
XAPP452 (v1.1) June 25, 2008 www.xilinx.com 1

© 2004-2008 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary This application note provides a detailed description of the Spartan®-3 FPGA family
configuration architecture. It explains the composition of the bitstream file and how this
bitstream is interpreted by the configuration logic to program the part. Additionally, a
methodology is presented that will guide the user through the readback process. Although the
other members of the Spartan-3 generation families are similar, this information is specific to
the original Spartan-3 family.

Introduction CLBs, IOBs, and Configuration Architecture

Spartan-3 devices, like all FPGAs, have both non-programmable and programmable areas.
The non-programmable areas include the configuration logic, the Boundary-Scan logic, and
other components. The programmable areas include portions of the input/output blocks (IOBs),
digital clock managers (DCMs), configurable logic blocks (CLBs), the initial content of the block
RAMs, and the interconnect routing between clock resources, logic resources, and I/Os.

Since Spartan-3 device configuration is based on CMOS Configuration Latches, it is volatile
and must be configured upon power-up. Configuration is required to define the LUT equations,
signal routing, flip-flop reset polarity, IOB voltage standards, and all other aspects of the user
design. This configuration information, along with the instructions for the configuration logic, is
combined to form a bitstream.

Configuration Modes

Spartan-3 devices can be configured through the SelectMAP (Slave Parallel) interface, serial
interface, or through the Boundary-Scan (JTAG) interface. The configuration mode must be
specified by setting the appropriate logic levels on the Mode (M2, M1, M0) pins.

While the mechanics of the various configuration modes differ, the actual configuration method
is transparent to the Spartan-3 FPGA configuration logic. The IOBs, CLBs, and all other user-
configurable logic are configured in exactly the same way regardless of configuration mode. A
bitstream for the SelectMAP interface can look exactly the same as a bitstream for the Serial
interface.

The mechanics for delivering a bitstream to a Spartan-3 device in the different modes is
explained in Module 2 of the Spartan-3 FPGA data sheet (DS099).

Reading Configuration Bits from a Spartan-3 Device (Readback)

After configuring a Spartan-3 device, it is possible to read back the configuration logic to verify
that the configuration remains as the user intended, or to read design information or data from
an operating device.

Configuration Readback may be performed through either SelectMAP mode or Boundary-Scan
mode. Readback and all other Boundary-Scan operations are available regardless of which

Application Note: Spartan-3 Family

XAPP452 (v1.1) June 25, 2008

Spartan-3 FPGA Family Advanced
Configuration Architecture

R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf

2 www.xilinx.com XAPP452 (v1.1) June 25, 2008

Device Architecture
R

configuration mode the device is in. However, readback is not possible through the Serial
interfaces.

Device
Architecture

Overview

The purpose of device configuration is to configure the internal hardware and interconnects as
specified by the user. The configuration memory, which specifies the function of the FPGA’s
logic resources, can be visualized as a rectangular array of bits. The information provided by
the user is specified in a bitstream, which also includes instructions to the device detailing how
to interpret the user information. The information provided in the bitstream is more than just
initialization data for the internal memory cells – it contains instructions on how the information
configures the device.

Spartan-3 Device Configuration Registers

Spartan-3 devices have a number of internal registers that control configuration and readback
(see Table 1). This section describes each of those registers in detail.

Cyclic Redundancy Check Register

Data input integrity is provided through the Cyclic Redundancy Check (CRC) register. When
data is written to any configuration register except the LOUT register, a 16-bit CRC value is
calculated using the register data and address. The resulting value is saved in the CRC
register. At the end of the Frame Data Input (FDRI) Register, the last 32-bit word is
automatically interpreted as a CRC value (known as Auto CRC). That value is checked against
the current value of the CRC register. A CRC check may also be done explicitly by writing a
precalculated value into the CRC register. If the result is non-zero, an error is indicated. The
CRC_ERROR bit is accessible through the Status Register. If a CRC error is detected during

Table 1: Device Registers

Name Mnemonic Read/Write Binary Address

Cyclic Redundancy Check CRC R/W 00000

Frame Address Register FAR R/W 00001

Frame Data Input Register FDRI W 00010

Frame Data Output Register FDRO R 00011

Command Register CMD R/W 00100

Control Register CTL R/W 00101

Mask Register MASK R/W 00110

Status Register STAT R 00111

Legacy Output Register LOUT W 01000

Configuration Options Register COR R/W 01001

Multiple Frame Write Register MFWR W 01010

Frame Length Register FLR R/W 01011

(Reserved) – – 01100

(Reserved) – – 01101

Product IDCODE Register IDCODE R/W 01110

http://www.xilinx.com

Device Architecture

XAPP452 (v1.1) June 25, 2008 www.xilinx.com 3

R

configuration, the configuration logic is put in the ERROR mode (signaled by the assertion of
INIT_B).

CRC checking can be disabled through the BitGen –g CRC:Disable option or by setting the
COR register’s CRC_BYPASS bit. If CRC is disabled, the default CRC value of 0x0000DEFC
must be written to the CRC register in place of the calculated CRC value.

The Spartan-3 FPGA configuration uses a standard 16-bit CRC checksum algorithm. The 16-
bit CRC polynomial is shown below:

CRC-16 = X16 + X15 + X2 + 1

The algorithm is implemented by shifting the data stream into a 16-bit shift register, shown in
Figure 1. Register Bit 0 receives an XOR of the incoming data with the output of Bit 15. Bit 2
receives an XOR of the input to Bit 0 with the output of Bit 1. Bit 15 receives an XOR of the input
to Bit 0 with the output of Bit 14.

Frame Address Register

The Frame Address (FAR) Register holds the address of the current frame. As shown in
Figure 2, the frame address consists of three parts: the Column Address, the Major Address,
and the Minor Address. The command in the Command (CMD) Register is executed each time
the FAR register is loaded with a new value.

Frame Data Input Register

The Frame Data Input (FDRI) Register loads configuration frame data into Spartan-3 devices.
The FDRI register is a shift register into which data is loaded prior to transfer to the
configuration memory. To write configuration data to the device, the CMD register is loaded with
the Write Configuration Data (WCFG) command and then the FDRI register is loaded with at
least two frames of 32-bit words.

The write operation is pipelined such that the first frame of data is written to the configuration
memory while the second frame is being shifted in. The last configuration frame is always a pad

Figure 1: Serial 16-bit CRC

15
141312111098765432

10

01234526272829303101

Address 32-bit Data Word

CRC Calculation Register

CRC Data Input Register

CRC Register [31:0]

DATA_IN

SHIFT

23

16-bit CRC
15:0

0000 0000 0000 0000
31:16

4

x452_01_032904

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Column

Address

Major Address

(Column Position)

Minor Address

(Frame Address)
FRM_BYTE(1)

0 0 0 0 0 x x x x x x x x x x x x x x x x x x 0 0 0 0 0 0 0 0 0

1. FRM_BYTE is not used.

Figure 2: Frame Address Register

http://www.xilinx.com

4 www.xilinx.com XAPP452 (v1.1) June 25, 2008

Device Architecture
R

frame. This pad frame is dummy data, which is not actually written to the configuration memory.
Each frame write must include enough 32-bit data words to load the entire frame.

Frame Data Output Register

The Frame Data Output (FDRO) Register is used for reading or capturing configuration data
from the Spartan-3 device via readback. CRC is not calculated based on FDRO data. CRC
data also is not read back. To perform Readback, the CMD register is loaded with the Read
Configuration Data (RCFG) command, then the correct number of words is read out of the
FDRO register.

Command Register

The configuration state machine interprets the contents of the Command (CMD) Register.
Configuration commands control the operation of the configuration state machine, the Frame
Data Registers (FDRI and FDRO) and some of the global signals. The command in the CMD
register is executed each time the FAR register is loaded with a new value. Table 2 lists all valid
commands.

Table 2: CMD Codes

Command Code Description

NULL 0000 No Operation

WCFG 0001 Write Configuration Data – Used prior to writing configuration data to the FDRI register.

MFWR 0010 Multiple Frame Write – Performs a write of a single frame data to multiple frame addresses.

DGHIGH/LFRM 0011 Last Frame Write – GHIGH_B is deasserted during this time. This command also can be used
for shutdown reconfiguration.

RCFG 0100 Read Configuration Data – Used prior to reading configuration data from the FDRO register.

START 0101 Begin Startup Sequence – Starts the startup sequence, which completes configuration when
finished. The startup sequence begins after a successful CRC check and a DESYNC
command is performed.

RCAP 0110 Reset Capture – Used when performing capture in single-shot mode. This command must be
used to reset the capture signal if signal-shot capture has been selected.

RCRC 0111 Reset CRC – Used to reset the CRC register.

AGHIGH 1000 Assert GHIGH_B Signal – Used prior to reconfiguration to prevent contention while writing new
configuration data. This command is only used in non-active reconfiguration.

SWITCH 1001 Switch CCLK Frequency – Changes the frequency of the master CCLK. The frequencies are
listed in Table 6.

GRESTORE 1010 Pulse the GRESTORE Signal – Used to set/reset the internal IOB and CLB flip-flops.

SHUTDOWN 1011 Begin Shutdown Sequence – Starts the shutdown sequence and disables the device when
finished. Shutdown is performed on the next successful CRC check or RCRC instruction.

GCAPTURE 1100 Pulse GCAPTURE – Causes the capture cells within the device to be loaded.

DESYNCH 1101 Reset DALIGN Signal – Used at the end of configuration to desynchronize the device.

http://www.xilinx.com

Device Architecture

XAPP452 (v1.1) June 25, 2008 www.xilinx.com 5

R

Control Register

The Control (CTL) Register selects aspects of the configuration circuitry and logic. Figure 3
shows its fields, and Table 3 defines them.

Mask Register

The Mask (MASK) Register controls write permission of the CTL register. A 1 in bit N of the
MASK register allows the bit position to be written in the CTL register. The default value of the
MASK register is 0.

Status Register

The Status (STAT) Register is loaded with current values of several control or status signals.
This register can be read back to provide the current configuration state of the device. Figure 4
shows the fields in the STAT register, and Table 4 defines them.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S
B

IT
S

P
E

R
S

IS
T

G
T

S
_U

S
R

_B

0 1 0 x

Figure 3: Control Register

Table 3: Control Register Bits

Name Bit Indices Description

SBITS 5:4 Security Level:

00: Read/Write OK (default)

01: Readback disabled

1x: Readback disabled, writing disabled except to CRC,
CMD, and TEST registers.

Persist 3 Determines if the configuration interface defined by M2:M0
remains after configuration

0: No (default)

1: Yes

GTS_USER_B 0 Active-Low global 3-state of I/Os. Turns off pull-up resistors
if GTS_CFG_B is also asserted.

0: Yes

1: No (Default)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID
_E

R
R

O
R

D
O

N
E

IN
IT

M
O

D
E

G
H

IG
H

_B

G
W

E

G
T

S
_C

F
G

IN
_E

R
R

O
R

D
C

I_
M

AT
C

H

D
C

M
_L

O
C

K

(R
E

S
E

R
V

E
D

)

C
R

C
_E

R
R

O
R

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x x x x x x x x x x x

Figure 4: STAT Register

http://www.xilinx.com

6 www.xilinx.com XAPP452 (v1.1) June 25, 2008

Device Architecture
R

Legacy Output Register

The Legacy Output (LOUT) Register is used for daisy chaining the configuration bitstream to
other Xilinx devices. Data written to the LOUT register is serialized and appears on the DOUT
pin. The LOUT command should not be used for SelectMAP or JTAG modes.

Configuration Options Register

The Configuration Options (COR) Register selects configuration options for the device.
Figure 5 shows these options, and Table 5 defines them.

Table 4: STAT Values

Name Bit Indices Description

ID_ERROR 13 IDCODE not validated while trying to write the FDRI
register

DONE 12 Input from the DONE pin

INIT 11 Input from the INIT pin

MODE 10:8 Input from the MODE pins (M2:M0)

GHIGH_B 7 Status of GHIGH_B (0 = asserted)

GWE 6 Status of GWE (0 = all FFs and Block RAMs are write-
disabled)

GTS_CFG 5 Status of GTS_CFG_B (0 = all I/Os are 3-stated)

IN_ERROR 4 Legacy input error. This error occurs when serial data
is loaded too fast.

DCI_MATCH 3 DCI is matched. This bit is a logical AND function of all
the MATCH signals (one per bank). If no DCI I/Os are
in a particular bank, then a 1 is used.

DCM_LOCK 2 DCMs are locked. This bit is a logical AND function of
all the LOCKED signals. If DCM is not used, then a 1
is used.

CRC_ERROR 0 CRC error

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C
R

C
_B

Y
PA

S
S

D
O

N
E

_P
IP

E

D
R

IV
E

_D
O

N
E

S
IN

G
LE

O
S

C
F

S
E

L

S
S

C
LK

S
R

C

D
O

N
E

_C
Y

C
LE

M
AT

C
H

_C
Y

C
LE

LO
C

K
_C

Y
C

LE

G
T

S
_C

Y
C

LE

G
W

E
_C

Y
C

LE

0 0 x 0 0 x x x x x x x x 0 0 x x x x x x x x x x x x x x x x x

Figure 5: Configuration Options Register

http://www.xilinx.com

Device Architecture

XAPP452 (v1.1) June 25, 2008 www.xilinx.com 7

R

Table 5: COR Values

Name Bit Indices Description

CRC_BYPASS 29 0: CRC used (Default)

1: Does not check against updated CRC value

DONE_PIPE 25 0: No pipeline stage for DONEIN (Default)

1: Add pipeline stage for DONEIN. The FPGA waits for
DONE, which is delayed by one StartupClk cycle. Use
this option when StartupClk is running at high speeds

DRIVE_DONE 24 0: DONE pin is open drain (Default)

1: DONE is actively driven High

SINGLE 23 0: Readback is not one-shot. Newly captured values are
loaded on each successive CAP assertion on the
CAPTURE_SPARTAN3 primitive. Capture can also be
performed with the GCAPTURE instruction in the CMD
register. (Default)

1: Readback is one-shot. The RCAP instruction must be
loaded into the CMD register between successive
readbacks.

OSCFSEL 22:19 Select CCLK frequency in Master configuration modes
(see Table 6)

SSCLKSRC 16:15 Startup sequence clock source:

00: CCLK (Default)

01: UserClk (connection on the STARTUP_SPARTAN3
block)

1x: JTAGClk

DONE_CYCLE 14:12 Startup phase in which the DONE pin is released

MATCH_CYCLE 11:9 Stall in this startup phase until the DCI is matched

LOCK_CYCLE 8:6 Stall in this startup phase until DCMs are locked

GTS_CYCLE 5:3 Startup phase in which the Global 3-State (GTS) is
deasserted

GWE_CYCLE 2:0 Startup phase in which the Global Write Enable (GWE)
is asserted

Table 6: OSCFSEL-Specified Master CCLK Settings

CCLK (MHz) OSCFSEL

3 X10x

6 X000

12 X001

25 X010

50 X011

100 X11x

http://www.xilinx.com

8 www.xilinx.com XAPP452 (v1.1) June 25, 2008

Device Architecture
R

Multiple Frame Write Register

The Multiple Frame Write (MFWR) Register is used with the BitGen -g Compress option. If
more than one frame has identical data, it is possible to load that frame into the configuration
logic, and instruct the logic to load the frame into multiple address locations. Depending on the
utilization of the device, this may decrease the size of the bitstream considerably. This feature
is only supported upon initial configuration. Therefore, to reconfigure the device with this
feature, the part must be power-cycled or reset with PROG_B.

To write multiple frames with the same data, the following steps need to be performed:

1. Write the WCFG command to the CMD register.

2. Write a desired frame to the FDRI register.

3. Write the FAR register with the first desired address.

4. Write the MFWR command to the CMD register.

5. Write two dummy words to the MFWR register.

6. Write the FAR register with the second desired address.

7. Write two dummy words to the MFW register.

8. Repeat steps 6 and 7 until the last desired address is reached.

Frame Length Register

At the beginning of the configuration bitstream, the Frame Length (FLR) Register is written with
the length of a frame, as measured in 32-bit words. This length counter provides sequencing
information for the configuration read and write operations. The FLR register must be written
before any FDR operation can be performed. It is not necessary to set the FLR register more
than once. If the number of bits in a frame is not a multiple of 32, then the length counter of the
frame must be rounded up to the next integer. Table 7 lists the values for the FLR register for all
Spartan-3 devices.

When writing to the FLR register, the data is always specified in words. The actual value written
to the FLR register is "Actual Frame Length – 1" because the device frame length starts with 0.
For the XC3S50 part, the actual frame length in words is 37. However, when writing to the FLR
register, 36 is specified to account for the frame length starting from 0.

Table 7: Spartan-3 FPGA Configuration Data Frames and Programming Times

Device
of

Frames

Frame
Length in

Bits

Configuration
Bits

Total # of
Bits

(Including
overhead)

Approx.
SelectMap
Download

Time
(50 MHz) in

ms

Approx. Serial
Download Time
(50 MHz) in ms

Approx. JTAG
Download

Time (33 MHz)
in ms

XC3S50 368 1,184 435,712 439,264 1.10 8.79 13.31

XC3S200 615 1,696 1,043,040 1,047,616 2.62 20.95 31.75

XC3S400 767 2,208 1,693,536 1,699,136 4.25 33.98 51.49

XC3S1000 995 3,232 3,215,840 3,223,488 8.06 64.67 97.68

XC3S1500 1223 4,256 5,205,088 5,214,784 13.04 104.30 158.02

XC3S2000 1451 5,280 7,661,280 7,673,024 19.18 153.46 232.52

XC3S4000 1793 6,304 11,303,072 11,316,864 28.29 226.34 342.94

XC3S5000 1945 6,816 13,257,120 13,271,936 33.18 265.44 402.18

http://www.xilinx.com

Bitstream Composition

XAPP452 (v1.1) June 25, 2008 www.xilinx.com 9

R

IDCODE Register

The Product IDCODE (IDCODE) Register contains information to identify the device being
accessed (see Table 8). When the IDCODE is written to the IDCODE register, the configuration
logic checks the written data with an internal constant. If the values do not match, ID_ERROR
is asserted. An IDCODE write is required before any frame data is written, providing a means
to prevent a bitstream from mistargeting a part or identifying the part.

Bitstream
Composition

Packets

A Spartan-3 FPGA bitstream consists of a specific sequence of writes to the configuration
registers. After synchronization, all data, register writes, and frame data are encapsulated in
packets. There are two kinds of packets: Type 1 and Type 2. Type 1 packets are used for
register writes. A combination of Type 1 and Type 2 packets is used for frame data writes.

A Type 1 packet consists of two parts: a header and the data. The header (see Figure 6)
describes which register is being accessed, whether it is a read or write operation, and the size
of the data to follow. The data portion, always immediately following the header, is the number
of 32-bit words specified in the header.

As shown in Figure 6, only 211 – 1 32-bit words (65,504 bits) can follow a single Type 1 header.
In larger devices, there is a significant amount of overhead in a bitstream because a new packet
needs to be sent for every 65,504 bits of data. To cut down on this overhead, Type 2 headers
are used for large data writes. A Type 2 header (see Figure 7) is also a 32-bit word, but no
destination is specified and it has a much larger word count field. A Type 2 header must
immediately follow a Type 1 header with Word Count = 0.

Table 8: Spartan-3 Device IDCODEs

Device IDCODE

XC3S50 0x0140D093

XC3S200 0x01414093

XC3S400 0x0141C093

XC3S1000 0x11428093

XC3S1500 0x01434093

XC3S2000 0x01440093

XC3S4000 0x01448093

XC3S5000 0x01450093

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Type Op Register Address RSVD Word Count

0 0 1 x x x x x x x x x x x x x x x x 0 0 x x x x x x x x x x x

Figure 6: Type 1 Header

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Type Op Word Count

0 1 0 x x x x X x

Figure 7: Type 2 Header

http://www.xilinx.com

10 www.xilinx.com XAPP452 (v1.1) June 25, 2008

Bitstream Composition
R

With a Type 1 – Type 2 combination, 227 – 1 32-bit words (4,294,967,264 bits) can be sent in a
single packet. This size is significantly larger than the largest Spartan-3 FPGA bitstream.
Therefore all of the frame data can be sent in a single FDRI packet, allowing for very large serial
daisy chains, because all daisy chain data must be contained in a single LOUT packet.

Below is an example of two packets, with a write to the CMD register Figure 8) followed by a
large write to the FDRI register (Figure 9 and Figure 10).

Command Words

There are three main parts of a bitstream:

1. First, a Synchronization Word (0xAA995566) is loaded. The Spartan-3 FPGA configuration
logic processes everything on 32-bit boundaries, and the Sync Word effectively indicates
where those boundaries lie.

2. After the Sync Word, packets are processed to set up the hardware to begin writes to the
FDRI register. The majority of a bitstream consists of a number of writes to the FAR and
FDRI registers.

3. After all the frame data is loaded, subsequent writes to registers are required to perform
error checking and to begin the startup sequence.

Table 9 lists the bitstream start and configuration options. Table 10 indicates the bitstream data
frames. Table 11 provides the bitstream final commands and startup.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Type Op Register Address RSVD Word Count

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 8: CMD Header: 0x30008001

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Type Op Register Address RSVD Word Count

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9: FDRI Type 1 Header: 0x30004000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Type Op Word Count

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Figure 10: FDRI Type 2 Header (Write 2048 Dwords): 0x50000800

http://www.xilinx.com

Bitstream Composition

XAPP452 (v1.1) June 25, 2008 www.xilinx.com 11

R

Table 9: Bitstream Start and Configuration Options for XC3S400

Data Description Data Field

Dummy Word 0xFFFFFFFF(1)

Synchronization Word 0xAA995566

CMD Write Packet Header 0x30008001

CMD Write Packet Data (Reset CRC) 0x00000007

FLR Write Packet Header 0x30016001

FLR Write Packet Data 0x00000044(2)

COR Write Packet Header 0x30012001

COR Write Packet Data 0x00003FE5(2)

IDCODE Write Packet Header 0x3001C001

IDCODE Write Packet Data (3S400) 0x0141C093(2)

MASK Write Packet Header 0x3000C001

MASK Write Packet Data 0x00000000(2)

CMD Write Packet Header 0x30008001

CMD Write Packet Data (Switch CCLK) 0x00000009

FAR Write Packet Header 0x30002001

FAR Write Packet Data 0x00000000

CMD Write Packet Header 0x30008001

CMD Write Packet Data (WCFG) 0x00000001

Notes:
1. This value may be different for different software releases.
2. This value may be different based on device/design options.

Table 10: Bitstream Data Frames

Data Description Data Field

FDRI Write Packet Header (Type 1) 0x30004000

FDRI Write Packet Header (Type 2) 0x5000CF00(1)

FDRI Write Packet Data (52992 Dwords)(2) 0x--------(1)

CMD Write Packet Header 0x30008001

CMD Write Packet Data (GRESTORE) 0x0000000A

CMD Write Packet Header 0x30008001

CMD Write Packet Data (DGHIGH/LFRM) 0x00000003

No Op (one frame’s worth) 0x20000000

Notes:
1. This value may be different based on device/design options.
2. Includes one Auto CRC word.

http://www.xilinx.com

12 www.xilinx.com XAPP452 (v1.1) June 25, 2008

Configuration Columns and Frames
R

The following four operations must be performed successfully in order for the device to enter
the startup sequence:

1. Write to the COR register to program the desired startup sequence.

2. Write the START command to the CMD register.

3. Write a CRC checksum to the CRC register.

4. Write the DESYNCH command to the CMD register.

Configuration
Columns and
Frames

The Spartan-3 FPGA configuration memory can be visualized as a rectangular array of bits.
The bits are grouped into vertical frames that are one-bit wide and extend from the top of the
array to the bottom. A frame is the atomic unit of configuration. It is the smallest portion of the
configuration memory that can be written to or read from.

Frames are grouped into larger units called columns. Spartan-3 devices have different types of
columns. The physical hardware that is configured by each column type is not strictly limited to
the hardware implied by the column name. For example, certain IOBs are configured in a CLB
column, along with the CLBs.

Frames do not directly map to any single piece of hardware. For instance, a single frame does
not configure a single CLB or IOB, but actually configures a part of several logical resources, as
well as some routing.

Table 11: Bitstream Final Commands and Start Up

Data Description Data Field

CMD Write Packet Header 0x30008001

CMD Write Packet Data (START) 0x00000005

CTL Write Packet Header 0x3000A001

CTL Write Packet Data 0x00000000(1)

CRC Write Packet Header 0x30000001

CRC Write Packet Data 0x--------(1)

CMD Write Packet Header 0x30008001

CMD Write Packet Data (DESYNC) 0x0000000D

No Op (4 words) 0x20000000

Notes:
1. This value may be different based on device/design options.

Table 12: Spartan-3 FPGA Bitstream Column Types

Column Type
of Frames per

Column
Number of Columns

per Device
Column
Address

TERM(L/R) 2 2 00

IOI (L/R) 19 2 00

CLB 19 # CLB columns 00

Block RAM 76 # Block RAM columns 01

Block RAM Interconnect 19 # Block RAM columns 10

GCLK 3 1 00

http://www.xilinx.com

Configuration Frame Addressing

XAPP452 (v1.1) June 25, 2008 www.xilinx.com 13

R

TERM Columns

The TERM columns provide configuration data pertaining to the I/O electrical standard. The
TERM columns contain only those IOBs that are on the left and right edges of the device. The
IOBs on the top and bottom edges of the device are configured along with the corresponding
CLB Column.

IOI Columns

The IOI columns provide configuration information pertaining to the IOB registers, muxes, and
3-state buffers in the IOBs. As with the TERM column type, the IOI columns only contain
configuration data for those IOBs on the left and right edges of the device. The IOBs on the top
and bottom edges of the device are configured along with the corresponding CLB Column.

CLB Columns

The CLB column type includes the configurable logic blocks, all routing and interconnects
(other than the global clock trees), and all IOBs on the top and bottom edges of the device.

Block RAM Columns

The Block RAM column type contains the Block RAM initialization data. The Block RAM
initialization data consists of the initial values for the Block RAM as well as information on width,
depth, and read/write enables.

Block RAM Interconnect Columns

The Block RAM interconnect column type includes only the Block RAM routing information.

GCLK Columns

The GCLK column contains DCM attributes and BUFG configuration.

Configuration
Frame
Addressing

Each frame has its own unique address indicating which part of the device it configures. The
configuration commands that specifically load frame data includes the frame address as well as
the data. For large frame writes, internal counters automatically increment the frame address
starting with the Minor address, the Major address, and lastly the Block address.

Three different address pieces make up a frame’s address: the Column Address, the Major
Address, and the Minor Address. The Column Address indicates in broad strokes what kind of
data is being loaded (see Table 13). Notice that all IOB and CLB frames share the same
Column Address. Block RAM and Block RAM interconnect frames have their own Column
Addresses.

The second piece of the address, the Major Address, indicates where (vertically) in the device
the frame lies. For instance, SliceX0Y0 and Slice X8Y0 have different Major Addresses, but
Slices X0Y0 and X0Y8 have the same Major Address. Each Column Address type has its own
Major Address numbering scheme. For instance, Column Address 0 (CLB and IOB Type) Major
Address 0 configures the center of the device controlling the global routing resources. Column
Address 1 (Block RAM type) Major Address 0 configures the left-most Block RAM column.

The third piece of the address, the Minor Address, indicates where within the Major Address
the frame lies. For instance, Column Address 1 (Block RAM type) Major Address 0, Minor
Address 0 configures a specific piece of the left-most Block RAM column. A single frame
corresponds to each Column Type-Major Address-Minor Address combination.

http://www.xilinx.com

14 www.xilinx.com XAPP452 (v1.1) June 25, 2008

Readback
R

Readback Readback is the process of reading out all the data in the internal configuration memory.
Readback can be used to verify the current configuration data, and read the current state of all
internal CLB and IOB registers as well as the current LUT RAM and Block RAM values.
Readback is only available through the SelectMAP and Boundary-Scan interfaces. This
application note only demonstrates the use of the SelectMAP interface for performing
readback.

Readback Verification and Capture

Readback verification verifies the validity of the stored configuration data. It is most commonly
used in space-based applications, where exposure to radiation might alter the data stored in
the configuration memory cells.

Readback capture lists the states of all the internal flip-flops, which can be used for hardware
debugging and functional verification. When Capture is initiated, the internal register states are
loaded into the configuration memory, replacing the initial register startup value. This data may
be extracted after readback of the configuration memory.

Readback capture is not required for LUT RAM, Block RAM, or SRL16. The current contents of
these memory elements are always read back.

While both Verify and Capture can be performed in one readback, each requires slightly
different preparation and post-processing.

Preparing for Readback in Design Entry

If only readback verification is to be performed, there are no additional steps at the time of
design entry. However, if readback capture is to be used, the library primitive called
CAPTURE_SPARTAN3 must be instantiated in the user design as shown in Figure 11.

Table 13: Frame Address Scheme
C

o
lu

m
n

T
E

R
M

_L

IO
I_

L

C
L

B

B
R

A
M

_I
N

IT

B
R

A
M

C
L

B

G
C

L
K

_L

C
L

B

C
E

N
T

E
R

C
L

B

G
C

L
K

_R

C
L

B

B
R

A
M

_I
N

IT

B
R

A
M

C
L

B

IO
I_

R

T
E

R
M

_R

Block 0 0 0 2 1 0 0 0 0 0 0 0 2 1 0 0 0

Major 1 2 3 0 0 4 0 5 0 6 0 7 1 1 8 9 10

Minor 0~1 0~18 0~18 0~18 0~75 0~18 0 0~18 2 0~18 1 0~18 0~18 0~75 0~18 0~18 0~1

Figure 11: Readback Capture Library Primitive

CAPTURE_SPARTAN3
Trigger with
External or

Internal Signal

Synchronize
to External or
Internal Clock

CAP

CLK

X452_13_032904

http://www.xilinx.com

Readback

XAPP452 (v1.1) June 25, 2008 www.xilinx.com 15

R

The CAPTURE_SPARTAN3 component is used in the FPGA design to control when the logic
states of all registers are captured into configuration memory. The CLK pin can be driven by
any clock source that synchronizes Capture to the changing logic states of the registers. The
CAP pin is an enable control. When CAP is asserted, the register states are captured in
memory on the CLK rising edge.

Enabling Readback in the Software

If readback is to be performed through the SelectMAP interface after configuration, the
configuration ports must stay active. Additionally, a readback bit file, which contains the
commands to execute a readback and a bitmap for data verification, may be optionally
generated by setting the readback option in BitGen. An example of the BitGen command line is
shown below:

bitgen -w -l -m –b -g readback -g persist:yes –g security:none ...

Table 14 defines the options used in the example BitGen command line.

Table 15 lists all the associated BitGen files used for readback.

For more information about BitGen options, refer to the BitGen chapter in the Development
System Reference Guide.

Table 14: BitGen Options

Option Description

–w Overwrites existing output.

–l Generates a Logic Allocation file, shown in Figure 12.

–m Generates a Mask file.

–b Generates optional ASCII format files for all its binary
counterparts.

–g readback Generates the readback bit file.

–g persist:yes Keeps the SelectMAP interface active after configuration.

–g security:none Set by default and should be kept at default if readback is
desired. At security level 1 or 2, readback is disabled.

Table 15: Bitgen Files used in Readback

File
Extension

File
Type

File Description

.rbb Binary Binary command sets and verification bitmap

.rba ASCII ASCII command sets and verification bitmap

.msk Binary Binary command sets and verification data mask

.ll ASCII ASCII bit number and location of registers, SRL16, LUT RAM, Block
RAM

http://www.xilinx.com
http://toolbox.xilinx.com/docsan/xilinx10/books/docs/dev/dev.pdf
http://toolbox.xilinx.com/docsan/xilinx10/books/docs/dev/dev.pdf

16 www.xilinx.com XAPP452 (v1.1) June 25, 2008

Readback
R

Creating Readback Commands

Different readback commands are required depending on the information desired, but the basic
steps of a readback command set are the same, as indicated below:

1. Issue a Synchronization word (0xAA995566).

2. Issue a Shutdown command (Optional. For readback on designs containing Block RAM,
LUT RAM, or SRL16, it is strongly recommended to shutdown the device during readback
to prevent the readback process from corrupting the memory contents.)

3. Specify the frame length in the FLR register.

4. Issue an RCRC command.

5. Issue an RCFG command.

6. Specify the frame address in the FAR register.

7. Load the FDRO register.

8. Flush the command pipe with 32 bits of zeros.

9. Change pertinent SelectMAP signals to transition from a write of the data bus to a read.

10. Read the data.

11. Repeat steps 3 through 10 as needed.

12. Issue a Start command. (Optional. Only needed if SHUTDOWN is performed.)

13. Issue a DESYNC command (Optional).

Table 16 provides the commands for a readback example.

Table 16: Sample Readback Commands for XC3S400

Data Description Data Field

Synchronization Word 0xAA995566

CMD Write Packet Header(1) 0x30008001

CMD Write Packet Data (SHUTDOWN)(1) 0x0000000B

FLR Write Packet Header 0x30016001

FLR Write Packet Data 0x00000044(2)

CMD Write Packet Header 0x30008001

CMD Write Packet Data (RCRC) 0x00000007

CMD Write Packet Header 0x30008001

CMD Write Packet Data (RCFG) 0x00000004

FAR Write Packet Header 0x30002001

FAR Write Packet Data 0x00000000(2)

FDRO Read Packet Header (Type 1) 0x28006000

FDRO Read Packet Header (Type 2) 0x4800CF00(2)

No Op (one word) 0x20000000

Notes:
1. Optional.
2. This value may be different based on device/design options.

http://www.xilinx.com

Readback

XAPP452 (v1.1) June 25, 2008 www.xilinx.com 17

R

The shutdown sequence is strongly recommended because LUT RAM, SRL16, and Block
RAM have shared hardware between the configuration logic and the user logic. If both try to
access the memory bits at the same time, the memory contents can be corrupted. If the Block
RAM is configured to be read-only, then it is safe to read back the contents without corrupting
them. However, when performing readback on Block RAMs, read operations should be halted
because configuration logic takes control over Block RAMs during readback. LUT RAM and
SRL16, however, should only be read back after a shutdown sequence to avoid possible
memory corruption. A shutdown sequence de-asserts the GWE (Global Write Enable) signal,
which disables user access to the memory bits and allows the configuration logic to read or
write the memory contents without conflict.

If active readback is desired for designs containing LUT RAM, Block RAM, or SRL16, then it is
best to perform multiple readbacks and skip the frames that contain these memory elements.
To best achieve this, align memory elements in the same columns when designing to ease the
readback process.

When skipping CLB frames, it is critical to stop readback one frame prior to the frame
containing the memory elements. If the frame prior to the frame containing the memory
elements is read back, we still risk corrupting configuration logic. For example, if the CLB frame
with Minor Address 0 contains memory elements, readback must be stopped after the frame
with Minor Address 17 of the previous CLB column. This process must be done carefully with
the exact readback words specified in the FDRO. Otherwise, if insufficient words are read out
other than those specified in the FDRO, a readback interrupt is considered to have occurred. In
this case, the subsequent readback must include a readback FAR clearance instruction, as
noted in Table 20.

It is also possible that the DCM might lose its lock during shutdown, if it has an external
feedback path. The SHUTDOWN command causes all FPGA outputs to be 3-stated. Thus if
the DCM has external feedback generated by itself, the lock might be lost. In this case, the
DCM must be reset either through the user design.

The simplest readback to perform is a read of a single configuration register. No design
information is required, and all the necessary information has been presented in the
“Spartan-3 Device Configuration Registers” and “Bitstream Composition” sections. A useful
example is to read back the STATUS configuration register. Using the information above, a
packet can be constructed that reads one 32-bit word from that register. Table 17 shows the
packet header.

Table 17: Sample Status Register Readback Commands

Data Description Data Field

Dummy word 0xFFFFFFFF

Sync Word 0xAA995566

Status Register Read 0x2800E002

Flush pipe (2 words) 0x00000000

CMD Write Packet Header 0x30008001

CMD Write Packet Data (RCRC)(1) 0x00000007

Flush pipe (2 words) 0x00000000

Notes:
1. Because the read status activity causes the CRC_ERROR status to be asserted, it is important to clear

the CRC_ERROR status bit to ensure normal device operation. Writing the precalculated CRC value to
the CRC register or writing an RCRC command can do this.

http://www.xilinx.com

18 www.xilinx.com XAPP452 (v1.1) June 25, 2008

Readback
R

If certain design information is desired, then a FAR – FDRO pair is required. To find the proper
frame address to read back, the .ll (Logic Allocation) file is used. Figure 12 lists an example file.

The first part of the file explains all the fields in the .ll file. There are bit position columns and
logic information. The OFFSET field starts counting with bit position 0 of the readback data,
which includes the pad frame. The Frame Address specifies the FAR value if specific frame
readback is desired. The Frame Offset specifies the bit offset within the specified frame
address. In Figure 12, there are IOB status bits (Latch = I), CLB flip-flop status bits
(Latch = YQ), CLB LUT bits (Ram = M:18), and Block RAM bits (Ram:B:BIT847). In the case
where a net name is applicable, that name is included for design correlation purposes.

Figure 12: Sample .ll File

Revision 3
; Created by bitgen G.26 at Tue Jan 06 11:30:43 2004
; Bit lines have the following form:
; <offset> <frame address> <frame offset> <information>
; <information> may be zero or more <kw>=<value> pairs
; Block=<blockname specifies the block associated with this
; memory cell.
;
; Latch=<name> specifies the latch associated with this memory
cell.
;
; Net=<netname> specifies the user net associated with this
; memory cell.
;
; COMPARE=[YES | NO] specifies whether or not it is appropriate
; to compare this bit position between a
; "program" and a "readback" bitstream.
; If not present the default is NO.
;
; Ram=<ram id>:<bit> This is used in cases where a CLB function
; Rom=<ram id>:<bit> generator is used as RAM (or ROM). <Ram id>
; is either 'F', 'G', or 'M', indicating that
; it is part of a single F or G function
; generator used as RAM, or as a single RAM
; (or ROM) built from both F and G. <Bit> is
; a decimal number.
;
; Info lines have the following form:
; Info <name>=<value> specifies a bit associated with the LCA
; configuration options, and the value of
; that bit. The names of these bits may have
; special meaning to software reading the .ll file.
;
Info STARTSEL0=1
Bit 15824 0x00040200 368 Block=D3 Latch=O2 Net=xn_index_0_OBUF
Bit 21039 0x00040600 1167 Block=J2 Latch=I Net=xn_re_6_IBUF
Bit 309402 0x00120200 282 Block=SLICE_X12Y57 Latch=YQ Net=U0/N752

Bit 392413 0x00160000 1597 Block=SLICE_X16Y16 Ram=M:18
Bit 392414 0x00160000 1598 Block=SLICE_X16Y16 Ram=M:17
Bit 392415 0x00160000 1599 Block=SLICE_X16Y16 Ram=M:16

Bit 1281757 0x02000400 1117 Block=RAMB16_X0Y3 Ram=B:BIT847
Bit 1281758 0x02000400 1118 Block=RAMB16_X0Y3 Ram=B:BIT94
Bit 1281759 0x02000400 1119 Block=RAMB16_X0Y3 Ram=B:BIT222

http://www.xilinx.com

Readback

XAPP452 (v1.1) June 25, 2008 www.xilinx.com 19

R

Changing from a Write to a Read

After the configuration logic is sent data indicating a readback is desired, the CS and RDWR
signals must change as defined below in order to switch from a write operation to a read. It is
critical to follow the following sequence exactly, otherwise an ABORT sequence might be
triggered.

1. Deassert CS.

2. Deassert RDWR.

3. Assert CS.

4. On the following rising CCLK edge, data is driven out on the SelectMAP data bus. (Note:
readback data is valid only when the BUSY pin is Low.)

Table 18 shows the truth table for the SelectMAP data bus. The effect of CS_B on D[0:7] bus is
asynchronous to CCLK.

Figure 13 shows the timing when a write operation is switched to a read.

Configuration and Readback Interrupt

SelectMAP ABORT

An ABORT is an interruption in the SelectMAP configuration or readback sequence that occurs
when the state of RDWR_B changes while CS_B is asserted. ABORT in the Spartan-3 devices
is an asynchronous event, different from Spartan-II and Spartan-IIE devices. During a
configuration ABORT, an 8-bit status word is driven onto the D[0:7] pins over the next four
CCLK cycles. After the ABORT sequence finishes, the user may re-synchronize the
configuration logic and resume configuration.

Table 18: SelectMAP Bus Truth Table

PROG_B CS_B BUSY RDWR_B D[0:7]

0 X X X High-Z

1 0 0 0 Input

1 0 0 1 Active Output

1 0 1 0 Input; data not registered

1 0 1 1 Active Output; data not valid

1 1 High-Z X High-Z

Figure 13: Timing Diagram for a Write to Read Operation Change

CS_B

RDWR_B

D[0:7]

WRITE:
D[0:7] ARE INPUTS

CCLK

BUSY

A A 9 9 5 5 6 6 2 8 0 0 E 0 0

READ:
D[0:7] ARE OUTPUTS WRITE

0 X S S S X 00 0

UG071_49_012805

HI-Z HI-Z

HI-ZHI-Z

HI-Z

HI-Z

HI-Z

HI-Z

http://www.xilinx.com

20 www.xilinx.com XAPP452 (v1.1) June 25, 2008

Readback
R

Configuration ABORT Sequence Description

An ABORT is signaled during configuration as follows:

1. The Configuration sequence begins normally.

2. The RDWR_B pin is pulled High while the device is selected (CS_B is asserted Low).

3. BUSY goes High if CS_B remains asserted (Low). The FPGA drives the status word onto
the data pins if RDWR_B remains High for read control.

4. The ABORT ends when CS_B is deasserted.

Figure 14 shows the timing for an ABORT sequence.

ABORT Status Word

During the configuration ABORT sequence, the device drives a status word onto the D[0:7]
pins. Table 19 lists the key for that status word.

Figure 14: ABORT Sequence Timing Diagram

Table 19: ABORT Status Word

Bit Number Status Bit Name Meaning

D7 CFGERR_B Configuration error (active Low)

0 = A configuration error has occurred

1 = No configuration error

D6 DALIGN Sync word received (active High)

0 = No sync word has been received

1 = Sync word received by interface logic

D5 RIP Readback in progress (active High)

0 = No readback is in progress

1 = A readback is in progress

D4 IN_ABORT_B ABORT in progress (active Low)

0 = ABORT is in progress

1 = No ABORT is in progress

D3 - D0 1111 Fixed value

X452_15_120104

DATA[0:7]

BUSY

CCLK

FPGA

abort

CS_B

RDWR_B

http://www.xilinx.com

Readback

XAPP452 (v1.1) June 25, 2008 www.xilinx.com 21

R

The ABORT sequence lasts four CCLK cycles. During those cycles, the status word changes to
reflect data alignment and ABORT status. A typical sequence is:

11011111 => DALIGN = 1, IN_ABORT_B = 1
11001111 => DALIGN = 1, IN_ABORT_B = 0
10001111 => DALIGN = 0, IN_ABORT_B = 0
10011111 => DALIGN = 0, IN_ABORT_B = 1

After the last cycle, the synchronization word can be reloaded to establish data alignment.

Readback ABORT Sequence Description

An ABORT is signaled during readback as follows:

1. The Readback sequence begins normally.

2. The RDWR_B pin is pulled Low while the device is selected (CS_B is asserted Low).

3. BUSY goes High if CS_B remains asserted (Low).

4. The ABORT ends when CS_B is deasserted.

Figure 15 shows the timing for a readback ABORT.

Note that ABORTs during readback are not followed by a status word, because RDWR_B is set
for write control (FPGA D[0:7] pins are inputs).

Resuming Configuration or Readback After an ABORT

There are two ways to resume configuration or readback after an ABORT:

• The device can be resynchronized after the ABORT completes.

• The device can be reset by pulsing PROG_B Low at any time.

To resynchronize the device, CS_B must be deasserted, then reasserted. The configuration
synchronization word can then be sent. Configuration or readback can be resumed by sending
the last configuration/readback packet that was in progress when the ABORT occurred.
Alternatively, configuration/readback can be restarted from the beginning.

When resynchronizing the device to continue readback, caution must be taken. If subsequent
readback is started while the previous readback was interrupted, a race between the two
control signals can be created. This race can cause two columns of configuration frames to be
overwritten with the contents of a third frame. The two frames corrupted are the frames after the
last frame read and frame 0.

Figure 15: Timing Diagram for Readback ABORT

X452_16_120104

DATA[0:7]

BUSY

CCLK

FPGA

abort

CS_B

RDWR_B

http://www.xilinx.com

22 www.xilinx.com XAPP452 (v1.1) June 25, 2008

Readback
R

To avoid configuration logic corruption, the instructions listed in Table 20 must be sent to the
device prior to reinitializing the readback process or the configuration process.

Readback Data Format

The readback data stream contains the information contained within the configuration memory
map (data frames) plus additional pad data produced by the pipelining process of reading the
data. The readback stream does not contain any commands, options, or packet information
found in the configuration stream, nor does it contain any CRC values, since this information is
stored in internal configuration registers, not the configuration memory. Additionally, no CRC
calculation is performed during readback.

Unlike the previous Spartan family parts (Spartan-II and Spartan-IIE devices), the Spartan-3
FPGA readback stream contains only one pad frame prior to the desired readback frame
specified by the FAR register. Furthermore, there are no pad words between the readback
frames.

Table 20: Readback FAR Clearance Instructions for XC3S400

Data Description Data Field

Synchronization Word 0xAA995566

FLR Write Packet Header 0x30016001

FLR Write Packet Data 0x00000044(1)

FAR Write Packet Header 0x30002001

FAR Write Packet Data 0xFFFFFFFF

CMD Write Packet Header 0x30008001

CMD Write Packet Data (RCFG) 0x00000004

FDRO Write Packet Header (Type 1) 0x28006000

FDRO Write Packet Header (Type 2) 0x48000044(1)

CMD Write Packet Header 0x30008001

CMD Write Packet Data (START) 0x00000005

No Op (4 words) 0x20000000

DATA Flush(2) –

Notes:
1. This value may be different based on device FLR. The FDRO word count should be one frame of words.
2. Toggle RDWR_D to read mode and clock out one frame of data.

http://www.xilinx.com

Readback

XAPP452 (v1.1) June 25, 2008 www.xilinx.com 23

R

The second major difference between the Spartan-II, Spartan-IIE, and Spartan-3 devices is
that DFF values are readback inverted as shown in Table 21.

Verifying Configuration Data

Readback verification is a process of making a bit per bit comparison of the readback data
frames to the bitmap in the <design>.rbb readback file. However, not all of the readback
data should be used for verification. There are three types of data bits that cannot be verified
against the bitmap: pad data, RAM bits, and Capture bits. The pad data includes the pad frame,
the readback commands, CRC bits, and any bit for which the device does not have a memory
cell at the given location. RAM bits are configuration memory cells that hold the contents of LUT
RAMs, SRL16, and Block RAMs. These values are dynamically changing per the user design.
The Capture bits are the memory locations reserved for capturing internal register states. They
are masked out only if the capture block is instantiated in the design. In addition, readback data
is only valid when the BUSY pin is Low.

While the pad frame is a separate data frame that can be easily ignored by any system
performing readback, the RAM and Capture bits are sprinkled throughout the data frames and
must be masked out. However, masking out the bit information does not prevent possible LUT
RAM, SRL16, or Block RAM memory corruption. To prevent memory corruption of these
elements, either place the device in SHUTDOWN mode or skip the frames that contain memory
elements. The <design>.msk mask file is used to mask out the RAM and Capture bits.

The declarations portion is throw-away data. The mask file includes command sets and the
synchronization word, which can be omitted if an ABORT has not been executed.

Figure 16: Spartan-3 FPGA Readback Data Stream

Table 21: Configuration Component Readback Truth Table

Spartan-II/Spartan-IIE Devices Spartan-3 Devices

LUT RAM Readback Value Inverted Readback Value Inverted

SRL16 Readback Value Inverted Readback Value Inverted

DFF Readback Value in True Sense Readback Value Inverted

Block RAM Readback Value in True Sense Readback Value in True Sense

X452_17_041404

FRAME DATA Pad Frame

FRAME DATA Frame 0

FRAME DATA Frame 1

FRAME DATA Frame 3

FRAME DATA Frame 2

http://www.xilinx.com

24 www.xilinx.com XAPP452 (v1.1) June 25, 2008

Readback
R

Figure 17 shows a sample mask file.

The masking data determines which data frame bits are configuration bits and should be
verified against the bitmap in the <design>.rbb readback file, and which bits are either RAM
or Capture bits and thus should be skipped. The MSK file masks out the 32 bits following each
frame, but does not mask out the first 32-bit portion of the readback stream, the first frame pad
data, or the following 32-bit pipeline data portion. See Figure 18 for the readback data stream
alignment. The equation for this file follows:

RBB[i] = MSK[i] x DATA[i]

Figure 17: Sample Mask File

Figure 18: Readback Data Stream Alignment

0009 0FF0 0FF0 0FF0 0FF0 0000 0161 0008 746F File Declaration and header;
702E 6E63 6400 6200 0B33 7334 3030 6674 3235 Design Name, target device Date,
3600 6300 0B32 3030 342F 3031 2F30 3600 6400 etc. Size is dynamic
0931 313A 3330 3A35 3800 6500 033D A8FF FFFF
FFAA 9955 6630 0080 0100 0000 0730 0160 0100 Sync word
0000 4430 0120 0100 003F E530 01C0 0101 41C0 Readback command sets
9330 00C0 0100 0000 0030 0080 0100 0000 0930
0020 0100 0000 0030 0080 0100 0000 0130 0040
0050 00CF 00FF FFFF FFFF FFFF FFFF FFFF FFFF Masking Data
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF ---- ---- ---- ---- ---- ---- 0000 0000
0000 0000 0000 0000 0000 0000 0000 ---- ---- ----

X452_18_032904

Next
Command

Set

Next
Command

Set

FRAME DATA FRAME DATA Frame n

FRAME DATA FRAME DATA

FRAME DATAFRAME DATA

FRAME DATAFRAME DATA = X

Declarations
and

Command Set

Frame 0

Pad Data Frame

Bitmap (.rbb) Mask (.msk)

Readback
Data

Declarations
and

Command Set

FRAME MASK

FRAME MASK

FRAME MASK

FRAME MASK

http://www.xilinx.com

Readback

XAPP452 (v1.1) June 25, 2008 www.xilinx.com 25

R

Each bit position of the masking data corresponds to the bit position of the readback data.
Therefore, the first masking data bit specifies whether to verify the first bit of the first valid frame
against the bitmap <design>.rbb file. If the mask bit is a 0, the frame bit is verified. If the
mask bit is a 1, the frame bit is not verified.

Figure 19 shows the flow for readback data verification.

Although the use of the mask and the .rbb file ensures a complete verification on the FPGA, this
method requires a significant amount of memory space to hold the mask and the .rbb file. It is
also possible to verify the device configuration without the use of the mask or the .rbb file. An
alternative method is to read back the device and calculate a frame- or column-based golden
checksum on the readback data.

Figure 19: Readback Data Verification Flow

BEGIN

END

No

No

No

No

No

Yes

Yes

Yes

Yes

Passed Start
of First
Frame?

Read Bitmap and
Data Byte

Load Readback command set.

Read Mask
Byte

Verification
Failed

i = 0

Mask(i) = 0
?

Readback next data byte (target) and
next byte from bitmap data (.rbb).

Is the current Readback byte part of a
data frame?

Read next byte from Mask data (MSK).

For each bit, if the mask bit is a 0, then
compare the Readback data bit to the
bitmap bit.

Is Readback complete?

Verification is successful.

X452_19_032904

If any bits mismatch, then verification
has failed.

Data(i) =
Bitmap(i)

?

i = 7
?

EOF
?

i = i+1

http://www.xilinx.com

26 www.xilinx.com XAPP452 (v1.1) June 25, 2008

Revision History
R

Partial Reconfiguration

Partial reconfiguration is not recommended or supported in the Spartan-3 family or other
members of the Spartan-3 generation (Spartan-3E, Spartan-3A, Spartan-3AN, Spartan-3A
DSP). The Spartan-3 generation devices require a full reconfiguration of the entire device. For
partial reconfiguration applications, consider the Virtex® FPGAs, which allow configuration on
a frame basis (see XAPP290), as opposed to the column-based configuration of the Spartan-
3 generation. Virtex devices also provide an ICAP component for configuration.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

12/03/04 1.0 Initial Xilinx release.

06/25/08 1.1 Corrected XC3S1500 frame length in Table 7. Added more detail to
Figure 13. Updated “Partial Reconfiguration” to note that it is not
recommended or supported in the Spartan-3 generation.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp290.pdf

	Spartan-3 FPGA Family Advanced Configuration Architecture
	Summary
	Introduction
	CLBs, IOBs, and Configuration Architecture
	Configuration Modes
	Reading Configuration Bits from a Spartan-3 Device (Readback)

	Device Architecture
	Overview
	Spartan-3 Device Configuration Registers
	Cyclic Redundancy Check Register
	Frame Address Register
	Frame Data Input Register
	Frame Data Output Register
	Command Register
	Control Register
	Mask Register
	Status Register
	Legacy Output Register
	Configuration Options Register
	Multiple Frame Write Register
	Frame Length Register
	IDCODE Register

	Bitstream Composition
	Packets
	Command Words

	Configuration Columns and Frames
	TERM Columns
	IOI Columns
	CLB Columns
	Block RAM Columns
	Block RAM Interconnect Columns
	GCLK Columns

	Configuration Frame Addressing
	Readback
	Readback Verification and Capture
	Preparing for Readback in Design Entry
	Enabling Readback in the Software
	Creating Readback Commands
	Changing from a Write to a Read
	Configuration and Readback Interrupt
	SelectMAP ABORT
	Configuration ABORT Sequence Description
	ABORT Status Word
	Readback ABORT Sequence Description
	Resuming Configuration or Readback After an ABORT

	Readback Data Format
	Verifying Configuration Data
	Partial Reconfiguration

	Revision History

