration

Scaled Simulation Timeouts
The simulation model of the 7 Series FPGAs Integrated Block for PCI Express uses scaled
down times during link training to allow for the link to train in a reasonable amount of
time during simulation. According to the PCI Express Specification, rev. 2.1, there are various
timeouts associated with the link training and status state machine (LTSSM) states. The
7 Series FPGAs Integrated Block for PCI Express scales these timeouts by a factor of 256 in
simulation, except in the Recovery Speed_1 LTSSM state, where the timeouts are not
scaled.

Waveform Dumping
Table B-2 describes the available simulator waveform dump file formats, each of which is
provided in the simulators native file format. The same mechanism is used for VCS and
ModelSim.

The Endpoint model test bench provides a mechanism for outputting the simulation
waveform to file by specifying the +dump_all command line parameter to the simulator.

For example, the script file simulate_ncsim.sh (used to start the Cadence IES
simulator) can indicate to the Endpoint model that the waveform should be saved to a file
using this command line:

ncsim work.boardx01 +dump_all

Output Logging
The test bench outputs messages, captured in the simulation log, indicating the time at
which these occur:

• user_reset deasserted

• user_lnk_up asserted

• cfg_done asserted by the Configurator

• pio_test_finished asserted by the PIO Master

• Simulation Timeout (if pio_test_finished or pio_test_failed never asserted)

Table B-2: Simulator Dump File Format

Simulator Dump File Format

Synopsys VCS and VCS MX .vpd

ModelSim .vcd

Cadence IES .trn

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 263
UG477 March 1, 2011

Appendix C

Migration Considerations

For users migrating to the 7 Series FPGAs Integrated Block for PCI Express® from the
Virtex-6 FPGA Integrated Block for PCI Express, the list in this appendix describes the
differences in behaviors and options between the 7 Series FPGAs Integrated Block for PCI
Express core and the Virtex-6 FPGA Integrated Block for PCI Express core, version v2.x
with the AXI interface. For additional differences in behavior and signal naming between
the 7 Series FPGAs Integrated Block for PCI Express core and Virtex-6 FPGA Integrated
Block for PCI Express core, version v1.x, with TRN interface, refer to Appendix F, TRN to
AXI Migration Considerations.

Core Capability Differences
• 8 lane, 5.0 Gb/s (Gen2) Speed Operation for Root Port Configuration: The 7 Series

FPGAs Integrated Block for PCI Express also supports the 5.0 Gb/s speed operation
for the 8-lane Root Port Configuration.

• 128-bit Interface: The 7 Series FPGAs Integrated Block for PCI Express supports the
128-bit interface for the 8 lane, 2.5 Gb/s and 4 lane, 5.0 Gb/s configurations.

Configuration Interface
Table C-1 lists the Configuration interface signals whose names were changed.

Table C-1: Configuration Interface Changes

Name
Signal Name in

Virtex-6 FPGA Integrated
Block for PCI Express

Signal Name in 7 Series
FPGAs Integrated Block

for PCI Express

Configuration Data Out cfg_do cfg_mgmt_do

Configuration Read Write Done cfg_rd_wr_done cfg_mgmt_rd_wr_done

Configuration Data In cfg_di cfg_mgmt_di

Configuration DWORD Address cfg_dwaddr cfg_mgmt_dwaddr

Configuration Byte Enable cfg_byte_en cfg_mgmt_byte_en

Configuration Write Enable cfg_wr_en cfg_mgmt_wr_en

Configuration Read Enable cfg_rd_en cfg_mgmt_rd_en

http://www.xilinx.com

264 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix C: Migration Considerations

Table C-2 lists the new Configuration interface signals. See Design with Configuration
Space Registers and Configuration Interface in Chapter 5 for detailed information.

Error Reporting Signals
The 7 Series FPGAs Integrated Block for PCI Express core supports the additional error
reporting signals listed below. See Design with Configuration Space Registers and
Configuration Interface in Chapter 5 for detailed information.

• cfg_err_poisoned

• cfg_err_malformed

• cfg_err_acs

• cfg_err_atomic_egress_blocked

• cfg_err_mc_blocked

• cfg_err_internal_uncor

• cfg_err_internal_cor

• cfg_err_norecovery

ID Initial Values
The ID initial values (Vendor ID, Device ID, Revision ID, Subsystem Vendor ID, and
Subsystem ID) have changed from attributes on Virtex-6 FPGA Integrated Block for
PCI Express to input ports on the 7 Series FPGAs Integrated Block for PCI Express. The
values set for these via the CORE Generator software GUI are used to drive these ports in
the 7 Series FPGAs Integrated Block for PCI Express. These ports are not available at the
Core boundary of the wrapper, but are available within the top-level wrapper of the

Table C-2: New Configuration Interface Signals

Signal Description

cfg_mgmt_wr_rw1c_as_rw New Configuration Write signals in the
core.

cfg_mgmt_wr_readonly

cfg_pm_halt_aspm_l0s New Power Management signals in the
core.

cfg_pm_halt_aspm_l1

cfg_pm_force_state[1:0]

cfg_pm_force_state_en

cfg_err_aer_headerlog[127:0] New AER Interface signals.

cfg_err_aer_headerlog_set

cfg_aer_interrupt_msgnum[4:0]

cfg_aer_ecrc_gen_en

cfg_aer_ecrc_check_en

cfg_pciecap_interrupt_msgnum[4:0] New Interrupt interface signals

cfg_interrupt_stat

cfg_vc_tcvc_map[6:0] New TC/VC Map signal

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 265
UG477 March 1, 2011

Physical Layer Interface

7 Series FPGAs Integrated Block for PCI Express. Table C-3 lists the ID values and the
corresponding ports.

Physical Layer Interface
Table C-4 and Table C-5 list the changes in the Physical Layer interface in the 7 Series
FPGAs Integrated Block for PCI Express.

Table C-3: ID Values and Corresponding Ports

ID Value Input Port

Vendor ID cfg_vend_id[15:0]

Device ID cfg_dev_id[15:0]

Revision ID cfg_rev_id[7:0]

Subsystem Vendor ID cfg_subsys_vend_id[15:0]

Subsystem ID cfg_subsys_id[15:0]

Table C-4: Physical Layer Signal Name Changes

Name in Virtex-6 FPGA Integrated Block
for PCI Express Core

Name in 7 Series FPGAs Integrated Block
for PCI Express Core

pl_link_gen2_capable pl_link_gen2_cap

pl_link_upcfg_capable pl_link_upcfg_cap

pl_sel_link_rate pl_sel_lnk_rate

pl_sel_link_width pl_sel_lnk_width

Table C-5: New Physical Layer Signals

Signal Description

pl_directed_change_done Indicates the Directed change is done.

pl_phy_lnk_up Indicates Physical Layer Link Up Status

pl_rx_pm_state Indicates RX Power Management State

pl_tx_pm_state Indicates TX Power Management State

http://www.xilinx.com

266 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix C: Migration Considerations

Dynamic Reconfiguration Port Interface
Some signals names on the Dynamic Reconfiguration Port Interface have changed in the
7 Series FPGAs Integrated Block for PCI Express. Table C-6 shows the signals that have
changed on this interface.

Table C-6: Dynamic Reconfiguration Port Name Changes

Name in Virtex-6 FPGA
Integrated Block for PCI Express

Name in 7 Series FPGAs
Integrated Block for PCI Express

pcie_drp_den pcie_drp_en

pcie_drp_dwe pcie_drp_we

pcie_drp_daddr pcie_drp_addr

pcie_drp_drdy pcie_drp_rdy

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 267
UG477 March 1, 2011

Appendix D

Debugging Designs

This appendix provides information on using resources available on the Xilinx Support
website, available debug tools, and a step-by-step process for debugging designs that use
the 7 Series FPGAs Integrated Block for PCI Express®. This appendix uses flow diagrams
to guide the user through the debug process.

This information is found in this appendix:

• Finding Help on Xilinx.com

• Contacting Xilinx Technical Support

• Debug Tools

• Hardware Debug

• Simulation Debug

Finding Help on Xilinx.com
To help in the design and debug process when using the 7 series FPGA, the Xilinx Support
webpage (www.xilinx.com/support) contains key resources such as Product
documentation, Release Notes, Answer Records, and links to opening a Technical Support
case.

Documentation
The Data Sheet and User Guide are the main documents associated with the 7 Series
FPGAs Integrated Block, as shown in Table D-1.

These Integrated Block for PCI Express documents along with documentation related to all
products that aid in the design process can be found on the Xilinx Support webpage.
Documentation is sorted by product family at the main support page or by solution at the
Documentation Center.

Table D-1: 7 Series FPGAs Integrated Block for PCI Express Documentation

Designation Description

DS

Data Sheet: provides a high-level description of the integrated block and
key features. It includes information on which ISE® software version is
supported by the current LogiCORE™ IP version used to instantiate the
integrated block.

UG

User Guide: provides information on generating an integrated block
design, detailed descriptions of the interface and how to use the product.
The User Guide contains waveforms to show interactions with the block
and other important information needed to design with the product.

http://www.xilinx.com/support
http://www.xilinx.com

268 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix D: Debugging Designs

To see the available documentation by device family:

• Navigate to www.xilinx.com/support.

To see the available documentation by solution:

• Navigate to www.xilinx.com/support.

• Select the Documentation tab located at the top of the webpage.

• This is the Documentation Center where Xilinx documentation is sorted by Devices,
Boards, IP, Design Tools, Doc Type, and Topic.

Answer Records

Answer Records include information on commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a product.
Answer Records are created and maintained daily ensuring users have access to the most
up-to-date information on Xilinx products. Answer Records can be found by searching the
Answers Database.

To use the Answers Database Search:

• Navigate to www.xilinx.com/support. The Answers Database Search is located at the
top of this webpage.

• Enter keywords in the provided search field and select Search.

• Examples of searchable keywords are product names, error messages, or a generic
summary of the issue encountered.

Contacting Xilinx Technical Support
Xilinx provides premier technical support for customers encountering issues that requires
additional assistance.

To contact Technical Support:

• Navigate to www.xilinx.com/support.

• Open a WebCase by selecting the WebCase link located under Support Quick Links.

When opening a WebCase, include:

• Target FPGA including package and speed grade

• All applicable ISE, synthesis (if not XST), and simulator software versions

• The XCO file created during generation of the LogiCORE IP wrapper

• This file is located in the directory targeted for the CORE Generator software
project

Additional files might be required based on the specific issue. See the relevant sections in
this debug guide for further information on specific files to include with the WebCase.

http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 269
UG477 March 1, 2011

Debug Tools

Debug Tools
There are many tools available to debug PCI Express design issues. This section indicates
which tools are useful for debugging the various situations encountered.

Example Design
Xilinx Endpoint for PCI Express products come with a synthesizable back-end application
called the PIO design that has been tested and is proven to be interoperable in available
systems. The design appropriately handles all incoming one Endpoint read and write
transactions. It returns completions for non-posted transactions and updates the target
memory space for writes. For more information, see Programmed Input/Output:
Endpoint Example Design, page 223.

ChipScope Pro Tool
The ChipScope™ Pro tool inserts logic analyzer, bus analyzer, and virtual I/O software
cores directly into the user design. The ChipScope Pro tool allows the user to set trigger
conditions to capture application and Integrated Block port signals in hardware. Captured
signals can then be analyzed through the ChipScope Pro Logic Analyzer tool. For detailed
information on the ChipScope Pro tool, visit www.xilinx.com/chipscope.

Link Analyzers
Third party link analyzers show link traffic in a graphical or text format. Lecroy, Agilent,
and Vmetro are companies that make common analyzers available today. These tools
greatly assist in debugging link issues and allow users to capture data which Xilinx
support representatives can view to assist in interpreting link behavior.

Third Party Software Tools
This section describes third-party software tools that can be useful in debugging.

LSPCI (Linux)

LSPCI is available on Linux platforms and allows users to view the PCI Express device
configuration space. LSPCI is usually found in the /sbin directory. LSPCI displays a list of
devices on the PCI buses in the system. See the LSPCI manual for all command options.
Some useful commands for debugging include:

• lspci -x -d [<vendor>]:[<device>]

This displays the first 64 bytes of configuration space in hexadecimal form for the
device with vendor and device ID specified (omit the -d option to display information
for all devices). The default Vendor/Device ID for Xilinx cores is 10EE:6012. Here is a
sample of a read of the configuration space of a Xilinx device:

> lspci -x -d 10EE:6012
81:00.0 Memory controller: Xilinx Corporation: Unknown device 6012
00: ee 10 12 60 07 00 10 00 00 00 80 05 10 00 00 00
10: 00 00 80 fa 00 00 00 00 00 00 00 00 00 00 00 00
20: 00 00 00 00 00 00 00 00 00 00 00 00 ee 10 6f 50
30: 00 00 00 00 40 00 00 00 00 00 00 00 05 01 00 00

Included in this section of the configuration space are the Device ID, Vendor ID, Class
Code, Status and Command, and Base Address Registers.

http://www.xilinx.com/chipscope
http://www.xilinx.com

270 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix D: Debugging Designs

• lspci -xxxx -d [<vendor>]:[<device>]

This displays the extended configuration space of the device. It can be useful to read
the extended configuration space on the root and look for the Advanced Error
Reporting (AER) registers. These registers provide more information on why the
device has flagged an error (for example, it might show that a correctable error was
issued because of a replay timer timeout).

• lspci -k

Shows kernel drivers handling each device and kernel modules capable of handling it
(works with kernel 2.6 or later).

PCItree (Windows)

PCItree can be downloaded at www.pcitree.de and allows the user to view the PCI Express
device configuration space and perform one DWORD memory writes and reads to the
aperture.

The configuration space is displayed by default in the lower right corner when the device
is selected, as shown in Figure D-1.
X-Ref Target - Figure D-1

Figure D-1: PCItree with Read of Configuration Space

UG477_aD_01_101810

http://www.pcitree.de
http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 271
UG477 March 1, 2011

Hardware Debug

HWDIRECT (Windows)

HWDIRECT can be purchased at www.eprotek.com and allows the user to view the
PCI Express device configuration space as well as the extended configuration space
(including the AER registers on the root).

PCI-SIG Software Suites

PCI-SIG® software suites such as PCIE-CV can be used to test compliance with the
specification. This software can be downloaded at www.pcisig.com.

Hardware Debug
Hardware issues can range from device recognition issues to problems seen after hours of
testing. This section provides debug flow diagrams for some of the most common issues
experienced by users. Endpoints that are shaded gray indicate that more information can
be found in sections after Figure D-3.

X-Ref Target - Figure D-2

Figure D-2: HWDIRECT with Read of Configuration Space

UG477_aD_02_101810

http://www.eprotek.com
http://www.pcisig.com
http://www.xilinx.com

272 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix D: Debugging Designs

X-Ref Target - Figure D-3

Figure D-3: Design Fails in Hardware Debug Flow Diagram

UG477_aD_03_012811

Design Fails in Hardware

Does a soft reset fix the problem?
(user_lnk_up = 1)

No

Is user_reset deasserted?
(user_reset = 0)

No

Is user_lnk_up asserted?
(user_lnk_up = 1)

To eliminate FPGA configuration
as a root cause, perform a soft
restart of the system. Performing a
soft reset on the system will keep
power applied and forces
re-enumeration of the device.

One reason user_reset stays
asserted other than the system
reset being asserted is due to a
faulty clock. This might keep the
PLL from locking which holds
user_reset asserted.

Yes
See “Link is Training Debug” section.

Yes

Yes

See "FPGA Configuration Time
Debug" section.

Is it a multi-lane link?

Multi-lane links are susceptible to
crosstalk and noise when all lanes
are switching during training.
A quick test for this is forcing one
lane operation. This can be done
by using an interposer or adapter
to isolate the upper lanes or use
a tape such as Scotch tape and
tape off the upper lanes on the
connector. If it is an embedded
board, remove the AC capacitors if
possible to isolate the lanes.

Yes Force x1 Operation

Does user_lnk_up = 1 when using
as x1 only?

There are potentially issues
with the board layout causing
interference when all lanes are
switching. See board debug
suggestions.

Yes

No

No

No

Do you have a link analyzer?

Use the link analyzer to monitor the training
sequence and to determine the point of failure.
Have the analyzer trigger on the first TS1 that it
recognizes and then compare the output to the
LTSSM state machine sequences outlined in
Chapter 4 of the PCI Express Base Specification.

Yes

The ChipScope tool can be used to
determine the point of failure.

Using probes, an LED, ChipScope
or some other method, determine if
user_lnk_up is asserted. When
user_lnk_up is High, it indicates
the core has achieved link up
meaning the LTSSM is in L0 state
and the data link layer is in the
DL_Active state.

See "Clock Debug" section.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 273
UG477 March 1, 2011

Hardware Debug

FPGA Configuration Time Debug
Device initialization and configuration issues can be caused by not having the FPGA
configured fast enough to enter link training and be recognized by the system. Section 6.6
of PCI Express Base Specification, rev. 2.1 states two rules that might be impacted by FPGA
Configuration Time:

• A component must enter the LTSSM Detect state within 20 ms of the end of the
Fundamental reset.

• A system must guarantee that all components intended to be software visible at boot
time are ready to receive Configuration Requests within 100 ms of the end of
Conventional Reset at the Root Complex.

These statements basically mean the FPGA must be configured within a certain finite time,
and not meeting these requirements could cause problems with link training and device
recognition.

Configuration can be accomplished using an onboard PROM or dynamically using JTAG.
When using JTAG to configure the device, configuration typically occurs after the Chipset
has enumerated each peripheral. After configuring the FPGA, a soft reset is required to
restart enumeration and configuration of the device. A soft reset on a Windows based PC
is performed by going to Start → Shut Down and then selecting Restart.

To eliminate FPGA configuration as a root cause, the designer should perform a soft restart
of the system. Performing a soft reset on the system keeps power applied and forces
re-enumeration of the device. If the device links up and is recognized after a soft reset is
performed, then FPGA configuration is most likely the issue. Most typical systems use
ATX power supplies which provide some margin on this 100 ms window as the power
supply is normally valid before the 100 ms window starts. For more information on FPGA
configuration, see Chapter 7, FPGA Configuration.

http://www.xilinx.com

274 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix D: Debugging Designs

Link is Training Debug
Figure D-4 shows the flowchart for link trained debug.

X-Ref Target - Figure D-4

Figure D-4: Link Trained Debug Flow Diagram

UG477_aD_04_012811

Link is Training
(user_lnk_up = 1)

Is the device recognized by the system?
Can it be seen by PCITREE (Windows) or

lspci (Linux)?

Does a soft reset fix the problem?
(user_lnk_up = 1)

No
To eliminate FPGA configuration
as a root cause, perform a soft
restart of the system. Performing a
soft reset on the system keeps
power applied and forces
re-enumeration of the device.
If this fixes the problem, then it is
likely the FPGA is not configured in
time for the host to access the card.

Yes

Yes

Does using the PIO example
design fix the problem?

No

No

No
Do you have a link analyzer?

Does mirroring the PIO
CORE Generator GUI settings for
the user design fix the problem?

PCITREE and lspci scan the
the system and display devices
recognized during startup. These
tools show the PCI configuration
space and its settings within
the device.

Yes

The PIO design is known to work.
Often, the PIO design works when
a user design does not. This usually
indicates some parameter or resource
conflict due to settings used for the
user design configuration.
It is recommended to mirror the PIO
CORE Generator GUI settings into
the user design. Even though the
design might not function, it should
still be recognized by the system.

Yes

Check for configuration settings
conflict. See the "Debugging

PCI Configuration Space Parameters"
section.

Yes

If the PIO design works, but mirroring the
configuration parameters does not fix the

problem, then attention should be focused on
the user application design. See the "Application

Requirements" section.

No

With no link analyzer, it is possible to use
the ChipScope tool to gather the same information.

See "FPGA Configuration Time
Debug" section.

It is likely the problem is due to the device
not responding properly to some type of access. A
link analyzer allows the user to view the link traffic

and determine if something is incorrect. See
the "Using a Link Analyzer to Debug
Device Recognition Issues” section.

See “Data Transfer Failing Debug”
section.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 275
UG477 March 1, 2011

Hardware Debug

FPGA Configuration Time Debug

Device initialization and configuration issues can be caused by not having the FPGA
configured fast enough to enter link training and be recognized by the system. Section 6.6
of PCI Express Base Specification, rev. 2.1 states two rules that might be impacted by FPGA
Configuration Time:

• A component must enter the LTSSM Detect state within 20 ms of the end of the
Fundamental reset.

• A system must guarantee that all components intended to be software visible at boot
time are ready to receive Configuration Requests within 100 ms of the end of
Conventional Reset at the Root Complex.

These statements basically mean the FPGA must be configured within a certain finite time,
and not meeting these requirements could cause problems with link training and device
recognition.

Configuration can be accomplished using an onboard PROM or dynamically using JTAG.
When using JTAG to configure the device, configuration typically occurs after the Chipset
has enumerated each peripheral. After configuring the FPGA, a soft reset is required to
restart enumeration and configuration of the device. A soft reset on a Windows based PC
is performed by going to Start → Shut Down and then selecting Restart.

To eliminate FPGA configuration as a root cause, the designer should perform a soft restart
of the system. Performing a soft reset on the system keeps power applied and forces
re-enumeration of the device. If the device links up and is recognized after a soft reset is
performed, then FPGA configuration is most likely the issue. Most typical systems use
ATX power supplies which provides some margin on this 100 ms window as the power
supply is normally valid before the 100 ms window starts. For more information on FPGA
configuration, see Chapter 7, FPGA Configuration.

Debugging PCI Configuration Space Parameters

Often, a user application fails to be recognized by the system, but the Xilinx PIO Example
design works. In these cases, the user application is often using a PCI configuration space
setting that is interfering with the system systems ability to recognize and allocate
resources to the card.

Xilinx solutions for PCI Express handle all configuration transactions internally and
generate the correct responses to incoming configuration requests. Chipsets have limits as
to the amount of system resources it can allocate and the core must be configured to adhere
to these limitations.

The resources requested by the Endpoint are identified by the BAR settings within the
Endpoint configuration space. The user should verify that the resources requested in each
BAR can be allocated by the chipset. I/O BARs are especially limited so configuring a large
I/O BAR typically prevents the chipset from configuring the device. Generate a core that
implements a small amount of memory (approximately 2 KB) to identify if this is the root
cause.

The Class Code setting selected in the CORE Generator software GUI can also affect
configuration. The Class Code informs the Chipset as to what type of device the Endpoint
is. Chipsets might expect a certain type of device to be plugged into the PCI Express slot
and configuration might fail if it reads an unexpected Class Code. The BIOS could be
configurable to work around this issue.

Use the PIO design with default settings to rule out any device allocation issues. The PIO
design default settings have proven to work in all systems encountered when debugging

http://www.xilinx.com

276 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix D: Debugging Designs

problems. If the default settings allow the device to be recognized, then change the PIO
design settings to match the intended user application by changing the PIO configuration
the CORE Generator software GUI. Trial and error might be required to pinpoint the issue
if a link analyzer is not available.

Using a link analyzer, it is possible to monitor the link traffic and possibly determine when
during the enumeration and configuration process problems occur.

Application Requirements

During enumeration, it is possible for the chipset to issue TLP traffic that is passed from the
core to the backend application. A common oversight when designing custom backend
applications is to not have logic which handles every type incoming request. As a result, no
response is created and problems arise. The PIO design has the necessary backend
functions to respond correctly to any incoming request. It is the responsibility of the
application to generate the correct response. These packet types are presented to the
application:

• Requests targeting the Expansion ROM (if enabled)

• Message TLPs

• Memory or I/O requests targeting a BAR

• All completion packets

The PIO design, can be used to rule out any of these types of concerns, as the PIO design
responds to all incoming transactions to the user application in some way to ensure the
host receives the proper response allowing the system to progress. If the PIO design works,
but the custom application does not, some transaction is not being handled properly.

The ChipScope tool should be implemented on the wrapper Receive AXI4-Stream interface
to identify if requests targeting the backend application are drained and completed
successfully. The AXI4-Stream interface signals that should be probed in the ChipScope
tool are defined in Table D-2, page 279.

Using a Link Analyzer to Debug Device Recognition Issues

In cases where the link is up (user_lnk_up = 1), but the device is not recognized by the
system, a link analyzer can help solve the issue. It is likely the FPGA is not responding
properly to some type of access. The link view can be used to analyze the traffic and see if
anything looks out of place.

To focus on the issue, it might be necessary to try different triggers. Here are some trigger
examples:

• Trigger on the first INIT_FC1 and/or UPDATE_FC in either direction. This allows the
analyzer to begin capture after link up.

• The first TLP normally transmitted to an Endpoint is the Set Slot Power Limit
Message. This usually occurs before Configuration traffic begins. This might be a
good trigger point.

• Trigger on Configuration TLPs.

• Trigger on Memory Read or Memory Write TLPs.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 277
UG477 March 1, 2011

Hardware Debug

Data Transfer Failing Debug
Figure D-5 shows the flowchart for data transfer debug.

X-Ref Target - Figure D-5

Figure D-5: Data Transfer Debug Flow Diagram

UG477_aD_05_101810

Is the system freezing or hanging?

Is use_lnk_up toggling?

No

Yes

Yes

Fatal Error? Blue screen?
Other errors?

No

No

No

The most often cause of a system
freeze or hang is due to a
completion timeout occurring
on the host. This happens when
the host issues a non-posted
transaction (usually a memory
read) to the Endpoint and the
Endpoint's user application does
not properly respond.

If user_lnk_up is toggling, it usually
means the physical link is marginal.
In these cases, the link can be
established but might then fail once
traffic begins to flow. Use ChipScope
Pro tool or probe user_lnk_up to a logic
analyzer and determine if it is toggling.

Link could be marginal and packets
are failing to pass LCRC check.

If read or write transactions do not
appear on the trn interface, it means
that most likely the incoming packet
did not hit a BAR. Verify incoming

TLP addresses against BAR
allocation.

A memory write that misses a BAR
results in a Non-Fatal error message.

A non-posted transaction that misses a
BAR results in a Completion with

UR status.

No

If completion packets fail to reach their
destination, ensure the packet

contained the correct requester ID as
captured from the original

Non-Posted TLP.

If other packets fail, ensure the address
targeted is valid.

Ensure that completions are returned
for all incoming Non-Posted traffic.

Link is Up (user_lnk_up = 1)
Device is recognized by system.

Data Transfers failing.

Do incoming packets appear
on the AXI receive interface?

Yes
Errors flagged by the core are due

to problems on the receive datapath.
Use a link analyzer if possible to
check incoming packets. See the

"Identifying Errors" section.

Errors are reported to the user
interface on the output cfg_dstatus[3:0].
This is a copy of the device status
register. Using ChipScope tool, monitor
this bus for errors.

Is the problem with receiving
or transmitting TLPs?

Do outgoing packets arrive
at destination?

Receive Transmit

http://www.xilinx.com

278 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix D: Debugging Designs

Identifying Errors
Hardware symptoms of system lock up issues are indicated when the system hangs or a
blue screen appears (PC systems). The PCI Express Base Specification, rev. 2.1 requires that
error detection be implemented at the receiver. A system lock up or hang is commonly the
result of a Fatal Error and is reported in bit 2 of the receiver’s Device Status register. Using
the ChipScope tool, monitor the core’s device status register to see if a fatal error is being
reported.

A fatal error reported at the Root complex implies an issue on the transmit side of the EP.
The Root Complex Device Status register can often times be seen using PCITree (Windows)
or LSPCI (Linux). If a fatal error is detected, refer to the Transmit section. A Root Complex
can often implement Advanced Error Reporting, which further distinguishes the type of
error reported. AER provides valuable information as to why a certain error was flagged
and is provided as an extended capability within a devices configuration space.
Section 7.10 of the PCI Express Base Specification, rev. 2.1 provides more information on AER
registers.

Transmit

Fatal Error Detected on Root or Link Partner

Check to make sure the TLP is correctly formed and that the payload (if one is attached)
matches what is stated in the header length field. The Endpoints device status register does
not report errors created by traffic on the transmit channel.

These signals should be monitored on the Transmit interface to verify all traffic being
initiated is correct. Refer to Table 2-9 for signal descriptions.

• user_lnk_up

• s_axis_tx_tlast

• s_axis_tx_tdata

• s_axis_tx_trb

• s_axis_tx_tvalid

• s_axis_tx_tready

Fatal Error Not Detected

Ensure that the address provided in the TLP header is valid. The kernel mode driver
attached to the device is responsible for obtaining the system resources allocated to the
device. In a Bus Mastering design, the driver is also responsible for providing the
application with a valid address range. System hangs or blue screens might occur if a TLP
contains an address that does not target the designated address range for that device.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 279
UG477 March 1, 2011

Hardware Debug

Receive

Xilinx solutions for PCI Express provide the Device Status register to the application on
CFG_DSTATUS[3:0].

System lock up conditions due to issues on the receive channel of the PCI Express core are
often result of an error message being sent upstream to the root. Error messages are only
sent when error reporting is enabled in the Device Control register.

A fatal condition is reported if any of these events occur:

• Training Error

• DLL Protocol Error

• Flow Control Protocol Error

• Malformed TLP

• Receiver Overflow

The first four bullets are not common in hardware because both Xilinx solutions for PCI
Express and connected components have been thoroughly tested in simulation and
hardware. However, a receiver overflow is a possibility. Users must ensure they follow
requirements discussed in the section Receiver Flow Control Credits Available in
Chapter 5 when issuing memory reads.

Non-Fatal Errors
This subsection lists conditions reported as Non-Fatal errors. See the PCI Express Base
Specification, rev. 2.1 for more details.

If the error is being reported by the root, the AER registers can be read to determine the
condition that led to the error. Use a tool such as HWDIRECT, discussed in Third Party
Software Tools, page 269, to read the root’s AER registers. Chapter 7 of the PCI Express Base
Specification defines the AER registers. If the error is signaled by the Endpoint, debug ports
are available to help determine the specific cause of the error.

Correctable Non-Fatal errors are:

• Receiver Error

• Bad TLP

• Bad DLLP

• Replay Timeout

• Replay NUM Rollover

The first three errors listed above are detected by the receiver and are not common in
hardware systems. The replay error conditions are signaled by the transmitter. If an ACK is
not received for a packet within the allowed time, it is replayed by the transmitter.

Table D-2: Description of CFG_DSTATUS[3:0]

CFG_DSTATUS[3:0] Description

CFG_DSTATUS[0] Correctable Error Detected

CFG_DSTATUS[1] Non-Fatal Error Detected

CFG_DSTATUS[2] Fatal Error Detected

CFG_DSTATUS[3] UR Detected

http://www.xilinx.com

280 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix D: Debugging Designs

Throughput can be reduced if many packets are being replayed, and the source can usually
be determined by examining the link analyzer or ChipScope tool captures.

Uncorrectable Non-Fatal errors are:

• Poisoned TLP

• Received ECRC Check Failed

• Unsupported Request (UR)

• Completion Timeout

• Completer Abort

• Unexpected Completion

• ACS Violation

An unsupported request usually indicates that the address in the TLP did not fall within
the address space allocated to the BAR. This often points to an issue with the address
translation performed by the driver. Ensure also that the BAR has been assigned correctly
by the root at start-up. LSPCI or PCItree discussed in Third Party Software Tools, page 269
can be used to read the BAR values for each device.

A completion timeout indicates that no completion was returned for a transmitted TLP
and is reported by the requester. This can cause the system to hang (could include a blue
screen on Windows) and is usually caused when one of the devices locks up and stops
responding to incoming TLPs. If the root is reporting the completion timeout, the
ChipScope tool can be used to investigate why the User Application did not respond to a
TLP (for example, the User Application is busy, there are no transmit buffers available, or
s_axis_tx_tready is deasserted). If the Endpoint is reporting the Completion timeout, a link
analyzer would show the traffic patterns during the time of failure and would be useful in
determining the root cause.

Next Steps
If the debug suggestions listed previously do not resolve the issue, open a support case to
have the appropriate Xilinx expert assist with the issue.

To create a technical support case in WebCase, see the Xilinx website at:

www.xilinx.com/support/clearexpress/websupport.htm

Items to include when opening a case:

• Detailed description of the issue and results of the steps listed above.

• Attach ChipScope tool VCD captures taken in the steps above.

To discuss possible solutions, use the Xilinx User Community:

forums.xilinx.com/xlnx/

Simulation Debug
This section provides simulation debug flow diagrams for some of the most common
issues experienced by users. Endpoints that are shaded gray indicate that more
information can be found in sections after Figure D-6.

http://www.xilinx.com/support/clearexpress/websupport.htm
http://forums.xilinx.com/xlnx/
http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 281
UG477 March 1, 2011

Simulation Debug

ModelSim Debug
Figure D-6 shows the flowchart for ModelSim debug.

X-Ref Target - Figure D-6

Figure D-6: ModelSim Debug Flow Diagram

UG477_aD_06_101810

ModelSim
Simulation Debug

Does simulating the PIO Example
Design give the expected output?

Do you get errors referring to
failing to access library?

No

No

No

Yes

Do you get errors indicating
"PCIE_2_1" or other elements like

"BUFG" not defined?

Are you able to receive packets
on the AXI RX interface and transmit

packets on the AXI TX interface?

No

No

The PIO Example design should
allow the user to quickly determine
if the simulator is set up correctly.
The default test achieves link up
(user_lnk_up = 1) and issues a
Configuration Read to the core's
Device and VendorID.

SecureIP models are used to
simulate the integrated block
for PCI Express and the transceivers.
To use these models, a Verilog
LRM-IEEE 1364-2005 encryption-
compliant simulator is required.

A Verilog license is required to
simulate with the SecureIP models.
If the user design uses VHDL, a
mixed-mode simulation license is
required.

Yes

Need to compile and map the
proper libraries. See "Compiling
Simulation Libraries Section."

Yes

Yes

Add the "-L" switch with the appropriate
library reference to the vsim command

line. For example: -L secureip or
-L unisims_ver.

See "PIO Simulator Expected
Output" section.

If the libraries are not compiled and
mapped correctly, it causes errors
such as:
** Error: (vopt-19) Failed to access
 library 'secureip' at "secureip".
No such file or directory.
 (errno = ENOENT)

** Error: ../../example_design/
 xilinx_pcie_2_1_ep_v6.v(820):
 Library secureip not found.

To model the Integrated Block for
PCI Express and the transceivers, the
SecureIP models are used. These
models must be referenced during
the vsim call. Also, it is necessary to
reference the unisims library and
possibly xilinxcorelib depending
on the design.

No

In the DSPORT test bench application,
issue a Configuration Write to the PCI
Command register at DWORD address
offset 0x04 and set bits [2:0] to 111b.

One of the most common mistakes in
simulation of an Endpoint is forgetting
to set the Memory, I/O, and Bus Master
Enable bits to a 1 in the PCI Command
register in the configuration space.

Yes
If the issue is more design specific, open

a case with Xilinx Technical Support
and include a wlf file dump of the simulation.
For the best results, dump the entire design

hierarchy.

Are you using ModelSim version 6.4a
or later?

Update ModelSim to
version 6.4a or later.

If using VHDL, do you have a
mixed-mode simulation license?

Obtain a mixed-mode
simulation license.

Yes

http://www.xilinx.com

282 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix D: Debugging Designs

PIO Simulator Expected Output

The PIO design simulation should give the output as follows:

Loading work.board(fast)
Loading unisims_ver.IBUFDS_GTXE1(fast)
Loading work.pcie_clocking_v6(fast)
Loading unisims_ver.PCIE_2_1(fast)
Loading work.pcie_gtx_v6(fast)
Loading unisims_ver.GTXE1(fast)
Loading unisims_ver.RAMB36(fast)
Loading unisims_ver.RAMB16_S36_S36(fast)
Loading unisims_ver.PCIE_2_1(fast__1)
Loading work.glbl(fast)
[0] board.EP.core.pcie_2_1_i.pcie_bram_i ROWS_TX 1 COLS_TX 2
[0] board.EP.core.pcie_2_1_i.pcie_bram_i ROWS_RX 1 COLS_RX 2
[0] board.EP.core.pcie_2_1_i.pcie_bram_i.pcie_brams_tx NUM_BRAMS 2
DOB_REG 1 WIDTH 36 RAM_WRITE_LATENCY 0 RAM_RADDR_LATENCY 0 RAM_RDATA_LATENCY 2
[0] board.EP.core.pcie_2_1_i.pcie_bram_i.pcie_brams_rx NUM_BRAMS 2
DOB_REG 1 WIDTH 36 RAM_WRITE_LATENCY 0 RAM_RADDR_LATENCY 0 RAM_RDATA_LATENCY 2
[0] board.RP.rport.pcie_2_1_i.pcie_bram_i ROWS_TX 1 COLS_TX 2
[0] board.RP.rport.pcie_2_1_i.pcie_bram_i ROWS_RX 1 COLS_RX 2
[0] board.RP.rport.pcie_2_1_i.pcie_bram_i.pcie_brams_tx NUM_BRAMS 2
DOB_REG 1 WIDTH 36 RAM_WRITE_LATENCY 0 RAM_RADDR_LATENCY 0 RAM_RDATA_LATENCY 2
[0] board.RP.rport.pcie_2_1_i.pcie_bram_i.pcie_brams_rx NUM_BRAMS 2
DOB_REG 1 WIDTH 36 RAM_WRITE_LATENCY 0 RAM_RADDR_LATENCY 0 RAM_RDATA_LATENCY 2
Running test {sample_smoke_test0}......
[0] : System Reset Asserted...
[4995000] : System Reset De-asserted...
[64069100] : Transaction Reset Is De-asserted...
[73661100] : Transaction Link Is Up...
[73661100] : Expected Device/Vendor ID = 000710ee
[73661100] : Reading from PCI/PCI-Express Configuration Register 0x00
[73673000] : TSK_PARSE_FRAME on Transmit
[74941000] : TSK_PARSE_FRAME on Receive
[75273000] : TEST PASSED --- Device/Vendor ID 000710ee successfully received
** Note: $finish : ../tests/sample_tests1.v(29)
Time: 75273 ns Iteration: 3 Instance: /board/RP/tx_usrapp

Compiling Simulation Libraries

Use the compxlib command to compile simulation libraries. This tool is delivered as part
of the Xilinx software. For more information see the ISE software manuals and specifically
“Development System Reference Guide” under the section titled compxlib.

Assuming the Xilinx and ModelSim environments are set up correctly, this is an example of
compiling the SecureIP and UniSims libraries for Verilog into the current directory:

compxlib -s mti_se -arch virtex7 -l verilog -lib secureip -lib unisims
-dir ./

There are many other options available for compxlib described in the Development System
Reference Guide.

Compxlib produces a modelsim.ini file containing the library mappings. In ModelSim,
to see the current library mappings type vmap at the prompt. The mappings can be
updated in the ini file, or to map a library at the ModelSim prompt, type:

vmap [<logical_name>] [<path>]

For example:

Vmap unisims_ver C:\my_unisim_lib

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 283
UG477 March 1, 2011

Simulation Debug

Next Step
If the debug suggestions listed previously do not resolve the issue, a support case should
be opened to have the appropriate Xilinx expert assist with the issue.

To create a technical support case in WebCase, see the Xilinx website at:

www.xilinx.com/support/clearexpress/websupport.htm

Items to include when opening a case:

• Detailed description of the issue and results of the steps listed above.

• Attach a VCD or WLF dump of the simulation.

To discuss possible solutions, use the Xilinx User Community:

forums.xilinx.com/xlnx/

http://www.xilinx.com/support/clearexpress/websupport.htm
http://forums.xilinx.com/xlnx/
http://www.xilinx.com

284 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix D: Debugging Designs

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 285
UG477 March 1, 2011

Appendix E

Managing Receive-Buffer Space for
Inbound Completions

The PCI Express® Base Specification requires all Endpoints to advertise infinite Flow
Control credits for received Completions to their link partners. This means that an
Endpoint must only transmit Non-Posted Requests for which it has space to accept
Completion responses. This appendix describes how a User Application can manage the
receive-buffer space in the PCI Express Endpoint core to fulfill this requirement.

General Considerations and Concepts

Completion Space
Table E-1 defines the completion space reserved in the receive buffer by the core. The
values differ depending on the different Capability Max Payload Size settings of the core
and the performance level selected by the designer. If the designer chooses to not have TLP
Digests (ECRC) removed from the incoming packet stream, the TLP Digests (ECRC) must
be accounted for as part of the data payload. Values are credits, expressed in decimal.

Table E-1: Receiver-Buffer Completion Space

Capability Max Payload
Size (bytes)

Performance Level: Good Performance Level: High

Cpl. Hdr.
(Total_CplH)

Cpl. Data
(Total_CplD)

Cpl. Hdr.
(Total_CplH)

Cpl. Data
(Total_CplD)

128 36 77 36 154

156 36 77 36 154

512 36 154 36 308

1024 36 308 36 616

http://www.xilinx.com

286 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix E: Managing Receive-Buffer Space for Inbound Completions

Maximum Request Size
A Memory Read cannot request more than the value stated in Max_Request_Size, which is
given by Configuration bits cfg_dcommand[14:12] as defined in Table E-2. If the User
Application chooses not to read the Max_Request_Size value, it must use the default value
of 128 bytes.

Read Completion Boundary
A Memory Read can be answered with multiple Completions, which when put together
return all requested data. To make room for packet-header overhead, the User Application
must allocate enough space for the maximum number of Completions that might be
returned.

To make this process easier, the Base Specification quantizes the length of all Completion
packets such that each must start and end on a naturally aligned Read Completion
Boundary (RCB), unless it services the starting or ending address of the original request.
The value of RCB is determined by Configuration bit cfg_lcommand[3] as defined in
Table E-3. If the User Application chooses not to read the RCB value, it must use the default
value of 64 bytes.

When calculating the number of Completion credits a Non-Posted Request requires, the
user must determine how many RCB-bounded blocks the Completion response might
require; this is the same as the number of Completion Header credits required.

Table E-2: Max_Request_Size Settings

cfg_dcommand[14:12]
Max_Request_Size

Bytes DW QW Credits

000b 128 32 16 8

001b 256 64 32 16

010b 512 128 64 32

011b 1024 256 128 64

100b 2048 512 256 128

101b 4096 1024 512 256

110b–111b Reserved

Table E-3: Read Completion Boundary Settings

cfg_lcommand[3]
Read Completion Boundary

Bytes DW QW Credits

0 64 16 8 4

1 128 32 16 8

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 287
UG477 March 1, 2011

Methods of Managing Completion Space

Methods of Managing Completion Space
A User Application can choose one of five methods to manage receive-buffer Completion
space, as listed in Table E-4. For convenience, this discussion refers to these methods as
LIMIT_FC, PACKET_FC, RCB_FC, DATA_FC, and STREAM_FC. Each has advantages
and disadvantages that the designer needs to consider when developing the User
Application.

LIMIT_FC Method
The LIMIT_FC method is the simplest to implement. The User Application assesses the
maximum number of outstanding Non-Posted Requests allowed at one time, MAX_NP. To
calculate this value, perform these steps:

1. Determine the number of CplH credits required by a Max_Request_Size packet:

Max_Header_Count = ceiling(Max_Request_Size / RCB)

2. Determine the greatest number of maximum-sized Completions supported by the
CplD credit pool:

Max_Packet_Count_CplD = floor(CplD / Max_Request_Size)

Table E-4: Managing Receive Completion Space Methods

Method Description Advantage Disadvantage

LIMIT_FC Limit the total number of
outstanding NP Requests

Simplest method to
implement in user
logic

Much Completion
capacity goes
unused

PACKET_FC Track the number of
outstanding CplH and
CplD credits; allocate and
deallocate on a per-packet
basis

Relatively simple
user logic; finer
allocation
granularity means
less wasted capacity
than LIMIT_FC

As with LIMIT_FC,
credits for an NP are
still tied up until the
Request is
completely satisfied

RCB_FC Track the number of
outstanding CplH and
CplD credits; allocate and
deallocate on a per-RCB
basis

Ties up credits for
less time than
PACKET_FC

More complex user
logic than LIMIT_FC
or PACKET_FC

DATA_FC Track the number of
outstanding CplH and
CplD credits; allocate and
deallocate on a per-RCB
basis

Lowest amount of
wasted capacity

More complex user
logic than
LIMIT_FC,
PACKET_FC, and
RCB_FC

STREAM_FC Stream packets out of the
core at line rate

Very high
performance

The user must accept
and process
Downstream
Completion and
Posted Transactions
at line rate; Most
complex user logic

http://www.xilinx.com

288 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix E: Managing Receive-Buffer Space for Inbound Completions

3. Determine the greatest number of maximum-sized Completions supported by the
CplH credit pool:

Max_Packet_Count_CplH = floor(CplH / Max_Header_Count)

4. Use the smaller of the two quantities from steps 2 and 3 to obtain the maximum number
of outstanding Non-Posted requests:

MAX_NP = min(Max_Packet_Count_CplH, Max_Packet_Count_CplD)

With knowledge of MAX_NP, the User Application can load a register NP_PENDING with
zero at reset and make sure it always stays with the range 0 to MAX_NP. When a
Non-Posted Request is transmitted, NP_PENDING decrements by one. When all
Completions for an outstanding NP Request are received, NP_PENDING increments by
one.

Although this method is the simplest to implement, it potentially wastes the most receiver
space because an entire Max_Request_Size block of Completion credit is allocated for each
Non-Posted Request, regardless of actual request size. The amount of waste becomes
greater when the User Application issues a larger proportion of short Memory Reads (on
the order of a single DWORD), I/O Reads and I/O Writes.

PACKET_FC Method
The PACKET_FC method allocates blocks of credit in finer granularities than LIMIT_FC,
using the receive Completion space more efficiently with a small increase in user logic.

Start with two registers, CPLH_PENDING and CPLD_PENDING, (loaded with zero at
reset), and then perform these steps:

1. When the User Application needs to send an NP request, determine the potential
number of CplH and CplD credits it might require:

NP_CplH = ceiling[((Start_Address mod RCB) + Request_Size) / RCB]

NP_CplD = ceiling[((Start_Address mod 16 bytes) + Request_Size) /16 bytes]
(except I/O Write, which returns zero data)

The modulo and ceiling functions ensure that any fractional RCB or credit blocks are
rounded up. For example, if a Memory Read requests 8 bytes of data from address
7Ch, the returned data can potentially be returned over two Completion packets
(7Ch-7Fh, followed by 80h-83h). This would require two RCB blocks and two data
credits.

2. Check these:

CPLH_PENDING + NP_CplH < Total_CplH (from Table E-1)

CPLD_PENDING + NP_CplD < Total_CplD (from Table E-1)

3. If both inequalities are true, transmit the Non-Posted Request, increase
CPLH_PENDING by NP_CplH and CPLD_PENDING by NP_CplD. For each NP
Request transmitted, keep NP_CplH and NP_CplD for later use.

4. When all Completion data is returned for an NP Request, decrement
CPLH_PENDING and CPLD_PENDING accordingly.

This method is less wasteful than LIMIT_FC but still ties up all of an NP Request’s
Completion space until the entire request is satisfied. RCB_FC and DATA_FC provide finer
deallocation granularity at the expense of more logic.

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 289
UG477 March 1, 2011

Methods of Managing Completion Space

RCB_FC Method
The RCB_FC method allocates and de-allocates blocks of credit in RCB granularity. Credit
is freed on a per-RCB basis.

As with PACKET_FC, start with two registers, CPLH_PENDING and CPLD_PENDING
(loaded with zero at reset).

1. Calculate the number of data credits per RCB:

CplD_PER_RCB = RCB / 16 bytes

2. When the User Application needs to send an NP request, determine the potential
number of CplH credits it might require. Use this to allocate CplD credits with RCB
granularity:

NP_CplH = ceiling[((Start_Address mod RCB) + Request_Size) / RCB]

NP_CplD = NP_CplH × CplD_PER_RCB

3. Check these:

CPLH_PENDING + NP_CplH < Total_CplH

CPLD_PENDING + NP_CplD < Total_CplD

4. If both inequalities are true, transmit the Non-Posted Request, increase
CPLH_PENDING by NP_CplH and CPLD_PENDING by NP_CplD.

5. At the start of each incoming Completion, or when that Completion begins at or
crosses an RCB without ending at that RCB, decrement CPLH_PENDING by 1 and
CPLD_PENDING by CplD_PER_RCB. Any Completion could cross more than one
RCB. The number of RCB crossings can be calculated by:

RCB_CROSSED = ceiling[((Lower_Address mod RCB) + Length) / RCB]

Lower_Address and Length are fields that can be parsed from the Completion header.
Alternatively, a designer can load a register CUR_ADDR with Lower_Address at the
start of each incoming Completion, increment per DW or QW as appropriate, then
count an RCB whenever CUR_ADDR rolls over.

This method is less wasteful than PACKET_FC but still gives us an RCB granularity. If a
User Application transmits I/O requests, the User Application could adopt a policy of only
allocating one CplD credit for each I/O Read and zero CplD credits for each I/O Write. The
User Application would have to match each incoming Completion’s Tag with the Type
(Memory Write, I/O Read, I/O Write) of the original NP Request.

DATA_FC Method
The DATA_FC method provides the finest allocation granularity at the expense of logic.

As with PACKET_FC and RCB_FC, start with two registers, CPLH_PENDING and
CPLD_PENDING (loaded with zero at reset).

1. When the User Application needs to send an NP request, determine the potential
number of CplH and CplD credits it might require:

NP_CplH = ceiling[((Start_Address mod RCB) + Request_Size) / RCB]

NP_CplD = ceiling[((Start_Address mod 16 bytes) + Request_Size) / 16 bytes]
(except I/O Write, which returns zero data)

2. Check these:

CPLH_PENDING + NP_CplH < Total_CplH

http://www.xilinx.com

290 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix E: Managing Receive-Buffer Space for Inbound Completions

CPLD_PENDING + NP_CplD < Total_CplD

3. If both inequalities are true, transmit the Non-Posted Request, increase
CPLH_PENDING by NP_CplH and CPLD_PENDING by NP_CplD.

4. At the start of each incoming Completion, or when that Completion begins at or
crosses an RCB without ending at that RCB, decrement CPLH_PENDING by 1. The
number of RCB crossings can be calculated by:

RCB_CROSSED = ceiling[((Lower_Address mod RCB) + Length) / RCB]

Lower_Address and Length are fields that can be parsed from the Completion header.
Alternatively, a designer can load a register CUR_ADDR with Lower_Address at the
start of each incoming Completion, increment per DW or QW as appropriate, then
count an RCB whenever CUR_ADDR rolls over.

5. At the start of each incoming Completion, or when that Completion begins at or
crosses at a naturally aligned credit boundary, decrement CPLD_PENDING by 1. The
number of credit-boundary crossings is given by:

DATA_CROSSED = ceiling[((Lower_Address mod 16 B) + Length) / 16 B]

Alternatively, a designer can load a register CUR_ADDR with Lower_Address at the
start of each incoming Completion, increment per DW or QW as appropriate, then
count an RCB whenever CUR_ADDR rolls over each 16-byte address boundary.

This method is the least wasteful but requires the greatest amount of user logic. If even
finer granularity is desired, the user can scale the Total_CplD value by 2 or 4 to get the
number of Completion QWORDs or DWORDs, respectively, and adjust the data
calculations accordingly.

STREAM_FC Method
When configured as an Endpoint, user applications can maximize Downstream (away
from Root Complex) data throughput by streaming Memory Read Transactions Upstream
(towards the Root Complex) at the highest rate allowed on the Integrated Block
Transaction transmit interface. Streaming Memory Reads are allowed only if
m_axis_rx_tready can be held asserted; so that Downstream Completion Transactions,
along with Posted Transactions, can be presented on the integrated block’s receive
Transaction interface and processed at line rate. Asserting m_axis_rx_tready in this
manner guarantees that the Completion space within the receive buffer is not
oversubscribed (that is, Receiver Overflow does not occur).

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 291
UG477 March 1, 2011

Appendix F

TRN to AXI Migration Considerations

This appendix describes the differences in signal naming and behavior for users migrating
to the 7 Series FPGAs Integrated Block for PCI Express® from the Virtex®-6 FPGA
Integrated Block for PCI Express, v1.x.

High-Level Summary
The 7 Series FPGAs Integrated Block for PCI Express updates the main user interface from
TRN to the standard AXI4-Stream signal naming and behavior. In addition, all control
signals that were active Low have been changed to active High. This list summarizes the
main changes to the core:

• Signal name changes

• Datapath DWORD ordering

• All control signals are active High

• Start-of-frame (SOF) signaling is implied

• Remainder signals are replaced with Strobe signals

Step-by-Step Migration Guide
This section describes the steps that a user should take to migrate an existing user
application based on TRN to the AXI4-Stream interface.

1. For each signal in Table F-1 labeled “Name change only”, connect the appropriate user
application signal to the newly named core signal.

2. For each signal in Table F-1 labeled “Name change; Polarity”, add an inverter and
connect the appropriate user application signal to the newly named core signal.

3. Swap the DWORD ordering on the datapath signals as described in Datapath DWORD
Ordering.

4. Leave disconnected the user application signal originally connected to trn_tsof_n.

5. Recreate trn_rsof_n as described in the Start-Of-Frame Signaling section and connect
to the user application as was originally connected.

6. Make the necessary changes as described in the Remainder/Strobe Signaling section.

7. If using the trn_rsrc_dsc_n signal in the original design, make the changes as described
in Packet Transfer Discontinue on Receive section, otherwise leave disconnected.

8. Make the changes as described in the Packet Re-ordering on Receive section.

http://www.xilinx.com

292 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix F: TRN to AXI Migration Considerations

Signal Changes
Table F-1 details the main differences in signaling between TRN Local-Link to
AXI4-Stream.

Table F-1: Interface Changes

TRN Name AXI4-Stream Name Difference

Common Interface

sys_reset_n sys_reset Name change; Polarity

trn_clk user_clk_out Name change only

trn_reset_n user_reset_out Name change; Polarity

trn_lnk_up_n user_lnk_up Name change; Polarity

trn_fc_ph[7:0] fc_ph[7:0] Name change only

trn_fc_pd[11:0] fc_pd[11:0] Name change only

 trn_fc_nph[7:0] fc_nph[7:0] Name change only

trn_fc_npd[11:0] fc_npd[11:0] Name change only

trn_fc_cplh[7:0] fc_cplh[7:0] Name change only

trn_fc_cpld[11:0] fc_cpld[11:0] Name change only

trn_fc_sel[2:0] fc_sel[2:0] Name change only

Transmit Interface

trn_tsof_n No equivalent for 32- and 64-bit version (see text)

trn_teof_n s_axis_tx_tlast Name change only

trn_td[W-1:0]

(W = 32, 64, or 128)
s_axis_tx_tdata[W-1:0] Name change; DWORD Ordering (see text)

trn_trem_n

(64-bit interface)
s_axis_tx_tstrb[7:0] Name change; Functional differences (see text)

trn_trem_n[1:0]

(128-bit interface)
s_axis_tx_tstrb[15:0] Name change; Functional differences (see text)

trn_tsrc_rdy_n s_axis_tx_tvalid Name change; Polarity

trn_tdst_rdy_n s_axis_tx_tready Name change; Polarity

trn_tsrc_dsc_n s_axis_tx_tuser[3] Name change; Polarity

trn_tbuf_av[5:0] tx_buf_av[5:0] Name Change

trn_terr_drop_n tx_terr_drop Name change; Polarity

trn_tstr_n s_axis_tx_tuser[2] Name change; Polarity

trn_tcfg_req_n
(64-bit interface only)

tx_cfg_req Name change; Polarity

trn_tcfg_gnt_n
(64-bit interface only)

tx_cfg_gnt Name change; Polarity

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 293
UG477 March 1, 2011

Signal Changes

trn_terrfwd_n s_axis_tx_tuser[1] Name change; Polarity

Receive Interface

trn_rsof_n No equivalent for 32 and 64-bit versions

trn_reof_n m_axis_rx_tlast Name change; Polarity

trn_rd[W-1:0]

(W = 32, 64, or 128)
m_axis_rx_tdata[W-1:0] Name change; DWORD Ordering

trn_rrem_n
(64-bit interface)

m_axis_rx_tstrb Name change; Functional differences (see text)

trn_rrem_n[1:0]
(128-bit interface)

m_axis_rx_tuser[14:10],
m_axis_rx_tuser[21:17]

Name change; Functional differences (see text)

trn_rerrfwd_n m_axis_rx_tuser[1] Name change; Polarity

trn_rsrc_rdy_n m_axis_rx_tvalid Name change; Polarity

trn_rdst_rdy_n m_axis_rx_tready Name change; Polarity

trn_rsrc_dsc_n No equivalent

trn_rnp_ok_n rx_np_ok Name change; Polarity; Extra delay (see text)

trn_rbar_hit_n[7:0] m_axis_rx_tuser[9:2] Name change; Polarity

Configuration Interface

cfg_rd_wr_done_n cfg_rd_wr_done Name change; Polarity

cfg_byte_en_n[3:0] cfg_byte_en[3:0] Name change; Polarity

cfg_wr_en_n cfg_wr_en Name change; Polarity

cfg_rd_en_n cfg_rd_en Name change; Polarity

cfg_pcie_link_state_n[2:0] cfg_pcie_link_state[2:0] Name change only

cfg_trn_pending_n cfg_trn_pending Name change; Polarity

cfg_to_turnoff_n cfg_to_turnoff Name change; Polarity

cfg_turnoff_ok_n cfg_turnoff_ok Name change; Polarity

cfg_pm_wake_n cfg_pm_wake Name change; Polarity

cfg_wr_rw1c_as_rw_n cfg_wr_rw1c_as_rw Name change; Polarity

cfg_interrupt_n cfg_interrupt Name change; Polarity

cfg_interrupt_rdy_n cfg_interrupt_rdy Name change; Polarity

cfg_interrupt_assert_n cfg_interrupt_assert Name change; Polarity

cfg_err_ecrc_n cfg_err_ecrc Name change; Polarity

cfg_err_ur_n cfg_err_ur Name change; Polarity

cfg_err_cpl_timeout_n cfg_err_cpl_timeout Name change; Polarity

cfg_err_cpl_unexpect_n cfg_err_cpl_unexpect Name change; Polarity

Table F-1: Interface Changes (Cont’d)

TRN Name AXI4-Stream Name Difference

http://www.xilinx.com

294 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix F: TRN to AXI Migration Considerations

Datapath DWORD Ordering
The AXI4-Stream interface swaps the DWORD locations but preserves byte ordering
within an individual DWORD as compared to the TRN interface. This change only affects
the 64-bit and 128-bit versions of the core. Figure F-1 and Figure F-2 illustrate the DWORD
swap ordering from TRN to AXI4-Stream for both 64-bit and 128-bit versions.

Users migrating existing 64-bit and 128-bit TRN-based designs should swap DWORD
locations for the s_axis_tx_tdata[W-1:0] and s_axis_rx_rdata[W-1:0] buses as they enter
and exit the PCIe® core.

For example, existing user application pseudo-code:

usr_trn_rd[127:0] = trn_rd[127:0];

should be modified to:

usr_trn_rd[127:96] = s_axis_rx_rdata[31:0]
usr_trn_rd[95:64] = s_axis_rx_rdata[63:32]
usr_trn_rd[63:32] = s_axis_rx_rdata[95:64]
usr_trn_rd[31:0] = s_axis_rx_rdata[127:96]

cfg_err_cpl_abort_n cfg_err_cpl_abort Name change; Polarity

cfg_err_posted_n cfg_err_posted Name change; Polarity

cfg_err_cor_n cfg_err_cor Name change; Polarity

cfg_err_cpl_rdy_n cfg_err_cpl_rdy Name change; Polarity

cfg_err_locked_n cfg_err_locked Name change; Polarity

Table F-1: Interface Changes (Cont’d)

TRN Name AXI4-Stream Name Difference

X-Ref Target - Figure F-1

Figure F-1: TRN vs. AXI DWORD Ordering on Data Bus (64-Bit)

X-Ref Target - Figure F-2

Figure F-2: TRN vs. AXI DWORD Ordering on Data Bus (128-Bit)

trn_td[63:0]
trn_rd[63:0]

s_axis_tx_tdata[63:0]
m_axis_rx_rdata[63:0]

DW0 DW1

DW1 DW0

UG477_aF_01_101810

trn_td[127:0]
trn_rd[127:0]

s_axis_tx_tdata[127:0]
m_axis_rx_rdata[127:0]

DW0 DW1 DW2 DW3

DW3 DW2 DW1 DW0

UG477_aF_02_101810

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 295
UG477 March 1, 2011

Start-Of-Frame Signaling

Start-Of-Frame Signaling
AXI4-Stream does not have equivalent signals for start-of-frame (trn_tsof_n and
trn_rsof_n) in the 32-bit and 64-bit versions. On the transmit side, existing TRN designs
can just leave the user trn_tsof_n connection unconnected. On the receive side, existing
TRN designs can recreate trn_rsof_n using simple logic, if necessary.

32- and 64-Bit Interfaces
First the user creates a sequential (clocked) signal called in_packet_reg. A combinatorial
logic function using existing signals from the core can then be used to recreate trn_rsof_n
as illustrated in this pseudo-code:

For every clock cycle (user_clk_out) do {
 if(reset)
in_packet_reg = 0

 else if (m_axis_rx_tvalid and m_axis_rx_tready)
in_packet_reg = !m_axis_rx_tlast

}

trn_rsof_n = !(m_axis_rx_tvalid & !in_packet_reg)

128-Bit Interface
The 128-bit interface provides an SOF signal. The user can invert (rx_is_sof[4])
m_axis_rx_tuser[14] to recreate trn_rsof_n.

Remainder/Strobe Signaling
This section covers the changes to the remainder signals trn_trem_n[1:0] and
trn_rrem_n[1:0].

The AXI4-Stream interface uses strobe signaling (byte enables) in place of remainder
signaling. There are three key differences between the strobe signals and the remainder
signals as detailed in Table F-2. There are also some differences between the 64-bit version
and 128-bit version of the core. The 128-bit RX version replaces trn_rrem[1:0] with
(rx_is_sof[4:0]) m_axis_rx_tuser[14:10] and (rx_is_eof[4:0]) m_axis_rx_tuser[21:17], instead
of a strobe signal. For simplicity, this section treats 64-bit and 128-bit transmit and receive
operations separately.

Table F-2: Remainder Signal Differences

TRN Remainders
64-bit: trn_trem_n, trn_rrem_n

128-bit: trn_trem_n[1:0], trn_rrem_n[1:0]

AXI4-Stream Strobes
64-bit: s_axis_tx_tstrb[7:0], m_axis_rx_tstrb[7:0]

128-bit: s_axis_tx_tstrb[15:0], rx_is_sof[4:0], rx_is_eof[4:0]

Active Low Active High

Acts on DWORDs Acts on Bytes

Only valid on end-of-frame (EOF) cycles Valid for every clock cycle that tvalid and tready are asserted

http://www.xilinx.com

296 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix F: TRN to AXI Migration Considerations

64-Bit Transmit
Existing TRN designs can do a simple conversion from the single trn_trem signal to
s_axis_tx_tstrobe[7:0]. Assuming the user currently has a signal named user_trn_trem that
drives the trn_trem input, the listed pseudo-code illustrates the conversion to
s_axis_tx_tstrobe[7:0]. The user must drive s_axis_tx_tstrobe[7:0] every clock cycle that
tvalid is asserted.

if s_axis_tx_tlast == 1 //in a packet at EOF
s_axis_tx_tstrobe[7:0] = user_trn_trem_n ? 0Fh : FFh

else //in a packet but not EOF, or not in a packet
s_axis_tx_tstrobe = FFh

64-Bit Receive
Existing TRN designs can do a simple conversion on m_axis_rx_tstrobe[7:0] to recreate the
trn_rrem signal using combinatorial logic. The listed pseudo-code illustrates the
conversion.

if m_axis_rx_tlast == 1
trn_rrem_n = (m_axis_rx_tstrb[7:4] == Fh) ? 0b : 1b

else
trn_rrem_n = 1b

128-Bit Transmit
Existing TRN designs can do a simple conversion from the single trn_trem[1:0] signal to
s_axis_tx_tstrobe[15:0]. Assuming the user currently has a signal named
user_trn_trem[1:0] that drives the trn_trem[1:0] input, the listed pseudo-code illustrates
the conversion to s_axis_tx_tstrobe[15:0]. The user must drive s_axis_tx_tstrobe[15:0]
every clock cycle.

if s_axis_tx_tlast == 1 //in a packet at EOF
 if user_trn_trem_n[1:0]==00b

s_axis_tx_tstrobe[15:0] = FFFFh
 else if user_trn_trem_n[1:0] = 01b

s_axis_tx_tstrobe[15:0] = 0FFFh
 else if user_trn_trem_n[1:0] = 10b

s_axis_tx_tstrobe[15:0] = 00FFh
 else if user_trn_trem_n[1:0] = 11b

s_axis_tx_tstrobe[15:0] = 000Fh

else //in a packet but not EOF, or not in a packet
s_axis_tx_tstrobe =FF FFh

http://www.xilinx.com

7 Series FPGAs Integrated Block for PCIe www.xilinx.com 297
UG477 March 1, 2011

Packet Transfer Discontinue on Receive

128-Bit Receive
The 128-bit receive remainder signal trn_rrem[1:0] does not have an equivalent strobe
signal for AXI4-Stream. Instead, (is_sof[4:0]) m_axis_rx_tuser[14:10] and (is_eof[4:0])
m_axis_rx_tuser[21:17] are used. Existing TRN designs can do a conversion on the
rx_is_sof and rx_is_eof signals to recreate the trn_rrem[1:0] signal using combinatorial
logic. The listed pseudo-code illustrates the conversion. This pseudo-code assumes that
the user has swapped the DWORD locations from the AXI4-Stream interface (see the
usr_trn_rd[127:0] signal pseudo-code).

trn_rrem_n[1] = !rx_is_sof[4] & !rx_is_eof[4] | rx_is_eof[4] &
rx_is_sof[3] | rx_is_eof[4] & !rx_is_eof[3]

trn_rrem_n[0] = !rx_is_eof[2]

Note: rx_is_eof[4] is equivalent to m_axis_rx_tlast.

Packet Transfer Discontinue on Receive
When the trn_rsrc_dsc_n signal in the TRN interface is asserted, it indicates to the user that
a received packet has been discontinued. The AXI4-Stream interface has no equivalent
signal. On both the TRN and AXI4-Stream cores, however, a packet is only discontinued on
the receive interface if link connectivity is lost. Therefore, users can just monitor the
user_lnk_up signal to determine a receive packet discontinue condition.

On the TRN interface, the packet transmission on the data interface (trn_rd) stops
immediately following assertion of trn_rsrc_dsc_n, and trn_reof_n might never be
asserted. On the AXI4-Stream interface, the packet is padded out to the proper length of
the TLP, and m_axis_rx_tlast is asserted even though the data is corrupted. Figure F-3 and
Figure F-4 show the TRN and AXI4-Stream signaling for packet discontinue. To recreate
the trn_rsrc_dsc_n signal, the user can just invert and add one clock cycle delay to
user_lnk_up.
X-Ref Target - Figure F-3

Figure F-3: Receive Discontinue on the TRN Interface

trn_clk

trn_lnk_up_n

trn_rd[127:0]

trn_sof_n

trn_eof_n

trn_rsrc_rdy_n

trn_rdst_rdy_n

trn_rrem_n[1]

trn_rrem_n[0]

trn_rsrc_dsc_n

UG477_aF_03_101810

http://www.xilinx.com

298 www.xilinx.com 7 Series FPGAs Integrated Block for PCIe
UG477 March 1, 2011

Appendix F: TRN to AXI Migration Considerations

Packet Re-ordering on Receive
The TRN interface uses the trn_rnp_ok_n signal to re-order TLP traffic on the receive
interface. The AXI4-Stream interface has an equivalent signal, rx_np_ok. Users need to
account for two differences in the AXI4-Stream interface as shown in Table F-3. Users have
to account for these differences in their custom logic. If the user application does not use
packet re-ordering, the user can tie rx_np_ok to 1b.

System Reset
The system reset is usually provided by PERST#, which is an active Low signal. If the
incoming reset signal is active Low, the user must invert this signal before connecting to
the sys_reset signal on the core interface.

X-Ref Target - Figure F-4

Figure F-4: Receive Discontinue on the AXI4-Stream Interface

user_clk_out

user_lnk_up

m_axis_rx_tdata[127:0]

m_axis_rx_tready

m_axis_rx_tvalid

(rx_is_sof[4:0])m_axis_rx_tuser[14:10]

(rx_is_eof[4:0])m_axis_rx_tuser[21:17]

D0H2H1H0 D4D3D2D1 D8D7D6D5 PAD PAD

10000b 00000b

00000b 11111b

original TLP data was lost

UG477_aF_04_110410

Table F-3: AXI4-Stream Interface Differences

TRN
trn_rnp_ok_n

AXI4-Stream
rx_np_ok

Active Low Active High

Must be deasserted at least one clock cycle
before trn_reof_n of the next-to-last

Non-Posted TLP that the user can accept

Must be deasserted at least one clock cycle
before is_eof[4] of the second-to-last

Non-Posted TLP that the user can accept

http://www.xilinx.com

	7 Series FPGAs Integrated Block for PCI Express
	Revision History
	Table of Contents
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	List of Acronyms

	Introduction
	About the Core
	Supported Tools and System Requirements
	Recommended Design Experience
	Additional Core Resources

	Core Overview
	Overview
	Protocol Layers
	Transaction Layer
	Data Link Layer
	Physical Layer
	Configuration Management

	PCI Configuration Space
	Core Interfaces
	System Interface
	PCI Express Interface

	Transaction Interface
	Common Interface
	Transmit Interface
	Receive Interface

	Physical Layer Interface
	Configuration Interface
	Interrupt Interface Signals
	Error Reporting Signals
	Dynamic Reconfiguration Port Interface

	Getting Started Example Design
	Integrated Block Endpoint Configuration Overview
	Simulation Design Overview
	Implementation Design Overview
	Example Design Elements

	Generating the Core
	Simulating the Example Design
	Endpoint Configuration
	Setting Up for Simulation
	Running the Simulation

	Implementing the Example Design
	Directory Structure and File Contents
	Example Design
	<project directory>
	<project directory>/<component name>
	<component name>/doc
	<component name>/example_design
	<component name>/implement
	<component name>/source
	<component name>/simulation

	Generating and Customizing the Core
	Customizing the Core using the CORE Generator Software
	Basic Parameter Settings
	Base Address Registers
	PCI Registers
	Configuration Register Settings
	Interrupt Capabilities
	Power Management Registers
	PCI Express Extended Capabilities
	Pinout Selection
	Advanced Settings

	Designing with the Core
	Designing with the Transaction Layer Interface
	Designing with the 64-Bit Transaction Layer Interface
	Designing with the 128-Bit Transaction Layer Interface
	Transaction Processing on the Receive AXI4-Stream Interface
	Atomic Operations
	Core Buffering and Flow Control

	Designing with the Physical Layer Control and Status Interface
	Design Considerations for a Directed Link Change
	Directed Link Width Change
	Directed Link Speed Change
	Directed Link Width and Speed Change

	Design with Configuration Space Registers and Configuration Interface
	Registers Mapped Directly onto the Configuration Interface
	Device Control and Status Register Definitions
	Core Response to Command Register Settings
	Status Register Response to Error Conditions
	Accessing Registers through the Configuration Port
	Optional PCI Express Extended Capabilities
	Xilinx Defined Vendor Specific Capability
	Advanced Error Reporting Capability
	Resizable BAR Capability
	User-Implemented Configuration Space
	Additional Packet Handling Requirements
	Handling Message TLPs
	Reporting User Error Conditions

	Power Management
	Active State Power Management
	Programmed Power Management

	Generating Interrupt Requests
	Legacy Interrupt Mode
	MSI Mode
	MSI-X Mode

	Link Training: 2-Lane, 4-Lane, and 8-Lane Components
	Link Partner Supports Fewer Lanes
	Lane Becomes Faulty

	Lane Reversal
	Clocking and Reset of the Integrated Block Core
	Reset
	Clocking

	Using the Dynamic Reconfiguration Port Interface
	Writing and Reading the DRP Interface
	Other Considerations for the DRP Interface

	Core Constraints
	Contents of the User Constraints File
	Part Selection Constraints: Device, Package, and Speed Grade
	User Timing Constraints
	User Physical Constraints
	Core Pinout and I/O Constraints
	Core Physical Constraints
	Core Timing Constraints

	Required Modifications
	Device Selection
	Core I/O Assignments
	Core Physical Constraints
	Core Timing Constraints
	Relocating the Integrated Block Core
	Supported Core Pinouts

	FPGA Configuration
	Configuration Terminology
	Configuration Access Time
	Configuration Access Specification Requirements

	Board Power in Real-World Systems
	Hot Plug Systems

	Recommendations
	FPGA Configuration Times for 7 Series Devices
	Sample Problem Analysis
	Workarounds for Closed Systems

	Example Design and Model Test Bench for Endpoint Configuration
	Programmed Input/Output: Endpoint Example Design
	System Overview
	PIO Hardware
	PIO Operation
	Summary

	Root Port Model Test Bench for Endpoint
	Architecture
	Simulating the Design
	Scaled Simulation Timeouts
	Test Selection
	Waveform Dumping
	Output Logging
	Parallel Test Programs
	Test Description
	Expanding the Root Port Model

	Example Design and Model Test Bench for Root Port Configuration
	Configurator Example Design
	System Overview
	Configurator Example Design Hardware
	Configurator Example Design Summary

	Endpoint Model Test Bench for Root Port
	Architecture
	Simulating the Design
	Scaled Simulation Timeouts
	Waveform Dumping
	Output Logging

	Migration Considerations
	Core Capability Differences
	Configuration Interface
	Error Reporting Signals
	ID Initial Values
	Physical Layer Interface
	Dynamic Reconfiguration Port Interface

	Debugging Designs
	Finding Help on Xilinx.com
	Documentation

	Contacting Xilinx Technical Support
	Debug Tools
	Example Design
	ChipScope Pro Tool
	Link Analyzers
	Third Party Software Tools

	Hardware Debug
	FPGA Configuration Time Debug
	Link is Training Debug
	Data Transfer Failing Debug
	Identifying Errors
	Non-Fatal Errors
	Next Steps

	Simulation Debug
	ModelSim Debug
	Next Step

	Managing Receive-Buffer Space for Inbound Completions
	General Considerations and Concepts
	Completion Space
	Maximum Request Size
	Read Completion Boundary

	Methods of Managing Completion Space
	LIMIT_FC Method
	PACKET_FC Method
	RCB_FC Method
	DATA_FC Method
	STREAM_FC Method

	TRN to AXI Migration Considerations
	High-Level Summary
	Step-by-Step Migration Guide
	Signal Changes
	Datapath DWORD Ordering
	Start-Of-Frame Signaling
	32- and 64-Bit Interfaces
	128-Bit Interface

	Remainder/Strobe Signaling
	64-Bit Transmit
	64-Bit Receive
	128-Bit Transmit
	128-Bit Receive

	Packet Transfer Discontinue on Receive
	Packet Re-ordering on Receive
	System Reset

